• Login
    Search 
    •   Home
    • Research
    • Search
    •   Home
    • Research
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Alouini, Mohamed-Slim (1)
    Balasingham, Ilangko (1)
    Chelli, Ali (1)
    Patzold, Matthias Uwe (1)
    Zedini, Emna (1)Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (1)
    EE, KAUST, Thuwal, N/A Saudi Arabia 69000 (1)Electrical Engineering Program (1)Journal
    IEEE Transactions on Vehicular Technology (1)
    PublisherInstitute of Electrical and Electronics Engineers (IEEE) (1)Subject
    code combining (1)
    delay analysis (1)Delays (1)double Rayleigh channel (1)energy efficiency (1)View MoreTypeArticle (1)Year (Issue Date)
    2018 (1)
    Item AvailabilityOpen Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Throughput and Delay Analysis of HARQ with Code Combining over Double Rayleigh Fading Channels

    Chelli, Ali; Zedini, Emna; Alouini, Mohamed-Slim; Patzold, Matthias Uwe; Balasingham, Ilangko (IEEE Transactions on Vehicular Technology, Institute of Electrical and Electronics Engineers (IEEE), 2018-01-15) [Article]
    This paper proposes the use of hybrid automatic repeat request (HARQ) with code combining (HARQ-CC) to offer reliable communications over double Rayleigh channels. The double Rayleigh fading channel is of particular interest to vehicle-to-vehicle communication systems as well as amplify-and-forward relaying and keyhole channels. This work studies the performance of HARQ-CC over double Rayleigh channels from an information theoretic perspective. Analytical approximations are derived for the <formula><tex>$\epsilon$</tex></formula>-outage capacity, the average number of transmissions, and the throughput of HARQ-CC. Moreover, we evaluate the delay experienced by Poisson arriving packets for HARQ-CC. We provide analytical expressions for the average waiting time, the packets sojourn time, the average consumed power, and the energy efficiency. In our investigation, we take into account the impact of imperfect feedback on different performance metrics. Additionally, we explore the tradeoff between energy efficiency and the throughput. The proposed scheme is shown to maintain the outage probability below a specified threshold <formula><tex>$\epsilon$</tex></formula> which ensures the link reliability. Meanwhile, HARQ-CC adapts implicitly the transmission rate to the channel conditions such that the throughput is maximized. Our results demonstrate that HARQ-CC allows improving the achievable communication rate compared to fixed time diversity schemes. To maximize the throughput of HARQ-CC, the rate per HARQ round should be less than the rate required to meet the outage constraint. Our investigation of the performance of HARQ-CC over Rayleigh and double Rayleigh channels shows that double Rayleigh channels have a higher severity of fading and result in a larger degradation of the throughput. Our analysis reveals that HARQ with incremental redundancy (HARQ-IR) achieves a larger throughput compared to HARQ-CC, while HARQ-CC is simpler to implement, has a lower decoding complexity, and requires less memory resources.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.