Fahad, Hossain M. (2014-03)
      Information anytime and anywhere has ushered in a new technological age where massive amounts of ‘big data’ combined with self-aware and ubiquitous interactive computing systems is shaping our daily lives. As society gravitates towards a smart living environment and a sustainable future, the demand for faster and more computationally efficient electronics will continue to rise. Keeping up with this demand requires extensive innovation at the transistor level, which is at the core of all electronics. Up until recently, classical silicon transistor technology has traditionally been weary of disruptive innovation. But with the aggressive scaling trend, there has been two dramatic changes to the transistor landscape. The first was the re-introduction of metal/high-K gate stacks with strain engineering in the 45 nm technology node, which enabled further scaling on silicon to smaller nodes by alleviating the problem of gate leakage and improving the channel mobility. The second innovation was the use of non-planar 3D silicon fins as opposed to classical planar architectures for stronger electrostatic control leading to significantly lower off-state leakage and other short-channel effects. Both these innovations have prolonged the life of silicon based electronics by at least another 1-2 decades. The next generation 14 nm technology node will utilize silicon fin channels that have gate lengths of 14 nm and fin thicknesses of 7 nm. These dimensions are almost at the extreme end of current lithographic capabilities. Moreover, as fins become smaller, the parasitic capacitances and resistances increase significantly resulting in degraded performance. It is of popular consensus that the next evolutionary step in transistor technology is in the form of gate-all-around silicon nanowires (GAA NWFETs), which offer the tightest electrostatic configuration leading to the lowest possible leakage and short channel characteristics in over-the-barrier type devices. However, to keep scaling on silicon, the amount of current generated per device has to be increased while keeping short channel effects and off-state leakage at bay. The objective of this doctoral thesis is the investigation of an innovative vertical silicon based architecture called the silicon nanotube field effect transistor (Si NTFET). This topology incorporates a dual inner/outer core/shell gate stack strategy to control the volume inversion properties in a hollow silicon 1D quasi-nanotube under a tight electrostatic configuration. Together with vertically aligned source and drain, the Si NTFET is capable of very high on-state performance (drive current) in an area-efficient configuration as opposed to arrays of gate-all-around nanowires, while maintaining leakage characteristics similar to a single nanowire. Such a device architecture offsets the need of device arraying that is needed with fin and nanowire architectures. Extensive simulations are used to validate the potential benefits of Si NTFETs over GAA NWFETs on a variety of platforms such as conventional MOSFETs, tunnel FETs, junction-less FETs. This thesis demonstrates a novel CMOS compatible process flow to fabricate vertical nanotube transistors that offer a variety of advantages such as lithography-independent gate length definition, integration of epitaxially grown silicon nanotubes with spacer based gate dielectrics and abrupt in-situ doped source/drain junctions. Experimental measurement data will showcase the various materials and processing challenges in fabricating these devices. Finally, an extension of this work to topologically transformed wavy channel FinFETs is also demonstrated keeping in line with the theme of area efficient high-performance electronics.
    • Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

      Abdelfattah, Ahmad (2015-01-15)
      High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The performance experiments show improvements ranging from 10% and up to more than fourfold speedup against competitive GPU MVM approaches. Performance impacts on high-level numerical libraries and a computational astronomy application are highlighted, since such memory-bound kernels are often located in innermost levels of the software chain. The excellent performance obtained in this work has led to the adoption of code in NVIDIAs widely distributed cuBLAS library.
    • Accelerating SPARQL Queries and Analytics on RDF Data

