Recent Submissions

  • Bone-Marrow-Derived Mesenchymal Stem Cells, Their Conditioned Media, Protect against Cyclophosphamide-Induced Infertility in Rats

    Ibrabim, Dalia; Abozied, Nadia; Maboud, Samar Abdel; Alzamami, Ahmad; Alturki, Norah; Jaremko, Mariusz; Alanazi, Maram Khalil; Seddek, Asmaa (Frontiers in Pharmacology, Frontiers Media, 2023-03-22) [Article]
    Cancer is a deadly disease characterized by abnormal cell proliferation. Chemotherapy is one tech-nique of cancer treatment. Cyclophosphamide (CYP) is the most powerful chemotherapy medication, yet it has serious adverse effects. It is an antimitotic medicine that regulates cell proliferation and primarily targets quickly dividing cells, and it has been related to varying levels of infertility in hu-mans. In the current study, we assessed the biochemical, histological, and microscopic evaluations of testicular damage following CYP administration. Further, we have explored the potential protective impact of mesenchymal stem cell (MSCs) transplantation. The biochemical results revealed that ad-ministration of CYP increased serum concentrations of follicle-stimulating hormone (FSH) and lu-teinizing hormone (LH), while it decreased serum concentrations of free testosterone hormone (TH), testicular FSH, LH, and free TH concentrations, testicular total antioxidant capacity (TAC), and testicular activity of superoxide dismutase (SOD) enzyme. The histology and sperm examinations revealed that CYP induced destruction to the architectures of several tissues in the testes, which drastically reduced the Johnsen score as well as the spermatogenesis process. Surprisingly, trans-plantation of MSCs after CYP administration altered the deterioration effect of CYP injury on the testicular tissues, as demonstrated by biochemical and histological analysis. Our results indicated alleviation of serum and testicular sex hormones, as well as testicular oxidative stress markers (TAC and SOD activity), and nearly restored the normal appearance of the testicular tissues, Johnsen score, and spermatogenesis process. In conclusion, our work emphasizes the protective pharmacological use of MSCs to mitigate the effects of CYP on testicular tissues that impair the spermatogenesis process following chemotherapy. These findings indicate that transferring MSCs to chemotherapy patients could significantly improve spermatogenesis
  • Experimental and Computational Fluid Dynamics Investigation of Mechanisms of Enhanced Oil Recovery via Nanoparticle-Surfactant Solutions

    Yekeen, Nurudeen; Ali Elakkari, Ali Masoud; Khan, Javed Akbar; Ali, Muhammad; Al-Yaseri, Ahmed; Hoteit, Hussein (Energy & Fuels, American Chemical Society (ACS), 2023-03-21) [Article]
    The enhancement in surfactant performance at downhole conditions in the presence of nanomaterials has fascinated researchers’ interest regarding the applications of nanoparticle-surfactant (NPS) fluids as novel enhanced oil recovery (EOR) techniques. However, the governing EOR mechanisms of hydrocarbon recovery using NPS solutions are not yet explicit. Pore-scale visualization experiments clarify the dominant EOR mechanisms of fluid displacement and trapped/residual oil mobilization using NPS solutions. In this study, the influence of multiwalled carbon nanotubes (MWCNTs), silicon dioxide (SiO2), and aluminum oxide (Al2O3) nanoparticles on the EOR properties of a conventional surfactant (sodium dodecyl benzene sulfonate, SDBS) was investigated via experimental and computational fluid dynamics (CFD) simulation approaches. Oil recovery was reduced with increased temperatures and micromodel heterogeneity. Adding nanoparticles to SDBS solutions decreases the fingering and channeling effect and increases the recovery factor. The simulation prediction results agreed with the experimental results, which demonstrated that the lowest amount of oil (37.84%) was retained with the micromodel after MWCNT-SDBS flooding. The oil within the micromodel after Al2O3-SDBS and SiO2-SDBS flooding was 58.48 and 43.42%, respectively. At 80 °C, the breakthrough times for MWCNT-SDBS, Al2O3-SDBS, and SiO2-SDBS displacing fluids were predicted as 32.4, 29.3, and 21 h, respectively, whereas the SDBS flooding and water injections at similar situations were at 12.2 and 6.9 h, respectively. The higher oil recovery and breakthrough time with MWCNTs could be attributed to their cylindrical shape, promoting the MWCNT-SDBS orientation at the liquid–liquid and solid–liquid interfaces to reduce the oil–water interfacial tension and contact angles significantly. The study highlights the prevailing EOR mechanisms of NPS.
  • Observation of cnoidal wave localization in nonlinear topolectric circuits

