• Login
    Search 
    •   Home
    • Research
    • Search
    •   Home
    • Research
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorBurke, Ultan (1)Cai, Liming (1)Davis, Alexander C. (1)Fernandes, Ravi X. (1)Heufer, Alexander K. (1)View MoreDepartmentClean Combustion Research Center (1)JournalCombustion and Flame (1)KAUST Acknowledged Support Unit
    Clean Combustion Research Center (1)
    PublisherElsevier BV (1)Subject2-Methylfuran (1)Ignition delay (1)Kinetic model (1)n-Heptane (1)Rapid compression machine (1)View MoreTypeArticle (1)Year (Issue Date)
    2018 (1)
    Item Availability
    Open Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Oxidation of 2-methylfuran and 2-methylfuran/ n -heptane blends: An experimental and modeling study

    Tripathi, Rupali; Burke, Ultan; Ramalingam, Ajoy K.; Lee, Changyoul; Davis, Alexander C.; Cai, Liming; Selim, Hatem; Fernandes, Ravi X.; Heufer, Alexander K.; Sarathy, Mani S.; Pitsch, Heinz (Combustion and Flame, Elsevier BV, 2018-06-23) [Article]
    There have been significant advances in understanding ignition behavior of oxygenated biofuels (mainly alcohols) and their blends with conventional fuel components. However, the oxidation behavior of lignocellulosic derived furanic compounds blended with hydrocarbons has received little attention. The present work is an experimental and numerical investigation of 2-methylfuran (2-MF) combustion and its blend with n-heptane. These results are compared with pure n-heptane results to better understand 2-MF reactivity. Ignition delay times of pure 2-MF and the 2-MF/n-heptane (50/50 2-MF/n-heptane molar %) blend in air were measured in three different facilities; a rapid compression machine and two different shock tubes. Experiments were performed in the temperature range of 861–913 K at a pressure of 20 bar for stoichiometric pure 2-MF. The ignition delay times of 2-MF/n-heptane blends were measured in the temperature range of 672–1207 K, at pressures of 10 and 20 bar, and at equivalence ratios of 0.5, 1.0, and 1.5. A comprehensive chemical kinetic model containing low- to high-temperature chemistry of 2-MF and n-heptane was formulated based on a combination of available 2-MF and n-heptane mechanisms and available theoretical studies on 2-MF form literature. The developed detailed kinetic model was validated against the ignition delay data measured in this work as well as against high-temperature shock tube ignition delay, flame speed, and flame species data from literature to ensure the competence of the model. The proposed mechanism predicts the measured and literature data to a reasonable extent. To elucidate fuel specific oxidation pathways, reaction path analyses were performed at various conditions. Furthermore, sensitivity analyses on the ignition delay times were conducted and the dominant reaction pathways in the oxidation of pure and binary mixtures at high, intermediate, and low temperatures were identified. It is found that the competition between n-heptane and 2-MF for ȮH radicals inhibits the consumption of n-heptane and promotes the consumption of 2-MF. This work provides the first insight into the global low-temperature oxidation behavior of a second generation furanic blended with a hydrocarbon.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.