      Al-Harbi, Razen (2016-11-09)
      The complexity of SPARQL queries and RDF applications poses great challenges on distributed RDF management systems. SPARQL workloads are dynamic and con- sist of queries with variable complexities. Hence, systems that use static partitioning su↵er from communication overhead for workloads that generate excessive communi- cation. Concurrently, RDF applications are becoming more sophisticated, mandating analytical operations that extend beyond SPARQL queries. Being primarily designed and optimized to execute SPARQL queries, which lack procedural capabilities, exist- ing systems are not suitable for rich RDF analytics. This dissertation tackles the problem of accelerating SPARQL queries and RDF analytics on distributed shared-nothing RDF systems. First, a distributed RDF en- gine, coined AdPart, is introduced. AdPart uses lightweight hash partitioning for sharding triples using their subject values; rendering its startup overhead very low. The locality-aware query optimizer of AdPart takes full advantage of the partition- ing to (i) support the fully parallel processing of join patterns on subjects and (ii) minimize data communication for general queries by applying hash distribution of intermediate results instead of broadcasting, wherever possible. By exploiting hash- based locality, AdPart achieves better or comparable performance to systems that employ sophisticated partitioning schemes. To cope with workloads dynamism, AdPart is extended to dynamically adapt to workload changes. AdPart monitors the data access patterns and dynamically redis- tributes and replicates the instances of the most frequent patterns among workers.Consequently, the communication cost for future queries is drastically reduced or even eliminated. Experiments with synthetic and real data verify that AdPart starts faster than all existing systems and gracefully adapts to the query load. Finally, to support and accelerate rich RDF analytical tasks, a vertex-centric RDF analytics framework is proposed. The framework, named SPARTex, bridges the gap between RDF and graph processing. To do so, SPARTex: (i) implements a generic SPARQL operator as a vertex-centric program. The operator is coupled with an optimizer that generates e cient execution plans. (ii) It allows SPARQL to invoke vertex-centric programs as stored procedures. Finally, (iii) it provides a unified in- memory data store that allows the persistence of intermediate results. Consequently, SPARTex can e ciently support RDF analytical tasks consisting of complex pipeline of operators.
    • Advanced Carbon Materials for Environmental and Energy Applications

      Dua, Rubal (2014-05)
      Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise gained in synthesizing porous carbon materials, and owing to our group’s interest in developing suitable photoelectrode materials, this dissertation also proposes a novel carbon-Cu2O composite comprising of a carbon layer coated Cu2O nanowire array structure as a high performance and stable photoelectrode material for photoelectrochemical water splitting.
    • Advanced Magnetoimpedance Sensors

      Li, Bodong (2015-02)
      This thesis is concerned with the advanced topics of thin film magnetoimpedance (MI) sensors. The author proposes and develops novel MI sensors that target on the challenges arising from emerging applications such as flexible electronics, passive wireless sensing, etc. In the study of flexible MI sensor, the investigated sensors of NiFe/Cu/NiFe tri-layersare fabricated on three flexible substrates having different surface roughness: Kapton, standard and premiumphotopaper. Sensitivity versus substrate roughness analysis is carried out for the selection of optimal substrate material. The high magnetic sensing performance is achieved by using Kapton substrate. Stress simulation, incorporated with the theory of magnetostriction effect, reveals the material composition of Ni/Fe being as a key factor of the stress dependent MI effect for the flexible MI sensors. In the development of MI-SAW device for passive wireless magnetic field sensing, NiFe/Cu/NiFe tri-layersand interdigital transducers(IDT) are designed and fabricated on a single piece of LiNbO3substrate, providing a high degree of integration and the advantage of standard microfabrication. The double-electrodeIDT has been utilized and proven to have an optimal sensing performance in comparison to the bi-directional IDT design. The optimized high frequency performance of the thin film MI sensor results in a MI-SAW passive wireless magnetic sensor with high magnetic sensitivity comparing to the MI microwire approach. Benefiting from the high degree of integration of the MI thin film element, in the following study, two additional sensing elements are integrated to the SAW device to have a multifunctional passive wireless sensor with extended temperature and humidity sensing capabilities. Analytical models havebeen developed to eliminate the crossovers of different sensing signals through additional reference IDTs, resulting in a multifunctional passive wireless sensor with the capability of detecting all three measurands individually and simultaneously.
    • Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology

      Wang, Zhongwei (2017-12)
      Aerobic granular sludge (AGS) technology is a next-generation technology for the biological treatment of wastewater. The advantages of AGS in terms of small footprint, low operation and capital cost and high effluent quality makes it a strong candidate for replacing conventional biological wastewater treatment based on activated sludge (CAS) process, and potentially become the standard for biological wastewater treatment in the future. Saline wastewater is generated from many industrial processes as well as from the use of sea water as a secondary quality water for non-potable use such as toilet flushing to mitigate shortage of fresh water in some coastal cities. Salt is known to inhibit biological wastewater treatment processes in terms of organic and nutrient removal. In the first part of my dissertation, I conducted three lab-scale experiments to 1) evaluate the effect of salt on granulation and nutrient removal in AGS (330 days); 2) develop engineering strategies to mitigate the adverse effect of salt on nutrient removal of AGS (164 days); and 3) compare the effect of salt on the stoichiometry and kinetics of different phosphate accumulating organisms (PAO) clades (PAOI and PAOII) and to determine the effect of potassium and sodium ions on the activities of different PAO clades (225 days). Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part of my dissertation reported the first microbial ecology study of a full-scale AGS plant with the aim of addressing the role of regional (i.e. immigration) versus local factors in shaping the microbial community assembly of different-sized microbial aggregates in AGS. The microbial communities in a full-scale AGS plant in Garmerwolde, The Netherlands, was characterized periodically over 180 days using Illumina sequencing of 16S ribosomal RNA amplicons of the V3-V4 regions. Overall, the discovery of this PhD study sheds light on the application of AGS for the treatment of saline wastewater and deepens our understanding on the microbial ecology of AGS systems, which is essential for process design and optimization.
    • Aerosol Radiative Impact on the Middle East Regional Climate and the Red Sea

      Osipov, Sergey (2017-10)
      The climate in the Middle East is complex and remains poorly understood. Due to the vast Arabian Desert, it is very sensitive to radiative forcing. Mineral dust is the dominant aerosol in this region. High background dust loading and frequent dust outbreaks significantly perturb the radiative balance and contribute to climate variability in the Middle East. To assess the climatological impact of dust in the region, we derived the aerosol optical properties and used a standalone column model to quantify radiative forcing sensitivity to a range of parameters representative of the Arabian Peninsula and the Red Sea. Simulations and modeling assumptions were validated using available in situ observations and satellite retrievals for fair weather and dust storm conditions. We incorporated the optical properties into the regional coupled ocean-atmosphere model and conducted simulations that represent the regional climate. The analysis shows that dust cools the Earth-atmosphere system and thus offsets the warming due to greenhouse gases. Dust reduces the sea surface temperature by 0.4 K, significantly perturbs energy balance, overturning circulation, and its purely dynamical impact reduces biological productivity in the Red Sea. In the real world, dust is present permanently and this does not allow to directly observe the climate response to the dust forcing. Volcanic eruptions produce a transient radiative impact that causes a detectable climate response that could be evaluated from observations and compared with simulations. Large equatorial eruptions are known to significantly perturb the Earth’s climate on the global scale, but their regional impact on the Middle East has not been thoroughly investigated. For example, the 1991 Mount Pinatubo eruption had a profound effect on the MENA and caused extensive coral bleaching in the Gulf of Aqaba. The analysis shows that observed cooling in the Middle East was mostly driven by changes in the atmospheric large-scale circulation, forced by the volcanic aerosol. We found that the Red Sea response was quantitatively and qualitatively different than that of the global ocean. However, similar to the global case, major volcanic eruptions significantly contribute to the regional climate variability and has to be accounted for in trend analyses.
    • Affordable and Scalable Manufacturing of Wearable Multi-Functional Sensory “Skin” for Internet of Everything Applications