    Hohmann, Hendrik; Hofmann, Tobias; Helbig, Tobias; Imhof, Stefan; Brand, Hauke; Upreti, Lavi K.; Stegmaier, Alexander; Fritzsche, Alexander; Müller, Tobias; Schwingenschlögl, Udo; Lee, Ching Hua; Greiter, Martin; Molenkamp, Laurens W.; Kießling, Tobias; Thomale, Ronny (Physical Review Research, American Physical Society (APS), 2023-03-21) [Article]
    We observe a localized cnoidal (LCn) state in an electric circuit network. Its formation derives from the interplay of nonlinearity and the topology inherent to a Su-Schrieffer-Heeger (SSH) chain of inductors. Varicap diodes act as voltage-dependent capacitors, and create a nonlinear on-site potential. For a sinusoidal voltage excitation around midgap frequency, we show that the voltage response in the nonlinear SSH circuit follows the Korteweg-de Vries equation. The topological SSH boundary state, which relates to a midgap impedance peak in the linearized limit is distorted into the LCn state in the nonlinear regime, where the cnoidal eccentricity decreases from edge to bulk.
  • A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics

    Li, Haoyang; Zhou, Juexiao; Li, Zhongxiao; Chen, Siyuan; Liao, Xingyu; Zhang, Bin; Zhang, Ruochi; Wang, Yu; Sun, Shiwei; Gao, Xin (Nature Communications, Springer Science and Business Media LLC, 2023-03-21) [Article]
    Spatial transcriptomics technologies are used to profile transcriptomes while preserving spatial information, which enables high-resolution characterization of transcriptional patterns and reconstruction of tissue architecture. Due to the existence of low-resolution spots in recent spatial transcriptomics technologies, uncovering cellular heterogeneity is crucial for disentangling the spatial patterns of cell types, and many related methods have been proposed. Here, we benchmark 18 existing methods resolving a cellular deconvolution task with 50 real-world and simulated datasets by evaluating the accuracy, robustness, and usability of the methods. We compare these methods comprehensively using different metrics, resolutions, spatial transcriptomics technologies, spot numbers, and gene numbers. In terms of performance, CARD, Cell2location, and Tangram are the best methods for conducting the cellular deconvolution task. To refine our comparative results, we provide decision-tree-style guidelines and recommendations for method selection and their additional features, which will help users easily choose the best method for fulfilling their concerns.
  • Impact of Evanescence Process on Three-Dimensional Sub-Diffusion based Molecular Communication Channel

    Briantceva, Nadezhda; Chouhan, Lokendra; Parsani, Matteo; Alouini, Mohamed-Slim (IEEE Transactions on NanoBioscience, Institute of Electrical and Electronics Engineers (IEEE), 2023-03-21) [Article]
    In most of the existing works of molecular communication (MC), the standard diffusion environment is taken into account where the mean square displacement (MSD) of an information molecule (IM) scales linearly with time. On the contrary, this work considers the sub-diffusion motion that appears in crowded and complex (porous or fractal) environments (movement of the particles in the living cells) where the particle’s MSD scales as a fractional order power law in time. Moreover, we examine an additional evanescence process resulting from which the molecules can degrade before hitting the boundary of the receiver (RX). Thus, in this work, we present a 3D MC system with a point transmitter (TX) and the spherical RX with the sub-diffusive behavior of an IM along with its evanescence. Furthermore, an IM’s closed-form expressions for the arrival probability and the first passage time density (FPTD) are emulated in the above context. Additionally, we investigate the performance of MC by using the concentration-based modulation technique in a sub-diffusion channel. Finally, the considered MC channel is exploited in terms of the probability of detection, probability of false alarm, and probability of error for different parameters such as the reaction rate, fractional power, and radius of the RX.
  • Tuning anticancer properties and DNA-binding of Pt(ii) complexes via alteration of nitrogen softness/basicity of tridentate ligands

