• Login
    Search 
    •   Home
    • Research
    • Search
    •   Home
    • Research
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorBakr, Osman (4)Mahfouz, Remi (3)Peng, Wei (3)Beaujuge, Pierre (2)Hou, Yuanfang (2)View MoreDepartmentFunctional Nanomaterials Lab (FuNL) (4)
    KAUST Catalysis Center (KCC) (4)
    KAUST Solar Center (KSC) (4)
    Materials Science and Engineering Program (4)Physical Sciences and Engineering (PSE) Division (4)View MoreJournalNanoscale (3)Chemistry of Materials (1)KAUST Acknowledged Support UnitCompetitive Research Grant" (CRG) (3)Office of Competitive Research Funds (OCRF) (3)Analytical Chemistry Core Laboratory (1)KAUST Grant Number
    FIC/2010/02 (4)
    PublisherRoyal Society of Chemistry (RSC) (3)American Chemical Society (ACS) (1)TypeArticle (4)Year (Issue Date)2014 (1)2013 (2)2012 (1)Item AvailabilityMetadata Only (4)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-4 of 4

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 4CSV
    • 4RefMan
    • 4EndNote
    • 4BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Direct functionalization of nanodiamonds with maleimide

    El Tall, Omar; Hou, Yuanfang; Abou-Hamad, Edy; Raja, Inam Ul haq; Hedhili, Mohamed N.; Peng, Wei; Mahfouz, Remi; Bakr, Osman; Beaujuge, Pierre (Chemistry of Materials, American Chemical Society (ACS), 2014-04-21) [Article]
    Diamond materials span a wide range of attractive physical properties, including large mechanical resistance, high thermal conductivity, and tunable optoelectronic behavior when suitably doped. Down to the nanoscale, embedded diamond nanoparticles find use in surface coatings and nanocomposites and are promising building elements in nanophotonic device engineering. The nature of the solubilizing substituents and specific functional groups appended to the nanodiamond surface defines the function of the nanoparticle and in turn its field of applicability. Synthetic nanodiamonds prepared by detonation protocols, so-called detonation diamond nanoparticles (DDNP), are composed of primary nanocrystals (2-10 nm) and their aggregates. A detailed experimental section can be found in the Supporting Information; the XRD analysis of the GDNP(800) precursor confirmed the integrity of the diamond core upon thermal annealing.
    Thumbnail

    Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation

    Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre; Bakr, Osman (Nanoscale, Royal Society of Chemistry (RSC), 2013) [Article]
    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols-so-called detonation nanodiamonds (DNDs)-are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. © 2013 The Royal Society of Chemistry.
    Thumbnail

    Size-controlled fluorescent nanodiamonds: A facile method of fabrication and color-center counting

    Mahfouz, Remi; Floyd, Daniel L.; Peng, Wei; Choy, Jennifer; Lončar, Marko; Bakr, Osman (Nanoscale, Royal Society of Chemistry (RSC), 2013) [Article]
    We present a facile method for the production of fluorescent diamond nanocrystals (DNCs) of different sizes and efficiently quantify the concentration of emitting defect color centers (DCCs) of each DNC size. We prepared the DNCs by ball-milling commercially available micrometer-sized synthetic (high pressure, high temperature (HPHT)) diamonds and then separated the as-produced DNCs by density gradient ultracentrifugation (DGU) into size-controlled fractions. A protocol to enhance the uniformity of the nitrogen-vacancy (NV) centers in the diamonds was devised by depositing the DNCs as a dense monolayer on amino-silanized silicon substrates and then subjecting the monolayer to He+ beam irradiation. Using a standard confocal setup, we analyzed the average number of NV centers per crystal, and obtained a quantitative relationship between the DNC particle size and the NV number per crystal. This relationship was in good agreement with results from previous studies that used more elaborate setups. Our findings suggest that nanocrystal size separation by DGU may be used to control the number of defects per nanocrystal. The efficient approaches described herein to control and quantify DCCs are valuable to researchers as they explore applications for color centers and new strategies to create them. © 2013 The Royal Society of Chemistry.
    Thumbnail

    Ag 44(SR) 30 4-: A silver-thiolate superatom complex

    Harkness, Kellen M.; Tang, Yun; Dass, Amala; Pan, Jun; Kothalawala, Nuwan; Reddy, Vijay J.; Cliffel, David E.; Demeler, Borries; Stellacci, Francesco; Bakr, Osman; McLean, John A. (Nanoscale, Royal Society of Chemistry (RSC), 2012) [Article]
    Intensely and broadly absorbing nanoparticles (IBANs) of silver protected by arylthiolates were recently synthesized and showed unique optical properties, yet question of their dispersity and their molecular formulas remained. Here IBANs are identified as a superatom complex with a molecular formula of Ag 44(SR) 30 4- and an electron count of 18. This molecular character is shared by IBANs protected by 4-fluorothiophenol or 2-naphthalenethiol. The molecular formula and purity is determined by mass spectrometry and confirmed by sedimentation velocity-analytical ultracentrifugation. The data also give preliminary indications of a unique structure and environment for Ag 44(SR) 30 4-. This journal is © 2012 The Royal Society of Chemistry.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.