• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorNg, Tien Khee (16)Ooi, Boon S. (16)Zhao, Chao (6)Alias, Mohd Sharizal (4)Alyamani, Ahmed Y. (4)View MoreDepartmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (16)Electrical Engineering Program (16)Photonics Laboratory (14)Advanced Semiconductor Laboratory (3)Imaging and Characterization Core Lab (3)View MoreJournalOptics Express (5)IEEE Photonics Journal (2)ACS Photonics (1)Journal of Applied Physics (1)Journal of Materials Chemistry A (1)View MoreKAUST Grant Number
    BAS/1/1614-01-01 (16)
    GEN/1/6607-01-01 (4)KCR/1/2081-01-01 (4)REP/1/2878-01-01 (4)BAS/1/1664-01-01 (3)View MorePublisherThe Optical Society (8)Institute of Electrical and Electronics Engineers (IEEE) (2)Royal Society of Chemistry (RSC) (2)AIP Publishing (1)American Chemical Society (ACS) (1)View MoreSubjectNanowires (2)ultraviolet (2)aluminum gallium nitride nanowire (1)Amorphous quartz (1)Band gap (1)View MoreTypeArticle (16)Year (Issue Date)
    2018 (16)
    Item AvailabilityOpen Access (16)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 16

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 16CSV
    • 16RefMan
    • 16EndNote
    • 16BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes

    Priante, Davide; Tangi, Malleswararao; Min, Jung-Wook; Alfaraj, Nasir; Liang, Jian-Wei; Sun, Haiding; Alhashim, Hala H.; Li, Xiaohang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S. (Optical Materials Express, The Optical Society, 2018-12-17) [Article]
    Self-assembled nanowires are posed to be viable alternatives to conventional planar structures, including the nitride epitaxy for optoelectronic, electronic and nano-energy applications. In many cases, current injection and extraction at the nanoscopic scale are essential for marked improvement at the macroscopic scale. In this investigation, we study the mechanism of nanoscale current injection and the origin of improvement of the flow of charged carriers at the group-III nitride semiconductor surface and metal-semiconductor interfaces. Conductive atomic force microscopy (c-AFM) and Kelvin probe force microscopy (KPFM) enable a rapid analysis of the electrical and morphological properties of single and ensemble nanostructures. The surface potential and current injection of AlGaN nanowire-based LEDs are spatially mapped before and after surface treatment with KOH solution. Treated-nanowires showed an improved current spreading and increased current injection by nearly 10×, reduced sub-turn-on voltage (as low as 5 V), and smaller series resistance. The reduced contact potential confirms the lower semiconductor/metal barrier, thus enabling larger carriers flow, and correlates with the 15% increase in injection efficiency in macroscopic LEDs. The improvement leads to the normalization of nanoscale electrical conducting properties of UV AlGaN-based nanowire-LEDs and lays the foundation for the realization of practical nanowire-based device applications.
    Thumbnail

    Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration

    Zhang, Huafan; Ebaid, Mohamed; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S. (Journal of Applied Physics, AIP Publishing, 2018-08-24) [Article]
    InGaN-based nanowires (NWs) have been extensively studied for photoelectrochemical (PEC) water splitting devices owing to their tunable bandgap and good chemical stability. Here, we further investigated the influence of Si doping on the PEC performance of InGaN-based NW photoanodes. The Si dopant concentration was controlled by tuning the Si effusion cell temperature (TSi) during plasma-assisted molecular beam epitaxy growth and further estimated by Mott-Schottky electrochemical measurements. The highest Si dopant concentration of 2.1 × 1018 cm−3 was achieved at TSi = 1120 °C, and the concentration decreased with further increases in TSi. The flat-band potential was calculated and used to estimate the conduction and valence band edge potentials of the Si-doped InGaN-based NWs. The band edge potentials were found to seamlessly straddle the redox potentials of water splitting. The linear scan voltammetry results were consistent with the estimated carrier concentration. The InGaN-based NWs doped with Si at TSi = 1120 °C exhibited almost 9 times higher current density than that of the undoped sample and a stoichiometric evolution of hydrogen and oxygen gases. Our systematic findings suggest that the PEC performance can be significantly improved by optimizing the Si doping level of InGaN-based NW photoanodes.
    Thumbnail

    High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication

    Alatawi, Abdullah; Holguin Lerma, Jorge Alberto; Kang, Chun Hong; Shen, Chao; Subedi, Ram Chandra; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S. (Optics Express, The Optical Society, 2018-09-25) [Article]
    We demonstrated a high-power (474 mW) blue superluminescent diode (SLD) on c-plane GaN-substrate for speckle-free solid-state lighting (SSL), and high-speed visible light communication (VLC) link. The device, emitting at 442 nm, showed a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. By integrating a YAG-phosphor-plate to the SLD, a CRI of 85.1 and CCT of 3392 K were measured, thus suitable for solid-state lighting. The SLD shows a relatively large 3-dB modulation bandwidth of >400 MHz, while a record high data rate of 1.45 Gigabit-per-second (Gbps) link has been achieved below forward-error correction (FEC) limit under non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. Our results suggest that SLD is a promising alternative for simultaneous speckle-free white lighting and Gbps data communication dual functionalities.
    Thumbnail

