• Login
    Search 
    •   Home
    • Research
    • Search
    •   Home
    • Research
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Cherif, Foudil (3)
    Harrou, Fouzi (3)Khaldi, Belkacem (3)Sun, Ying (3)Department
    Applied Mathematics and Computational Science Program (3)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (3)Statistics Program (3)Journal2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B) (1)2017 6th International Conference on Systems and Control (ICSC) (1)Biosystems (1)KAUST Grant Number
    OSR-2015-CRG4-2582 (3)
    PublisherInstitute of Electrical and Electronics Engineers (IEEE) (2)Elsevier BV (1)SubjectSmoothed Particles Hydrodynamics (SPH) (2)Swarm Robotics (2)Virtual Viscoelastic Model (2)Control charts (1)Data models (1)View MoreTypeConference Paper (2)Article (1)Year (Issue Date)2018 (1)2017 (2)Item AvailabilityOpen Access (3)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    A measurement-based fault detection approach applied to monitor robots swarm

    Khaldi, Belkacem; Harrou, Fouzi; Sun, Ying; Cherif, Foudil (2017 6th International Conference on Systems and Control (ICSC), Institute of Electrical and Electronics Engineers (IEEE), 2017-07-10) [Conference Paper]
    Swarm robotics requires continuous monitoring to detect abnormal events and to sustain normal operations. Indeed, swarm robotics with one or more faulty robots leads to degradation of performances complying with the target requirements. This paper present an innovative data-driven fault detection method for monitoring robots swarm. The method combines the flexibility of principal component analysis (PCA) models and the greater sensitivity of the exponentially-weighted moving average control chart to incipient changes. We illustrate through simulated data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional PCA-based methods.
    Thumbnail

    Self-Organization in Aggregating Robot Swarms: A DW-KNN Topological Approach

    Khaldi, Belkacem; Harrou, Fouzi; Cherif, Foudil; Sun, Ying (Biosystems, Elsevier BV, 2018-02-02) [Article]
    In certain swarm applications, where the inter-agent distance is not the only factor in the collective behaviours of the swarm, additional properties such as density could have a crucial effect. In this paper, we propose applying a Distance-Weighted K-Nearest Neighbouring (DW-KNN) topology to the behaviour of robot swarms performing self-organized aggregation, in combination with a virtual physics approach to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach, which is used to evaluate the robot density in the swarm, is applied as the key factor for identifying the K-nearest neighbours taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbours is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach, showing various self-organized aggregations performed by a swarm of N foot-bot robots. Also, we compared the aggregation quality of DW-KNN aggregation approach to that of the conventional KNN approach and found better performance.
    Thumbnail

    A distance weighted-based approach for self-organized aggregation in robot swarms

    Khaldi, Belkacem; Harrou, Fouzi; Cherif, Foudil; Sun, Ying (2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), Institute of Electrical and Electronics Engineers (IEEE), 2017-12-14) [Conference Paper]
    In this paper, a Distance-Weighted K Nearest Neighboring (DW-KNN) topology is proposed to study self-organized aggregation as an emergent swarming behavior within robot swarms. A virtual physics approach is applied among the proposed neighborhood topology to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach is used as a key factor to identify the K-Nearest neighbors taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbors is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach showing various self-organized aggregations performed by a swarm of N foot-bot robots.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.