    Al-Rashdi, Kamelah S.; Babgi, Bandar A.; Ali, Ehab M. M.; Jedidi, Abdesslem; Emwas, Abdul-Hamid M.; Davaasuren, Bambar; Jaremko, Mariusz; Humphrey, Mark G. (RSC Advances, Royal Society of Chemistry (RSC), 2023-03-21) [Article]
    Nine tridentate Schiff base ligands of the type (N^N^O) were synthesized from reactions of primary amines {2-picolylamine (Py), N-phenyl-1,2-diaminobenzene (PhN), and N-phenyl-1,2-diaminoethane(EtN)} and salicylaldehyde derivatives {3-ethoxy (OEt), 4-diethylamine (NEt2) and 4-hydroxy (OH)}. Complexes with the general formula Pt(N^N^O)Cl were synthesized by reacting K2PtCl4 with the ligands in DMSO/ethanol mixtures. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. The DNA-binding behaviours of the platinum(II) complexes were investigated by two techniques, indicating good binding affinities and a two-stage binding process for seven complexes: intercalation followed by switching to a covalent binding mode over time. The other two complexes covalently bond to ct-DNA without intercalation. Theoretical calculations were used to shed light on the electronic and steric factors that lead to the difference in DNA-binding behavior. The reactions of some platinum complexes with guanine were investigated experimentally and theoretically. The binding of the complexes with bovine serum albumin (BSA) indicated a static interaction with higher binding affinities for the ethoxy-containing complexes. The half maximal inhibitory concentration (IC50) values against MCF-7 and HepG2 cell lines suggest that platinum complexes with tridentate ligands of N-phenyl-o-phenylenediamine or pyridyl with 3-ethoxysalicylimine are good chemotherapeutic candidates. Pt-Py-OEt and Pt-PhN-OEt have IC50 values against MCF-7 of 13.27 and 10.97 μM, respectively, compared to 18.36 μM for cisplatin, while they have IC50 values against HepG2 of 6.99 and 10.15 μM, respectively, compared to 19.73 μM for cisplatin. The cell cycle interference behaviour with HepG2 of selected complexes is similar to that of cisplatin, suggesting apoptotic cell death. The current work highlights the impact of the tridentate ligand on the biological properties of platinum complexes.
  • 3D-Printed disposable nozzles for cost-efficient extrusion-based 3D bioprinting

    Albalawi, Hamed I.; Khan, Zainab N.; H. Rawas, Ranim; U. Valle-Pérez, Alexander; Abdelrahman, Sherin; Hauser, Charlotte (Materials Science in Additive Manufacturing, AccScience Publishing, 2023-03-21) [Article]
    3D bioprinting has significantly impacted tissue engineering with its capability to create intricate structures with complex geometries that were difficult to replicate through traditional manufacturing techniques. Extrusion-based 3D bioprinting methods tend to be limited when creating complex structures using bioinks of low viscosity. However, the capacity for creating multi-material structures that have distinct properties could be unlocked through the mixture of two solutions before extrusion. This could be used to generate architectures with varying levels of stiffness and hydrophobicity, which could be utilized for regenerative medicine applications. Moreover, it allows for combining proteins and other biological materials in a single 3D-bioprinted structure. This paper presents a standardized fabrication method of disposable nozzle connectors (DNC) for 3D bioprinting with hydrogel-based materials. This method entails 3D printing connectors with dual inlets and a single outlet to mix the material internally. The connectors are compatible with conventional Luer lock needles, offering an efficient solution for nozzle replacement. IVZK (Ac-Ile-Val-Cha-Lys-NH2) peptide-based hydrogel materials were used as a bioink with the 3D-printed DNCs. Extrusion-based 3D bioprinting was employed to print shapes of varying complexities, demonstrating potential in achieving high print resolution, shape fidelity, and biocompatibility. Post-printing of human neonatal dermal fibroblasts, cell viability, proliferation, and metabolic activity were observed, which demonstrated the effectiveness of the proposed design and process for 3D bioprinting using low-viscosity bioinks.
  • Visualization of Surface Charge Carrier Diffusion Lengths in Different Perovskite Crystal Orientations Using 4D Electron Imaging

