• Login
    Search 
    •   Home
    • Research
    • Search
    •   Home
    • Research
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorBajic, Vladimir B. (33)Duarte, Carlos M. (32)Voolstra, Christian R. (32)Schwingenschlögl, Udo (27)Pain, Arnab (24)View MoreDepartmentBiological and Environmental Sciences and Engineering (BESE) Division (361)Physical Sciences and Engineering (PSE) Division (257)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (254)Bioscience Program (158)Red Sea Research Center (RSRC) (148)View MoreJournalScientific Reports (265)Nature Communications (109)BMC Genomics (31)BMC Bioinformatics (18)Genome Biology (12)View MoreKAUST Acknowledged Support UnitBioscience Core Laboratory (3)Coastal and Marine Laboratory (2)Core Labs (2)Academic Writing (1)Competitive Research (1)View MoreKAUST Grant NumberBAS/1/1606-01-01 (4)OSR-2016-CRG5-3005 (4)FCC/1/1971-06-01 (3)FCC/1/1973-07 (3)FCC/1/1973-22-01 (3)View MorePublisher
    Springer Nature (821)
    Subjectgenetics (21)metabolism (20)chemistry (19)controlled study (17)methodology (16)View MoreType
    Article (821)
    Year (Issue Date)2019 (50)2018 (159)2017 (161)2016 (136)2015 (115)View MoreItem Availability
    Open Access (821)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 821

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 50CSV
    • 50RefMan
    • 50EndNote
    • 50BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    A Universal Theoretical Framework in Material Characterization for Tailored Porous Surface Design

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon (Scientific Reports, Springer Nature, 2019-06-19) [Article]
    The distinct interaction of adsorbate-adsorbent pair is attributed to the characteristics of heterogeneous surface and structure of porous materials. In material science, the porous structure is modified in response to certain applications. Backed by the chemical recipes, such conventional approach rely on the material characterization techniques to verify the resultant porous structure and its interaction with the adsorbate molecules. Such a practice is best assisted by a theoretical approach that can pre-define the required heterogeneous structure of porous surfaces and its role in selective adsorbate-adsorbent interaction, to facilitate material scientists for the synthesis of only those energy sites which can enhance or tailor its responses for a certain application or target. It has been reported here that the understanding of porous structure in terms of energy sites and their distribution, which controls the adsorbate-adsorbent interaction, is the key for porous surface engineering. Understanding of such porous surface characteristics empower the scientists to alter kinetics and thermodynamics of material according to the ‘sweet spots’ of an application. Therefore, a theoretical framework, to express the energy sites and their distribution over the porous heterogeneous surface, is demonstrated here as a prerequisite criterion for porous material development and characterization.
    Thumbnail

    PathoPhenoDB, linking human pathogens to their phenotypes in support of infectious disease research

    Kafkas, Senay; Abdelhakim, Marwa; Hashish, Yasmeen; Kulmanov, Maxat; Abdellatif, Marwa; Schofield, Paul N.; Hoehndorf, Robert (Scientific Data, Springer Nature, 2019-06-03) [Article]
    Understanding the relationship between the pathophysiology of infectious disease, the biology of the causative agent and the development of therapeutic and diagnostic approaches is dependent on the synthesis of a wide range of types of information. Provision of a comprehensive and integrated disease phenotype knowledgebase has the potential to provide novel and orthogonal sources of information for the understanding of infectious agent pathogenesis, and support for research on disease mechanisms. We have developed PathoPhenoDB, a database containing pathogen-to-phenotype associations. PathoPhenoDB relies on manual curation of pathogen-disease relations, on ontology-based text mining as well as manual curation to associate host disease phenotypes with infectious agents. Using Semantic Web technologies, PathoPhenoDB also links to knowledge about drug resistance mechanisms and drugs used in the treatment of infectious diseases. PathoPhenoDB is accessible at http://patho.phenomebrowser.net/, and the data are freely available through a public SPARQL endpoint.
    Thumbnail

    Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom

    Krause, Jeffrey W.; Schulz, Isabelle Katharina; Rowe, Katherine A.; Dobbins, William; Winding, Mie H. S.; Sejr, Mikael K.; Duarte, Carlos M.; Agusti, Susana (Scientific Reports, Springer Nature, 2019-05-31) [Article]
    The spring diatom bloom in the Arctic Ocean accounts for significant annual primary production leading to the most rapid annual drawdown of water-column pCO2. Late-winter waters in the Atlantic Arctic & Subarctic Provinces (AASP) have lower silicic acid concentrations than nitrate, which suggests diatom blooms may deplete Si before N. Here we test a facet of the hypothesis that silicic acid limitation terminates the spring diatom bloom in the AASP and the sinking of the senescent and dead diatoms helps drive carbon sequestration. During a 6-week study, diatoms bloomed and progressively consumed silicic acid to where it limited their growth. The onset of growth limitation was concurrent with the minimum pCO2 in the surface waters and increases in both the proportion of dead diatoms and the diatom assemblage sedimentation rate. Data reanalysis within the AASP shows a highly significant and positive correlation between silicic acid and pCO2 in the surface waters, but no significant relationship with nitrate and pCO2 was observed unless data were smoothed. Therefore, understanding the future of the AASP spring diatom bloom requires models that explicitly consider changes in silicic acid supply as a driver of this process.
    Thumbnail

    The role of fungi in heterogeneous sediment microbial networks

    Marie Booth, Jenny; Fusi, Marco; Marasco, Ramona; Michoud, Gregoire; Fodelianakis, Stylianos; Merlino, Giuseppe; Daffonchio, Daniele (Scientific Reports, Springer Nature, 2019-05-17) [Article]
    While prokaryote community diversity and function have been extensively studied in soils and sediments, the functional role of fungi, despite their huge diversity, is widely unexplored. Several studies have, nonetheless, revealed the importance of fungi in provisioning services to prokaryote communities. Here, we hypothesise that the fungal community plays a key role in coordinating entire microbial communities by controlling the structure of functional networks in sediment. We selected a sediment environment with high niche diversity due to prevalent macrofaunal bioturbation, namely intertidal mangrove sediment, and explored the assembly of bacteria, archaea and fungi in different sediment niches, which we characterised by biogeochemical analysis, around the burrow of a herbivorous crab. We detected a high level of heterogeneity in sediment biogeochemical conditions, and diverse niches harboured distinct communities of bacteria, fungi and archaea. Saprotrophic fungi were a pivotal component of microbial networks throughout and we invariably found fungi to act as keystone species in all the examined niches and possibly acting synergistically with other environmental variables to determine the overall microbial community structure. In consideration of the importance of microbial-based nutrient cycling on overall sediment ecosystem functioning, we underline that the fungal microbiome and its role in the functional interactome cannot be overlooked.
    Thumbnail

    High-mobility, trap-free charge transport in conjugated polymer diodes

    Nikolka, Mark; Broch, Katharina; Armitage, John; Hanifi, David; Nowack, Peer J.; Venkateshvaran, Deepak; Sadhanala, Aditya; Saska, Jan; Mascal, Mark; Jung, Seok-Heon; Lee, Jin-Kyun; McCulloch, Iain; Salleo, Alberto; Sirringhaus, Henning (Nature Communications, Springer Nature, 2019-05-09) [Article]
    Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm2/Vs and a width of the residual tail state distribution comparable to kBT.
    Thumbnail

    Discretizations of Surfaces with Constant Ratio of Principal Curvatures

    Jimenez, Michael R.; Müller, Christian; Pottmann, Helmut (Discrete & Computational Geometry, Springer Nature, 2019-05-09) [Article]
    Motivated by applications in architecture, we study surfaces with a constant ratio of principal curvatures. These surfaces are a natural generalization of minimal surfaces, and can be constructed by applying a Christoffel-type transformation to appropriate spherical curvature line parametrizations, both in the smooth setting and in a discretization with principal nets. We link this Christoffel-type transformation to the discrete curvature theory for parallel meshes and characterize nets that admit these transformations. In the case of negative curvature, we also present a discretization of asymptotic nets. This case is suitable for design and computation, and forms the basis for a special type of architectural support structures, which can be built by bending flat rectangular strips of inextensible material, such as sheet metal.
    Thumbnail

    A synergetic layered inorganic–organic hybrid film for conductive, flexible, and transparent electrodes