    Tunable self-injection locked green laser diode

    Shamim, Md Hosne Mobarok; Ng, Tien Khee; Ooi, Boon S.; Khan, Mohammed Zahed Mustafa (Optics Letters, The Optical Society, 2018-10-08) [Article]
    We report, to the best of our knowledge, the first employment of a self-injection locking scheme for the demonstration of a tunable InGaN/GaN semiconductor laser diode. We have achieved a 7.11 nm (521.10–528.21 nm) tunability in a green color with different injection currents and temperatures. The system exhibited mode spectral linewidth as narrow as ∼69 pm and a side mode suppression ratio as high as ∼28 dB, with a maximum optical power of ∼16.7 mW. In the entire tuning window, extending beyond 520 nm, a spectral linewidth of ≤100 pm, high power, and stable performance were consistently achieved, making this, to the best of our knowledge, the first-of-its-kind compact tunable laser system attractive for spectroscopy, imaging, sensing systems, and visible light communication.
    Thumbnail

    III-Nitride Nanowires on Unconventional Substrates: from Materials to Optoelectronic Device Applications

    Zhao, Chao; Alfaraj, Nasir; Subedi, Ram Chandra; Liang, Jian-Wei; Alatawi, Abdullah; Alhamoud, Abdullah; Ebaid, Mohamed; Alias, Mohd Sharizal; Ng, Tien Khee; Ooi, Boon S. (Progress in Quantum Electronics, Elsevier BV, 2018-08-04) [Article]
    Group-III nitrides and their alloys feature direct bandgaps covering a broad range of the electromagnetic spectrum, making them a promising material system for various applications, such as solid state lighting, chemical/biological sensing, water splitting, medical diagnostics, and communications. In recent years, the growth of strain and defect-free group-III nitride vertical nanowires has exploded as an area of research. These nanowires, grown on various unconventional substrates, such as silicon and different metals, demonstrate potential advantages over their planar counterparts, including wavelength tunability to the near infrared and reduced efficiency droop. The low-profile and low power consumption of such nanowires also make them viable candidates for emerging applications, such as the Internet of things and artificial intelligence. Herein, we present a comprehensive review on the recent achievements made in the field of III-nitride nanowires. We compare and discuss the growth conditions and mechanisms involved in fabricating these structures via metalorganic chemical vapor deposition and molecular beam epitaxy. How the unique optical, electrical, and thermal properties of these nanowires are correlated with their growth conditions on various unconventional substrates is discussed, along with their respective applications, including light-emitting diodes, lasers, photodetectors, and photoelectrodes. Finally, we detail the remaining obstacles and challenges to fully exploit the potential of III-nitride nanowires for such practical applications.
    Thumbnail

    Graded-Index Separated Confinement Heterostructure AlGaN Nanowires: Towards Ultraviolet Laser Diodes Implementation

    Sun, Haiding; Priante, Davide; Min, Jung-Wook; Subedi, Ram Chandra; Shakfa, Mohammad Khaled; Ren, Zhongjie; Li, Kuang-Hui; Lin, Ronghui; Zhao, Chao; Ng, Tien Khee; Ryou, Jae-Hyun; Zhang, Xixiang; Ooi, Boon S.; Li, Xiaohang (ACS Photonics, American Chemical Society (ACS), 2018-06-19) [Article]
    High-density dislocations in materials and poor electrical conductivity of p-type AlGaN layers constrain the performance of the ultraviolet light emitting diodes and lasers at shorter wavelengths. To address those technical challenges, we design, grow, and fabricate a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode. Calculated electronic band diagram and carrier concentrations show an automatic formation of a p–n junction with electron and hole concentrations of ∼1018 /cm3 in the graded AlGaN layers without intentional doping. The transmission electron microscopy experiment confirms the composition variation in the axial direction of the graded AlGaN nanowires. Significantly lower turn-on voltage of 6.5 V (reduced by 2.5 V) and smaller series resistance of 16.7 Ω (reduced by nearly four times) are achieved in the GRINSCH diode, compared with the conventional p-i-n diode. Such an improvement in the electrical performance is mainly attributed to the effectiveness of polarization-induced n- and p-doping in the compositionally graded AlGaN layers. In consequence, the carrier transport and injection efficiency of the GRINSCH diode are greatly enhanced, which leads to a lower turn-on voltage, smaller series resistance, higher output power, and enhanced device efficiency. The calculated carrier distributions (both electrons and holes) across the active region show better carrier confinement in the GRINSCH diode. Thus, together with the large optical confinement, the GRINSCH diode could offer an unconventional path for the development of solid-state ultraviolet optoelectronic devices, mainly laser diodes of the future.
    Thumbnail

    Quantified Hole Concentration in AlGaN Nanowires for High-Performance Ultraviolet Emitters

    Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah; Shakfa, M. Khaled; Ng, Tien Khee; Ooi, Boon S. (Nanoscale, Royal Society of Chemistry (RSC), 2018) [Article]
    P-type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity; while Mott-Schottky experiments measured a hole concentration of 1.3×1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and optimized p-type AlGaN contact layer for UV-transparency. The ~335-nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.
    Thumbnail

    Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S. (Optics Express, The Optical Society, 2018-02-14) [Article]
    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.
    Thumbnail

    Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    Lin, Ronghui; Galan, Sergio Valdes; Sun, Haiding; Hu, Yangrui; Alias, Mohd Sharizal; Janjua, Bilal; Ng, Tien Khee; Ooi, Boon S.; Li, Xiaohang (Photonics Research, The Optical Society, 2018-04-23) [Article]
    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.
    Thumbnail

    375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    Sun, Xiaobin; Cai, Wenqi; Alkhazragi, Omar; Ooi, Ee-Ning; He, Hongsen; Chaaban, Anas; Shen, Chao; Oubei, Hassan M.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S. (Optics Express, The Optical Society, 2018-05-04) [Article]
    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.
    • 1
    • 2
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.