    Nughays, Razan O.; Yang, Chen; Nematulloev, Sarvarkhodzha; Yin, Jun; Harrison, George; Zhao, Jianfeng; Fatayer, Shadi P.; Bakr, Osman; Mohammed, Omar F. (Advanced Optical Materials, Wiley, 2023-03-20) [Article]
    Understanding charge carrier dynamics on the surface of materials at the nanometer and femtosecond scales is one of the key elements to optimizing the performance of light-conversion devices, including solar cells. Unfortunately, most of the pump-probe characterization techniques are surface-insensitive and obtain information from the bulk due to the large penetration depth of the pulses. However, ultrafast scanning electron microscopy (USEM) is superior in visualizing carrier dynamics at the surface with high spatial-temporal resolution. Here, the authors successfully used USEM to uncover the tremendous effect of surface orientations and termination on the charge carrier of MAPbI3 perovskite single crystals. Time-resolved secondary electrons snapshots and density functional theory calculations clearly demonstrate that charge carrier diffusion, surface trap density, surface work function, and carrier concentration are strongly facet-dependent. The results display a diffusion length of 22 micrometers within 6.0 nanoseconds along (001) orientation. While (100) facet forms defect states that prevent carrier diffusion and shows an increase in the surface work function leading to dark contrast and fast charge carrier recombination. These findings provide a new key component to optimizing the surface of perovskites, thus paving the way for even more efficient and stable solar-cell devices based on perovskite single crystals.
  • Resident Population Density-Inspired Deployment of K-tier Aerial Cellular Network

    Wang, Ruibo; Kishk, Mustafa Abdelsalam; Alouini, Mohamed-Slim (IEEE Transactions on Wireless Communications, Institute of Electrical and Electronics Engineers (IEEE), 2023-03-20) [Article]
    Using Unmanned Aerial Vehicles (UAVs) to enhance network coverage has proven a variety of benefits compared to terrestrial counterparts. One of the commonly used mathematical tools to model the locations of the UAVs is stochastic geometry (SG). However, in the existing studies, both users and UAVs are often modeled as homogeneous point processes. In this paper, we consider an inhomogeneous Poisson point process (PPP)-based model for the locations of the users that captures the degradation in the density of active users as we move away from the town center. In addition, we propose the deployment of aerial vehicles following the same inhomogeneity of the users to maximize the performance. In addition, a multi-tier network model is also considered to make better use of the rich space resources. Then, the analytical expressions of the coverage probability for a typical user and the total coverage probability are derived. Finally, we optimize the coverage probability with limitations of the total number of UAVs and the minimum local coverage probability. Finally we give the optimal UAV distribution parameters when the maximum overall coverage probability is reached.
  • Flexible self-powered DUV photodetectors with high responsivity utilizing Ga2O3/NiO heterostructure on buffered Hastelloy substrates

    Tang, Xiao; Lu, Yi; Lin, Rongyu; Liao, Che-Hao; Zhao, Yue; Li, Kuang-Hui; Xiao, Na; Cao, Haicheng; Babatain, Wedyan; Li, Xiaohang (Applied Physics Letters, AIP Publishing, 2023-03-20) [Article]
    In this research, β-Ga2O3/NiO heterostructures were grown directly on CeO2 buffered Hastelloy flexible substrates. With pulsed laser deposition under high temperatures, as-grown β-Ga2O3 and NiO thin films have a preferred out-of-plane orientation along the ⟨−201⟩ and ➎111➉ directions. This is due to the ideal epitaxial ability of the CeO2 buffer layer, which serves as a perfect template for the epitaxial growth of single-oriented NiO and β-Ga2O3 by creating a constant gradient from CeO2 (2.7 Å along ➎001➉) to NiO (2.9 Å along ➎110➉), and eventually to β-Ga2O3 (3.04 Å along ➎010➉). The Hastelloy substrates endow photodetectors with good deformability and mechanical robustness. Moreover, owing to the type-II band alignment of β-Ga2O3/NiO heterostructures, the photodetectors have a good photocurrent at zero bias under 284 nm of light illumination. In addition, the photocurrent is significantly higher than when using an analogous heterostructure (as described in some previous reports), because the β-Ga2O3 and NiO thin films are crystalized along a single orientation with fewer defects.
  • Multimode Free-Vibration Decay Column: Small-Strain Stiffness and Attenuation