    Singh, Devendra; Tao, Ran; Lubineau, Gilles (npj Flexible Electronics, Springer Nature, 2019-05-08) [Article]
    Conductive electrodes are major components of flexible optoelectronic devices. However, existing materials are either very conductive but brittle (e.g., ITO [indium tin-oxide]), or non-brittle but less conductive, with an environment-dependent conductivity (e.g., PEDOT:PSS [poly-(3,4 ethylenedioxythiophene): poly (styrene sulfonic acid)]). Here, we propose a new design that simultaneously takes advantage of both the high conductivity of ITO and the high flexibility of PEDOT:PSS. In our design, a PEDOT:PSS interface is inserted between the film substrate and the ITO layer, creating a hybrid layered structure that retains both its high conductivity and high stability, when the film is deformed. The rational behind the creation of this structure, is that PEDOT:PSS, used as an interface between the locally delaminated ITO layer and the substrate, substantially reduces the detrimental effects of cracks on the electrode’s conductivity. These results open the path for a new generation of transparent electrodes in advanced flexible devices.Layered electrodes with high conductivity and flexibilityHigh conductivity and flexibility are preferred for flexible electrodes but they usually don’t blend well in one single material. Now the combination is achieved in a layered hybrid film. A team led by Prof Gilles Lubineau from King Abdullah University of Science and Technology, Saudi Arabia design layered transparent electrode with both high flexibility and high conductivity. A thin conductive layer of polymeric PEDOT:PSS is spun-coat on the flexible PET substrate, then the ITO layer is sputtered on top of the PEDOT:PSS layer at low temperature. Despite a simple process, the layered structure combines the advantages of ITO and PEDOT:PSS to show high conductivity under macroscopic strain up to 30%. This approach showcases a delicate way to avoid drawback of the brittleness of ITO and can be adopted in other stretchable and flexible devices.
    Thumbnail

    Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation

    Rashid, Fahad; Raducanu, Vlad-Stefan; Zaher, Manal; Tehseen, Muhammad; Habuchi, Satoshi; Hamdan, Samir (Nature Communications, Springer Nature, 2019-05-08) [Article]
    Protein-induced fluorescence enhancement (PIFE) is a popular tool for characterizing protein-DNA interactions. PIFE has been explained by an increase in local viscosity due to the presence of the protein residues. This explanation, however, denies the opposite effect of fluorescence quenching. This work offers a perspective for understanding PIFE mechanism and reports the observation of a phenomenon that we name protein-induced fluorescence quenching (PIFQ), which exhibits an opposite effect to PIFE. A detailed characterization of these two fluorescence modulations reveals that the initial fluorescence state of the labeled mediator (DNA) determines whether this mediator-conjugated dye undergoes PIFE or PIFQ upon protein binding. This key role of the mediator DNA provides a protocol for the experimental design to obtain either PIFQ or PIFE, on-demand. This makes the arbitrary nature of the current experimental design obsolete, allowing for proper integration of both PIFE and PIFQ with existing bulk and single-molecule fluorescence techniques.
    Thumbnail

    CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors

    Butt, Haroon; Eid, Ayman; Momin, Afaque Ahmad Imtiyaz; Bazin, Jeremie; Crespi, Martin; Arold, Stefan T.; Mahfouz, Magdy M. (Genome Biology, Springer Nature, 2019-04-30) [Article]
    Increasing genetic diversity via directed evolution holds great promise to accelerate trait development and crop improvement. We developed a CRISPR/Cas-based directed evolution platform in plants to evolve the rice (Oryza sativa) SF3B1 spliceosomal protein for resistance to splicing inhibitors. SF3B1 mutant variants, termed SF3B1-GEX1A-Resistant (SGR), confer variable levels of resistance to splicing inhibitors. Studies of the structural basis of the splicing inhibitor binding to SGRs corroborate the resistance phenotype. This directed evolution platform can be used to interrogate and evolve the molecular functions of key biomolecules and to engineer crop traits for improved performance and adaptation under climate change conditions.
    Thumbnail

    Nickel-catalyzed Suzuki–Miyaura cross-couplings of aldehydes

    Guo, Lin; Srimontree, Watchara; Zhu, Chen; Maity, Bholanath; Liu, Xiangqian; Cavallo, Luigi; Rueping, Magnus (Nature Communications, Springer Nature, 2019-04-29) [Article]
    Transition-metal-catalyzed cross-couplings have been extensively used in the pharmaceutical and agrochemical industries for the construction of diverse C-C bonds. Conventional cross-coupling reactions require reactive electrophilic coupling partners, such as organohalides or sulfonates, which are not environmentally friendly and not naturally abundant. Another disadvantage associated with these transformations is the need for an exogenous base to facilitate the key transmetalation step, and this reagent inevitably induces side reactions and limits the substrate scope. Here, we report an unconventional Suzuki-type approach to the synthesis of biaryls, through nickel-catalyzed deformylative cross coupling of aldehydes with organoboron reagents under base-free conditions. The transformation tolerates structurally diverse (hetero)aryl substituents on both coupling partners and shows high reactivity and excellent functional group tolerance. Furthermore, the protocol was carried out on gram scale and successfully applied to the functionalization of complex biologically active molecules. Mechanistic investigations support a catalytic cycle involving the oxidative addition of the nickel into the aldehyde C(acyl)-H bond with subsequent hydride transfer, transmetalation, decarbonylation and reductive elimination processes.
    • 1
    • 2
    • 3
    • 4
    • . . .
    • 83
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.