## Search

Now showing items 1-10 of 23

JavaScript is disabled for your browser. Some features of this site may not work without it.

AuthorAmassian, Aram (9)Thoroddsen, Sigurdur T (7)Li, Ruipeng (6)Samtaney, Ravi (4)Smilgies, Detlef Matthias (4)View MoreDepartment

Physical Sciences and Engineering (PSE) Division (23)

Mechanical Engineering Program (13)KAUST Solar Center (KSC) (10)Materials Science and Engineering Program (10)Organic Electronics and Photovoltaics Group (9)View MoreJournalPowder Technology (3)Advanced Functional Materials (2)Advanced Materials (2)Journal of Fluid Mechanics (2)Journal of the American Chemical Society (2)View MoreKAUST Acknowledged Support Unit
Competitive Research Funds (23)

Center for Advanced Molecular Photovoltaics (3)Organic Electronics and Photovoltaics Laboratory (2)Shaheen (2)Advanced Imaging and Characterization Laboratories (1)View MoreKAUST Grant NumberFIC/2010/04 (4)7000000028 (3)KUS-C1-015-21 (3)URF/1/1394-01 (3)7000000024 (1)View MorePublisherElsevier BV (8)American Chemical Society (ACS) (4)Wiley (4)Cambridge University Press (CUP) (2)AIP Publishing (1)View MoreSubjectDrop impact (2)solution processing (2)thin films (2)Avrami model (1)Barycentric dual (1)View MoreType
Article (23)

Year (Issue Date)2016 (8)2015 (1)2014 (5)2013 (4)2012 (5)Item AvailabilityMetadata Only (19)Open Access (4)

Now showing items 1-10 of 23

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Submit Date Asc
- Submit Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

Low-Re flow past an isolated cylinder with rounded corners

Zhang, Wei; Samtaney, Ravi (Computers & Fluids, Elsevier BV, 2016-07-01) [Article]

Direct numerical simulation is performed for flow past an isolated cylinder at Re=1,000. The corners of the cylinder are rounded at different radii, with the non-dimensional radius of curvature varying from R+=R/D=0.000 (square cylinder with sharp corners) to 0.500 (circular cylinder), in which R is the corner radius and D is the cylinder diameter. Our objective is to investigate the effect of the rounded corners on the development of the separated and transitional flow past the cylinder in terms of time-averaged statistics, time-dependent behavior, turbulent statistics and three-dimensional flow patterns. Numerical results reveal that the rounding of the corners significantly reduces the time-averaged drag and the force fluctuations. The wake flow downstream of the square cylinder recovers the slowest and has the largest wake width. However, the statistical quantities do not monotonically vary with the corner radius, but exhibit drastic variations between the cases of square cylinder and partially rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest recirculation bubble, whose size reduces as R+ further increases. The coherent and incoherent Reynolds stresses are most pronounced in the near-wake close to the reattachment point, while also being noticeable in the shear layer for the square and R+=0.125 cylinders. The wake vortices translate in the streamwise direction with a convection velocity that is almost constant at approximately 80% of the incoming flow velocity. These vortices exhibit nearly the same trajectory for the rounded cylinders and are furthest away from the wake centerline for the square one. The flow past the square cylinder is strongly three-dimensional as indicated by the significant primary and secondary enstrophy, while it is dominated by the primary enstrophy (View the MathML source) for the rounded cylinders.

Comparison of discrete Hodge star operators for surfaces

Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi (Computer-Aided Design, Elsevier BV, 2016-05-10) [Article]

We investigate the performance of various discrete Hodge star operators for discrete exterior calculus (DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC solution of Darcy and incompressible Navier–Stokes flows over surfaces. While the circumcentric Hodge operators may be favorable due to their diagonal structure, the barycentric (geometric) and the Galerkin Hodge operators have the advantage of admitting arbitrary simplicial meshes. Numerical experiments reveal that the barycentric and the Galerkin Hodge operators retain the numerical convergence order attained through the circumcentric (diagonal) Hodge operators. Furthermore, when the barycentric or the Galerkin Hodge operators are employed, a super-convergence behavior is observed for the incompressible flow solution over unstructured simplicial surface meshes generated by successive subdivision of coarser meshes. Insofar as the computational cost is concerned, the Darcy flow solutions exhibit a moderate increase in the solution time when using the barycentric or the Galerkin Hodge operators due to a modest decrease in the linear system sparsity. On the other hand, for the incompressible flow simulations, both the solution time and the linear system sparsity do not change for either the circumcentric or the barycentric and the Galerkin Hodge operators.

Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface

Mansoor, Mohammad M.; Marston, J. O.; Uddin, J.; Christopher, G.; Zhang, Z.; Thoroddsen, Sigurdur T (Journal of Fluid Mechanics, Cambridge University Press (CUP), 2016-05-05) [Article]

We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press

Electropolymerized Star-Shaped Benzotrithiophenes Yield π-Conjugated Hierarchical Networks with High Areal Capacitance

Ringk, Andreas; Lignie, Adrien; Hou, Yuanfang; Alshareef, Husam N.; Beaujuge, Pierre (ACS Applied Materials & Interfaces, American Chemical Society (ACS), 2016-05-04) [Article]

High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that P(TEBTT/EDOT)-based frameworks can achieve higher areal capacitance (e.g., as high as 443.8 mF cm-2 at 1 mA cm-2) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2) and PEDOT: 12.1 mF cm-2 (at 1 mA cm-2)). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35x capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT) copolymers can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1,000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

The effect of ambient pressure on ejecta sheets from free-surface ablation

Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T; Truscott, T. T. (Experiments in Fluids, Springer Nature, 2016-04-16) [Article]

We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

Crown sealing and buckling instability during water entry of spheres

Marston, J. O.; Truscott, T. T.; Speirs, N. B.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T (Journal of Fluid Mechanics, Cambridge University Press (CUP), 2016-04-05) [Article]

We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.

BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack

Zhang, Wei; Samtaney, Ravi (Physics of Fluids, AIP Publishing, 2016-04-05) [Article]

We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.

Numerical simulation and global linear stability analysis of low-Re flow past a heated circular cylinder

Zhang, Wei; Samtaney, Ravi (International Journal of Heat and Mass Transfer, Elsevier BV, 2016-03-31) [Article]

We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.

Investigation of granular impact using positron emission particle tracking

Marston, Jeremy O.; Thoroddsen, Sigurdur T (Powder Technology, Elsevier BV, 2015-04) [Article]

We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

Double-layered ZnO nanostructures for efficient perovskite solar cells

Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram (Nanoscale, Royal Society of Chemistry (RSC), 2014-11-06) [Article]

To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.