    Noh, Dong-Hwa; Park, Junghee; Santamarina, Carlos; Kwon, Tae-Hyuk (Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers (ASCE), 2023-03-20) [Article]
    This study presents a simplified resonant column testing method to obtain small-strain dynamic properties of soils in both torsional and flexural vibrations. The method exploits free vibration decay responses of the system produced by manual excitation while the specimen is subjected to an isotropic effective confining stress produced by a vacuum pressure. This method is readily applicable to standard resonant column and torsional shear devices and triaxial cells by attaching a metal bar with one or two accelerometers for manual excitation, but not using an electromagnetic driving plate. This paper describes the apparatus design, test procedure, system calibration, and data analyses, as well as the test results of dynamic properties of a dry sand, including small-strain elastic moduli and damping ratios obtained from the torsional and flexural modes. The results confirm that the suggested method can capture strain-dependent characteristics up to the strains of ∼10−4 beyond typical elastic threshold strains, although the isotropic effective confining stress is limited to ∼90 kPa. This unique testing method provides remarkably consistent and reliable measurement for the dynamic properties of soils, and it avoids any possible bias from the counterelectromotive force.
  • On that most over Skinned of Improper Integrals

    Stewart, Sean M. (The College Mathematics Journal, Informa UK Limited, 2023-03-20) [Article]
    Continuing a much discussed topic of the various ways a particular improper integral can be evaluated, we give three further ways its generalization can be evaluated. Using techniques typically encountered immediately after the calculus sequence of courses we show how the improper integral can be evaluated using the beta and gamma functions, by first converting it to a double integral, and using a property of the Laplace transform.
  • Ti3C2Tx MXene van der Waals gate contact for GaN high electron mobility transistors

    Wang, Chuanju; Xu, Xiangming; Tyagi, Shubham; Rout, Paresh Chandra; Schwingenschlögl, Udo; Sarkar, Biplab; Khandelwal, Vishal; Liu, Xinke; Gao, Linfei; Hedhili, Mohamed N.; Alshareef, Husam N.; Li, Xiaohang (Advanced Materials, Wiley, 2023-03-20) [Article]
    Gate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at traditional metal-GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3C2Tx MXene films were integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions were formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibited an extremely low off-state current (IOFF) of 10−7 mA/mm, a record high ION/IOFF current ratio of ∼1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off-state drain breakdown voltage of 1085 V, and a near-ideal subthreshold swing of 61 mV/dec. This work shows the great potential of MXene films as gate electrodes in wide-bandgap semiconductor devices.
  • Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts

    Kim, Seok-Jin; Nguyen, Thien Si; Mahmood, Javeed; Yavuz, Cafer T. (Chemical Engineering Journal, Elsevier BV, 2023-03-18) [Article]
    Catalytic ammonia decomposition enables ammonia to be a hydrogen gas carrier for a carbon-free fuel economy. The challenge is to obtain high conversion yields and rates at low temperatures for a prolonged time. A promising approach is to engineer a catalyst support to minimize deleterious effects like sintering. Here, we compared a conventional 2D planar porous framework support with a vertically standing 2D structure to ascertain the effects of support geometry on the catalytic performance. The catalysts were made by loading ruthenium (Ru) nanoparticles onto the structures, and the catalytic activities were monitored by varying the ammonia (NH3) feeding rate and reaction temperature. Unlike the planar version, the vertically standing 2D support prevented nanoparticle aggregation, retained the original nanoparticle size, and showed an excellent hydrogen production rate (95.17 mmol gRu-1min-1) at a high flow rate of 32,000 ml gcat-1h-1 at a temperature of 450 ℃.
  • A universal framework for single-cell multi-omics data integration with graph convolutional networks

    Gao, Hongli; Zhang, Bin; Liu, Long; Li, Shan; Gao, Xin; Yu, Bin (Briefings in bioinformatics, Oxford University Press (OUP), 2023-03-17) [Article]
    Single-cell omics data are growing at an unprecedented rate, whereas effective integration of them remains challenging due to different sequencing methods, quality, and expression pattern of each omics data. In this study, we propose a universal framework for the integration of single-cell multi-omics data based on graph convolutional network (GCN-SC). Among the multiple single-cell data, GCN-SC usually selects one data with the largest number of cells as the reference and the rest as the query dataset. It utilizes mutual nearest neighbor algorithm to identify cell-pairs, which provide connections between cells both within and across the reference and query datasets. A GCN algorithm further takes the mixed graph constructed from these cell-pairs to adjust count matrices from the query datasets. Finally, dimension reduction is performed by using non-negative matrix factorization before visualization. By applying GCN-SC on six datasets, we show that GCN-SC can effectively integrate sequencing data from multiple single-cell sequencing technologies, species or different omics, which outperforms the state-of-the-art methods, including Seurat, LIGER, GLUER and Pamona.
  • Customizable Graphite-on-Paper based Keypads: Toward Disposable and Recyclable Wireless Human-Machine Interfaces