      Nassar, Joanna M. (2017-10)
      Demand for wearable electronics is expected to at least triple by 2020, embracing all sorts of Internet of Everything (IoE) applications, such as activity tracking, environmental mapping, and advanced healthcare monitoring, in the purpose of enhancing the quality of life. This entails the wide availability of free-form multifunctional sensory systems (i.e “skin” platforms) that can conform to the variety of uneven surfaces, providing intimate contact and adhesion with the skin, necessary for localized and enhanced sensing capabilities. However, current wearable devices appear to be bulky, rigid and not convenient for continuous wear in everyday life, hindering their implementation into advanced and unexplored applications beyond fitness tracking. Besides, they retail at high price tags which limits their availability to at least half of the World’s population. Hence, form factor (physical flexibility and/or stretchability), cost, and accessibility become the key drivers for further developments. To support this need in affordable and adaptive wearables and drive academic developments in “skin” platforms into practical and functional consumer devices, compatibility and integration into a high performance yet low power system is crucial to sustain the high data rates and large data management driven by IoE. Likewise, scalability becomes essential for batch fabrication and precision. Therefore, I propose to develop three distinct but necessary “skin” platforms using scalable and cost effective manufacturing techniques. My first approach is the fabrication of a CMOS-compatible “silicon skin”, crucial for any truly autonomous and conformal wearable device, where monolithic integration between heterogeneous material-based sensory platform and system components is a challenge yet to be addressed. My second approach displays an even more affordable and accessible “paper skin”, using recyclable and off-the-shelf materials, targeting environmental mapping through 3D stacked arrays, or advanced personalized healthcare through the developed “paper watch” prototype. My last approach targets a harsh environment waterproof “marine skin” tagging system, using marine animals as allies to study the marine ecosystem. The “skin” platforms offer real-time and simultaneous monitoring while preserving high performance and robust behaviors under various bending conditions, maintaining system compatibility using cost-effective and scalable approaches for a tangible realization of a truly flexible wearable device.
    • Aggregation of Organic Semiconductors and Its Influence on Carrier Transport and Solar Cell Performance

      Hu, Hanlin (2017-08-28)
      Photovoltaic technology based on solution-processable organic solar cells (OSCs) provides a promising route towards a low-cost strategy to address the sharply increasing energy demands worldwide. However, up to date, the vast majority of solar cell reports have been based on spin-cast BHJ layers. Spin coating is not compatible with high speed and scalable coating processes, such as blade-coating and slot-die coating, which require the nanoscale morphology to be reproduced in scalable coating methods. And tolerance for thicker BHJ films would also facilitate high speed scalable coating. In the first part of this thesis, we investigate how pre-aggregating the conjugated polymer in solution impacts the charge transport in polymer films. We use P3HT in a wide range of molecular weights in different solvents of common use in organic electronics to investigate how they impact the aggregation behavior in the ink and in the solid state. By deliberately disentangling polymer chains via sonication of the solution in the presence of solvophobic driving forces, we show a remarkable ability to tune aggregation, which directly impacts charge transport, as measured in the context of field effect transistors. The second part of this thesis looks at the impact of the solution-coating method and the photovoltaic performance gap when applying modern BHJ inks developed for spin coating to scalable coating methods, namely blade coating. We ascribe this to significant differences in the drying kinetics between the processes. Emulating the drying kinetics of spin-coating was found to result in performance parity as well as morphological parity across several systems, resulting in demonstration of PTB7:PC71BM solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. The last part of this thesis looks into going beyond performance parity by leveraging the differences of the scalable coating method to enable highly efficient thick solar cells which surpass the performance of spin-cast devices. High-speed wire-bar coating (up to 0.25 m/s) was used to produce OPV devices with power conversion efficiency (PCE) >10% and significantly outperforming devices prepared by spin-coating the BHJ layer for thicknesses >100 nm by maintaining a higher fill factor.
    • Amorphous Metal Tungsten Nitride and its Application for Micro and Nanoelectromechanical Applications

      Mayet, Abdulilah M. (2016-05)
      The objective of this doctoral thesis is to develop, engineer and investigate an amorphous metal tungsten nitride (aWNx) and to study its functionality for applications focused on electromechanical system at the nano-scale. Charge transport based solid state device oriented complementary metal oxide semiconductor (CMOS) electronics have reached a level where they are scaled down to nearly their fundamental limits regarding switching speed, off state power consumption and the on state power consumption due to the fundamental limitation of sub-threshold slope (SS) remains at 60 mV/dec. NEM switch theoretically and practically offers the steepest sub-threshold slope and practically has shown zero static power consumption due to their physical isolation originated from the nature of their mechanical operation. Fundamental challenges remain with NEM switches in context of their performance and reliability: (i) necessity of lower pull-in voltage comparable to CMOS technology; (ii) operation in ambient/air; (iii) increased ON current and decreased ON resistance; (iv) scaling of devices and improved mechanical and electrical contacts; and (v) high endurance. The “perfect” NEM switch should overcome all the above-mentioned challenges. Here, we show such a NEM switch fabricated with aWNx to show (i) sub-0.3-volt operation; (ii) operation in air and vacuum; (iii) ON current as high as 0.5 mA and ON resistance lower than 5 kΩ; (iv) improved mechanical contact; and the most importantly (v) continuous switching of 8 trillion cycles for more than 10 days with the highest switching speed is 30 nanosecond without hysteresis. In addition, tungsten nitride could be the modern life vine by fulfilling the demand of biodegradable material for sustainable life regime. Transient electronics is a form of biodegradable electronics as it is physically disappearing totally or partially after performing the required function. The fabricated aWNx suites this category very well, despite not being a universal bio-element. It has been found that aWNx dissolves in ground water with a rate of ≈ 20-60 nm h-1. This means that a 100 nm thick aWNx disappears in ground water in less than a day and three days are enough to dissolve completely a 300 nm thickness device.
    • Analytical Frameworks of Cooperative and Cognitive Radio Systems with Practical Considerations

