• Login
    Search 
    •   Home
    • Research
    • Search
    •   Home
    • Research
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Harrou, Fouzi (27)
    Sun, Ying (27)Madakyaru, Muddu (7)Cherif, Foudil (4)Dairi, Abdelkader (4)View MoreDepartmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (27)
    Statistics Program (27)
    Applied Mathematics and Computational Science Program (9)Journal2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B) (4)2017 IEEE Symposium Series on Computational Intelligence (SSCI) (3)2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (2)2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2)2017 6th International Conference on Systems and Control (ICSC) (2)View MoreKAUST Grant Number
    OSR-2015-CRG4-2582 (27)
    PublisherInstitute of Electrical and Electronics Engineers (IEEE) (18)Elsevier BV (8)IntechOpen (1)SubjectMonitoring (13)Computational modeling (6)Control charts (6)Data models (6)Fault detection (6)View MoreTypeConference Paper (14)Article (12)Book Chapter (1)Year (Issue Date)2018 (8)2017 (18)2016 (1)Item AvailabilityOpen Access (19)Metadata Only (7)Embargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 27

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 27CSV
    • 27RefMan
    • 27EndNote
    • 27BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Monitoring a robot swarm using a data-driven fault detection approach

    Khaldi, Belkacem; Harrou, Fouzi; Cherif, Foudil; Sun, Ying (Robotics and Autonomous Systems, Elsevier BV, 2017-06-30) [Article]
    Using swarm robotics system, with one or more faulty robots, to accomplish specific tasks may lead to degradation in performances complying with the target requirements. In such circumstances, robot swarms require continuous monitoring to detect abnormal events and to sustain normal operations. In this paper, an innovative exogenous fault detection method for monitoring robots swarm is presented. The method merges the flexibility of principal component analysis (PCA) models and the greater sensitivity of the exponentially-weighted moving average (EWMA) and cumulative sum (CUSUM) control charts to insidious changes. The method is tested and evaluated on a swarm of simulated foot-bot robots performing a circle formation task, via the viscoelastic control model. We illustrate through simulated data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained by using the proposed method where compared to the conventional PCA-based methods (i.e., T2 and Q).
    Thumbnail

    An Improved Wavelet-Based Multivariable Fault Detection Scheme

    Harrou, Fouzi; Sun, Ying; Madakyaru, Muddu (Uncertainty Quantification and Model Calibration, IntechOpen, 2017-07-06) [Book Chapter]
    Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)-based Q and EWMA methods and MSPLS-based Q method.
    Thumbnail

    Statistical fault detection in photovoltaic systems

    Garoudja, Elyes; Harrou, Fouzi; Sun, Ying; Kara, Kamel; Chouder, Aissa; Silvestre, Santiago (Solar Energy, Elsevier BV, 2017-05-08) [Article]
    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array's maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.
    Thumbnail

    A measurement-based fault detection approach applied to monitor robots swarm

    Khaldi, Belkacem; Harrou, Fouzi; Sun, Ying; Cherif, Foudil (2017 6th International Conference on Systems and Control (ICSC), Institute of Electrical and Electronics Engineers (IEEE), 2017-07-10) [Conference Paper]
    Swarm robotics requires continuous monitoring to detect abnormal events and to sustain normal operations. Indeed, swarm robotics with one or more faulty robots leads to degradation of performances complying with the target requirements. This paper present an innovative data-driven fault detection method for monitoring robots swarm. The method combines the flexibility of principal component analysis (PCA) models and the greater sensitivity of the exponentially-weighted moving average control chart to incipient changes. We illustrate through simulated data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional PCA-based methods.
    Thumbnail

    A statistical-based approach for fault detection and diagnosis in a photovoltaic system

    Garoudja, Elyes; Harrou, Fouzi; Sun, Ying; Kara, Kamel; Chouder, Aissa; Silvestre, Santiago (2017 6th International Conference on Systems and Control (ICSC), Institute of Electrical and Electronics Engineers (IEEE), 2017-07-10) [Conference Paper]
    This paper reports a development of a statistical approach for fault detection and diagnosis in a PV system. Specifically, the overarching goal of this work is to early detect and identify faults on the DC side of a PV system (e.g., short-circuit faults; open-circuit faults; and partial shading faults). Towards this end, we apply exponentially-weighted moving average (EWMA) control chart on the residuals obtained from the one-diode model. Such a choice is motivated by the greater sensitivity of EWMA chart to incipient faults and its low-computational cost making it easy to implement in real time. Practical data from a 3.2 KWp photovoltaic plant located within an Algerian research center is used to validate the proposed approach. Results show clearly the efficiency of the developed method in monitoring PV system status.
    Thumbnail