    Zulfiqar, Muhammad Hamza; Hassan, Mahmood Ul; Maqbool, Khawaja Qasim; Zubair, Muhammad; Mehmood, Muhammad Qasim; Riaz, K.; Massoud, Yehia Mahmoud (IEEE Journal on Flexible Electronics, Institute of Electrical and Electronics Engineers (IEEE), 2023-03-17) [Article]
    There is a rapid increase in the use of affordable electronic devices and human-machine interfaces (HMIs) with short serviceable life in almost every aspect of our lives. It’s estimated that the Waste Electrical and Electronic Equipment (WEEE) and e-waste generated in year 2021 was 57.5 million metric tons (Mt) and it is expected that the production of e-waste will increase to 110 Mt by the end of 2050. To mitigate these wastes, green HMIs are required which can be customized for multiple applications and can be recycled or disposed of with minimal environmental impact. This work presents customizable graphite-on-paper (GOP) based keypad consists of interdigitated capacitive (IDC) touch sensors is demonstrated as HMIs to interact with different electronic and media applications wirelessly. The GOP keypads are fabricated through facile and green fabrication process by direct writing of graphite on flexible paper substrate. The GOP keypads can be fabricated in a home setting as the required materials are readily available, i.e., paper, pencils, Arduino. The GOP keypads can be easily disposed of or recycled at the end of its life or requirement due to the employment of biodegradable materials like paper and graphite. The IDC touch sensors are optimized by analyzing the number of electrode fingers, finger’s width, finger’s overlap length and spacing between the electrode fingers. The same GOP keypad is customized to interact with different electronic and media applications wirelessly i.e., laptop cursor navigation, calculator app on mobile, numeric keypad etc. The customizable GOP keypads have potential to be used as green wireless HMIs to enforce a circular economy by mitigating electronic and plastic waste, which leads to the vision of a sustainable and green world.
  • miProBERT: identification of microRNA promoters based on the pre-trained model BERT.

    Wang, Xin; Gao, Xin; Wang, Guohua; Li, Dan (Briefings in bioinformatics, Oxford University Press (OUP), 2023-03-17) [Article]
    Accurate prediction of promoter regions driving miRNA gene expression has become a major challenge due to the lack of annotation information for pri-miRNA transcripts. This defect hinders our understanding of miRNA-mediated regulatory networks. Some algorithms have been designed during the past decade to detect miRNA promoters. However, these methods rely on biosignal data such as CpG islands and still need to be improved. Here, we propose miProBERT, a BERT-based model for predicting promoters directly from gene sequences without using any structural or biological signals. According to our information, it is the first time a BERT-based model has been employed to identify miRNA promoters. We use the pre-trained model DNABERT, fine-tune the pre-trained model on the gene promoter dataset so that the model includes information about the richer biological properties of promoter sequences in its representation, and then systematically scan the upstream regions of each intergenic miRNA using the fine-tuned model. About, 665 miRNA promoters are found. The innovative use of a random substitution strategy to construct a negative dataset improves the discriminative ability of the model and further reduces the false positive rate (FPR) to as low as 0.0421. On independent datasets, miProBERT outperformed other gene promoter prediction methods. With comparison on 33 experimentally validated miRNA promoter datasets, miProBERT significantly outperformed previously developed miRNA promoter prediction programs with 78.13% precision and 75.76% recall. We further verify the predicted promoter regions by analyzing conservation, CpG content and histone marks. The effectiveness and robustness of miProBERT are highlighted.
  • Recent Advancements in Reconfigurable mmWave Devices Based on Phase-Change and Metal Insulator Transition Materials

