• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorEddaoudi, Mohamed (28)Cavallo, Luigi (18)Belmabkhout, Youssef (15)Han, Yu (13)Bakr, Osman (12)View MoreDepartmentPhysical Sciences and Engineering (PSE) Division (119)Chemical Science Program (63)Advanced Membranes and Porous Materials Research Center (50)KAUST Catalysis Center (KCC) (50)Functional Materials Design, Discovery and Development (FMD3) (28)View MoreJournal
    Journal of the American Chemical Society (135)
    KAUST Grant Number2174 CGR3 (1)BAS/1/1375-01-01 (1)CPF 2910 (1)CRG-2015 (1)FCC/1/1972-19-01 (1)View MorePublisherAmerican Chemical Society (ACS) (126)American Chemical Society (9)SubjectAnharmonicity (1)Autoignition (1)Catalysis (1)Combustion (1)covalent organic frameworks (COFs) (1)View MoreTypeArticle (135)Year (Issue Date)2019 (1)2018 (13)2017 (21)2016 (22)2015 (18)View MoreItem AvailabilityMetadata Only (90)Open Access (39)Embargoed (6)

    Browse

    All of KAUSTCommunitiesTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjects

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 135

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 50CSV
    • 50RefMan
    • 50EndNote
    • 50BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Edge Epitaxy of Two-dimensional MoSe2 and MoS2 Nanosheets on One-dimensional Nanowires

    Chen, Junze; Wu, Xue-Jun; Gong, Yue; Zhu, Yihan; Yang, Zhenzhong; Li, Bing; Lu, Qipeng; Yu, Yifu; Han, Shikui; Zhang, Zhicheng; Zong, Yun; Han, Yu; Gu, Lin; Zhang, Hua (American Chemical Society (ACS), 2017-06-05)
    Rational design and synthesis of heterostructures based on transition metal dichalcogenides (TMDs) have attracted increasing interests because of their promising applications in electronics, catalysis, etc. However, the construction of epitaxial heterostructures with interface at the edges of TMD nanosheets (NSs) still remains great challenge. Here, we report a strategy for controlled synthesis of a new type of heterostructures in which TMD NSs, including MoS2 and MoSe2, vertically grow along the longitudinal direction of one-dimensional (1D) Cu2-xS nanowires (NWs) in an epitaxial manner. The obtained Cu2-xS-TMD heterostructures with tunable loading amount and lateral size of TMD NSs are achieved by the consecutive growth of TMD NSs on Cu2-xS NWs through the gradually injection of chalcogen precursors. After cation exchange of Cu in Cu2-xS-TMD heterostructures with Cd, the obtained CdS-MoS2 heterostructures remained their original architectures. Compared to the pure CdS NWs, the CdS-MoS2 heterostructures with 7.7 wt% loading of MoS2 NSs exhibit the best performance in the photocatalytic hydrogen evolution reaction with the H2 production rate up to 4,647 μmol·h-1·g-1, about 58 times that catalyzed with pure CdS NWs. Our synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures which could have various promising applications.
    Thumbnail

    Metal-Ligand Cooperative Reactivity in the (pseudo)-Dearomatized PNX(P) Systems: the Influence of the Zwitterionic Form in Dearomatized Pincer Complexes

    Goncalves, Theo; Huang, Kuo-Wei (American Chemical Society (ACS), 2017-09-01)
    The concept of aromaticity in pincer ligands and complexes was discussed in order to provide insights into their metal-ligand cooperative activities. The aromatic PNx(P) and dearomatized PNx(P)* pincer ligands and the corresponding transition metal complexes were studied with the nucleus-independent chemical shift (NICSzz), anisotropy of the current (induced) density (ACID), isochemical shielding surfaces (ICSSzz), harmonic oscillator model of aromaticity (HOMA), MCBO, Shannon aromaticity, and natural bond order (NBO) analyses. The study on the model systems showed that for the dearomatized species the decrease of the NICS(1)zz value comes with the larger contribution of the aromatic zwitterionic mesomeric form. In all examples, the incorporation of the metal center into the pincer ligand decreases the NICS(1)zz values. The DFT calculations support the dearomatized pyridine ring in PNP* or PNN* ligand indeed being nonaromatic, in contrast to the PN3(P)* ligand which has partial aromatic character due to the larger contribution of the zwitterionic resonance structure. The difference in aromaticity between the rings contributes to the thermodynamic balance of the metal ligand cooperative reactions, changing the energetics of the process when different dearomatized pincer ligands are used. This was further exemplified by aromaticity analysis of the heterolytic hydrogen cleavage reaction of ruthenium PNN complexes of Milstein and the PN3 of Huang, with similar geometries but distinctive thermodynamic preference.
    Thumbnail

    Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA

    Cui, Lina; Cohen, Jessica L.; Chu, Crystal K.; Wich, Peter R.; Kierstead, Paul H.; Frechet, Jean (American Chemical Society (ACS), 2012-09-26)
    New conjugation chemistry for polysaccharides, exemplified by dextran, was developed to enable the attachment of therapeutic or other functional moieties to the polysaccharide through cleavable acetal linkages. The acid-lability of the acetal groups allows the release of therapeutics under acidic conditions, such as that of the endocytic compartments of cells, regenerating the original free polysaccharide in the end. The physical and chemical behavior of these acetal groups can be adjusted by modifying their stereoelectronic and steric properties, thereby providing materials with tunable degradation and release rates. We have applied this conjugation chemistry in the development of water-soluble siRNA carriers, namely acetal-linked amino-dextrans, with various amine structures attached through either slow- or fast-degrading acetal linker. The carriers with the best combination of amine moieties and structural composition of acetals showed high in vitro transfection efficiency and low cytotoxicity in the delivery of siRNA. © 2012 American Chemical Society.
    Thumbnail

    An Alternating 5,5-Dimethylcyclopentadiene-based Copolymer prepared at Room Temperature for High Performance Organic Thin Film Transistors

    Fei, Zhuping; Chen, Lei; Han, Yang; Gann, Eliot; Chesman, Anthony; McNeill, Christopher R.; Anthopoulos, Thomas D.; Heeney, Martin; Pietrangelo, Agostino (American Chemical Society (ACS), 2017-06-05)
    We report that the inclusion of non-aromatic 5,5-dimethylcyclopentadiene monomer into a conjugated backbone is an attractive strategy to high performance semiconducting polymers. The use of this monomer enables a room temperature Suzuki copolymerization with a diketopyrrolopyrrole comono-mer to afford a highly soluble, high molecular weight material. The resulting low band gap polymer exhibits excellent photo and thermal stability, and despite a large π-π stacking distance of 4.26 Å, it demonstrates excellent performance in thin-film transistor devices.
    Thumbnail

    Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    Li, Zhong’an; Mukhopadhyay, Sukrit; Jang, Sei-Hum; Bredas, Jean-Luc; Jen, Alex K.-Y. (American Chemical Society (ACS), 2015-09-09)
    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.
    Thumbnail

    Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    Tian, Qiwei; Hu, Junqing; Zhu, Yihan; Zou, Rujia; Chen, Zhigang; Yang, Shiping; Li, Runwei; Su, Qianqian; Han, Yu; Liu, Xiaogang (American Chemical Society (ACS), 2013-06-12)
    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.
    Thumbnail

    Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    Nielsen, Christian B.; Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Bandiello, Enrico; Niazi, Muhammad Rizwan; Hanifi, David A.; Sessolo, Michele; Amassian, Aram; Malliaras, George G.; Rivnay, Jonathan; McCulloch, Iain (American Chemical Society (ACS), 2016-07-22)
    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous envi-ronment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially availa-ble conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, elec-trochromic properties, operational voltage and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT based devices, and show stability under aqueous oper-ation without the need for formulation additives and cross-linkers.
    Thumbnail

    Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework

    Savage, Mathew; da Silva, Ivan; Johnson, Mark; Carter, Joseph H.; Newby, Ruth; Suetin, Mikhail; Besley, Elena; Manuel, Pascal; Rudić, Svemir; Fitch, Andrew N.; Murray, Claire; David, William I. F.; Yang, Sihai; Schröder, Martin (American Chemical Society (ACS), 2016-07-27)
    The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.
    Thumbnail

    Chiral transformation: From single nanowire to double helix

    Wang, Yong; Wang, Qingxiao; Sun, Hang; Zhang, Weiqing; Chen, Gang; Wang, Yawen; Shen, Xiaoshuang; Han, Yu; Lu, Xianmao; Chen, Hongyu (American Chemical Society (ACS), 2011-12-21)
    We report a new type of water-soluble ultrathin Au-Ag alloy nanowire (NW), which exhibits unprecedented behavior in a colloidal solution. Upon growth of a thin metal (Pd, Pt, or Au) layer, the NW winds around itself to give a metallic double helix. We propose that the winding originates from the chirality within the as-synthesized Au-Ag NWs, which were induced to untwist upon metal deposition. © 2011 American Chemical Society.
    Thumbnail

    Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: From stereo-random to stereo-perfect polymers

    Chen, Xia; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian (American Chemical Society (ACS), 2012-05-02)
    Coordination polymerization of renewable α-methylene-γ-(methyl) butyrolactones by chiral C 2-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society.
    • 1
    • 2
    • 3
    • 4
    • . . .
    • 14
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.