    PLS-based memory control scheme for enhanced process monitoring

    Harrou, Fouzi; Sun, Ying (2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Institute of Electrical and Electronics Engineers (IEEE), 2017-01-20) [Conference Paper]
    Fault detection is important for safe operation of various modern engineering systems. Partial least square (PLS) has been widely used in monitoring highly correlated process variables. Conventional PLS-based methods, nevertheless, often fail to detect incipient faults. In this paper, we develop new PLS-based monitoring chart, combining PLS with multivariate memory control chart, the multivariate exponentially weighted moving average (MEWMA) monitoring chart. The MEWMA are sensitive to incipient faults in the process mean, which significantly improves the performance of PLS methods and widen their applicability in practice. Using simulated distillation column data, we demonstrate that the proposed PLS-based MEWMA control chart is more effective in detecting incipient fault in the mean of the multivariate process variables, and outperform the conventional PLS-based monitoring charts.
    Thumbnail

    Statistical control chart and neural network classification for improving human fall detection

    Harrou, Fouzi; Zerrouki, Nabil; Sun, Ying; Houacine, Amrane (2016 8th International Conference on Modelling, Identification and Control (ICMIC), Institute of Electrical and Electronics Engineers (IEEE), 2017-01-05) [Conference Paper]
    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow's fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.
    Thumbnail

    A simple strategy for fall events detection

    Harrou, Fouzi; Zerrouki, Nabil; Sun, Ying; Houacine, Amrane (2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Institute of Electrical and Electronics Engineers (IEEE), 2017-01-20) [Conference Paper]
    The paper concerns the detection of fall events based on human silhouette shape variations. The detection of fall events is addressed from the statistical point of view as an anomaly detection problem. Specifically, the paper investigates the multivariate exponentially weighted moving average (MEWMA) control chart to detect fall events. Towards this end, a set of ratios for five partial occupancy areas of the human body for each frame are collected and used as the input data to MEWMA chart. The MEWMA fall detection scheme has been successfully applied to two publicly available fall detection databases, the UR fall detection dataset (URFD) and the fall detection dataset (FDD). The monitoring strategy developed was able to provide early alert mechanisms in the event of fall situations.
    Thumbnail

    Improved Data-based Fault Detection Strategy and Application to Distillation Columns

    Madakyaru, Muddu; Harrou, Fouzi; Sun, Ying (Process Safety and Environmental Protection, Elsevier BV, 2017-01-31) [Article]
    Chemical and petrochemical processes require continuous monitoring to detect abnormal events and to sustain normal operations. Furthermore, process monitoring enhances productivity, efficiency, and safety in process industries. Here, we propose an innovative statistical approach that exploits the advantages of multiscale partial least squares (MSPLS) models and generalized likelihood ratio (GLR) tests for fault detection in processes. Specifically, we combine an MSPLS algorithm with wavelet analysis to create our modeling framework. Then, we use GLR hypothesis testing based on the uncorrelated residuals obtained from the MSPLS model to improve fault detection. We use simulated distillation column data to evaluate the MSPLS-based GLR chart. Results show that our MSPLS-based GLR method is more powerful than the PLS-based Q and GLR method and MSPLS-based Q method, especially in early detection of small faults with abrupt or incipient behavior.
    Thumbnail

    Kullback-Leibler distance-based enhanced detection of incipient anomalies

    Harrou, Fouzi; Sun, Ying; Madakyaru, Muddu (Journal of Loss Prevention in the Process Industries, Elsevier BV, 2016-09-09) [Article]
    Accurate and effective anomaly detection and diagnosis of modern engineering systems by monitoring processes ensure reliability and safety of a product while maintaining desired quality. In this paper, an innovative method based on Kullback-Leibler divergence for detecting incipient anomalies in highly correlated multivariate data is presented. We use a partial least square (PLS) method as a modeling framework and a symmetrized Kullback-Leibler distance (KLD) as an anomaly indicator, where it is used to quantify the dissimilarity between current PLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, this paper reports the development of two monitoring charts based on the KLD. The first approach is a KLD-Shewhart chart, where the Shewhart monitoring chart with a three sigma rule is used to monitor the KLD of the response variables residuals from the PLS model. The second approach integrates the KLD statistic into the exponentially weighted moving average monitoring chart. The performance of the PLS-based KLD anomaly-detection methods is illustrated and compared to that of conventional PLS-based anomaly detection methods. Using synthetic data and simulated distillation column data, we demonstrate the greater sensitivity and effectiveness of the developed method over the conventional PLS-based methods, especially when data are highly correlated and small anomalies are of interest. Results indicate that the proposed chart is a very promising KLD-based method because KLD-based charts are, in practice, designed to detect small shifts in process parameters. © 2016 Elsevier Ltd
    • 1
    • 2
    • 3
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.