    Singh, Tejinder; Hummel, Gwendolyn; Vaseem, Mohammad; Shamim, Atif (IEEE Journal of Microwaves, Institute of Electrical and Electronics Engineers (IEEE), 2023-03-17) [Article]
    Chalcogenide Phase Change Materials (PCM) and metal insulator transition (MIT) materials are a group of materials that are capable of switching between low resistance and high resistance states. These emerging materials have been widely used in optical storage media and memory devices. Over the past recent years, there have been interests in exploiting the PCM and MIT materials, especially germanium antimony telluride (GST) alloys and vanadium dioxide (VO 2 ), for radio frequency (RF) applications. The PCM and MIT-based RF devices are expected to bridge the gap between semiconductor switches and microelectromechanical system (MEMS) switches as they combine the low insertion loss performance of MEMS technology and the small size and reliability performance of semiconductor technology. This article presents an overview of the PCM and MIT materials for RF circuits and discusses the recent advancements in reconfigurable millimeter-wave (mmWave) devices based on PCM and MIT materials in depth.
  • Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis

    Xing, Liuzhuang; Yang, Qian; Zhu, Chen; Bai, Yilian; Tang, Yurong; Rueping, Magnus; Cai, Yunfei (Nature Communications, Springer Science and Business Media LLC, 2023-03-17) [Article]
    The development of heterogeneous metallaphotocatalysis is of great interest for sustainable organic synthesis. The rational design and controllable preparation of well-defined (site-isolated) metal/photo bifunctional solid catalysts to meet such goal remains a critical challenge. Herein, we demonstrate the incorporation of privileged homogeneous bipyridyl-based Ni-catalysts into highly ordered and crystalline potassium poly(heptazine imide) (K-PHI). A variety of PHI-supported cationic bipyridyl-based Ni-catalysts (LnNi-PHI) have been prepared and fully characterized by various techniques including NMR, ICP-OES, XPS, HAADF-STEM and XAS. The LnNi-PHI catalysts exhibit exceptional chemical stability and recyclability in diverse C−P, C−S, C−O and C−N cross-coupling reactions. The proximity and cooperativity effects in LnNi-PHI significantly enhances the photo/Ni dual catalytic activity, thus resulting in low catalyst loadings and high turnover numbers.
  • An overlooked soil carbon pool in vegetated coastal ecosystems: National-scale assessment of soil organic carbon stocks in coastal shelter forests of China.

    Li, Yuan; Fu, Chuancheng; Wang, Weiqi; Zeng, Lin; Tu, Chen; Luo, Yongming (The Science of the total environment, Elsevier BV, 2023-03-17) [Article]
    Protection and restoration of vegetated coastal ecosystems provide opportunities to mitigate climate change. Coastal shelter forests as one of vegetated coastal ecosystems play vital role on sandy coasts protection, but less attention is paid on their soil organic carbon (OC) sequestration potential. Here, we provide the first national-scale assessment of the soil OC stocks, fractions, sources and accumulation rates from 48 sites of shelter forests and 74 sites of sandy beaches across 22° of latitude in China. We find that, compared with sandy beaches, shelter forest plantation achieves an average soil desalination rate of 92.0 % and reduces the soil pH by 1.3 units. The improved soil quality can facilitate OC sequestration leading to an increase of soil OC stock of 11.8 (0.60–64.2) MgC ha−1 in shelter forests. Particulate OC (POC) is a dominant OC fraction in both sandy beaches and shelter forests, but most sites are >80 % in shelter forests. The low δ13C values and higher C:N ratios, which are more regulated by climate and tree species, together with high POC proportions suggest a substantial contribution of plant-derived OC. Bayesian mixing model indicates that 71.8 (33.5–91.6)% of the soil OC is derived from local plant biomass. We estimate that soil OC stocks in Chinese shelter forests are 20.5 (7.44–79.7) MgC ha−1 and 4.53 ± 0.71 TgC in the top meter, with an accumulation rate of 45.0 (6.90 to 194.1) gC m−2 year−1 and 99.5 ± 44.9 GgC year−1. According to coastal shelter forest afforestation plan, additional 1.72 ± 0.27 TgC with a rate of 37.9 ± 17.1 GgC year−1 can be sequestrated in the future. Our findings suggest that construction of coastal shelter forests can be an effective solution to sequester more soil carbon in coastal ecosystems.

View more