      Khan, Fahd Ahmed (2013-08)
      Cooperative and cognitive radio systems have been proposed as a solution to improve the quality-of-service (QoS) and spectrum efficiency of existing communication systems. The objective of this dissertation is to propose and analyze schemes for cooperative and cognitive radio systems considering real world scenarios and to make these technologies implementable. In most of the research on cooperative relaying, it has been assumed that the communicating nodes have perfect channel state information (CSI). However, in reality, this is not the case and the nodes may only have an estimate of the CSI or partial knowledge of the CSI. Thus, in this dissertation, depending on the amount of CSI available, novel receivers are proposed to improve the performance of amplify-and forward relaying. Specifically, new coherent receivers are derived which do not perform channel estimation at the destination by using the received pilot signals directly for decoding. The derived receivers are based on new metrics that use distribution of the channels and the noise to achieve improved symbol-error-rate (SER) performance. The SER performance of the derived receivers is further improved by utilizing the decision history in the receivers. In cases where receivers with low complexity are desired, novel non-coherent receiver which detects the signal without knowledge of CSI is proposed. In addition, new receivers are proposed for the situation when only partial CSI is available at the destination i.e. channel knowledge of either the source-relay link or the relay-destination link but not both, is available. These receivers are termed as `half-coherent receivers' since they have channel-state-information of only one of the two links in the system. In practical systems, the CSI at the communicating terminals becomes outdated due to the time varying nature of the channel and results in system performance degradation. In this dissertation, the impact of using outdated CSI for relay selection on the performance of a network where two sources communicate with each other via fixed-gain amplify-and-forward relays is studied and for a Rayleigh faded channel, closed-form expressions for the outage probability (OP), moment generating function (MGF) and SER are derived. Relay location is also taken into consideration and it is shown that the performance can be improved by placing the relay closer to the source whose channel is more outdated. Some practical issues encountered in cognitive radio systems (CRS) are also investigated. The QoS of CRS can be improved through spatial diversity which can be achieved by either using multiple antennas or exploiting the independent channels of each user in a multi-user network. In this dissertation, both approaches are examined and in multi-antenna CRS, transmit antenna selection (TAS) is proposed where as in a multi-user CRS, user selection is proposed to achieve performance gains. TAS reduces the implementation cost and complexity and thus makes CRS more feasible. Additionally, unlike previous works, in accordance with real world systems, the transmitter is assumed to have limited peak transmit power. For both these schemes, considering practical channel models, closed-form expression for the OP performance, SER performance and ergodic capacity (EC) are obtained and the performance in the asymptotic regimes is also studied. Furthermore, the OP performance is also analyzed taking into account the interference from the primary network on the cognitive network.
    • AOM Characterization and Removal Efficiency Using Various SWRO Pretreatment Techniques

      Namazi, Mohammed (2017-12)
      This study investigates the operation of dual media filter DMF during ambient and simulated algal bloom conditions, and the role of coagulation and dissolved air flotation (DAF) in mitigating the adverse effects of algal blooms on DMF performance. The study also highlights which AOM concentration as a function of biopolymer is critical to organic fouling in DMF pretreatment for Red Sea water desalination with RO. On the other hand, the present study has carried out another experiment on AOM fouling in comparison with bacterial organic matter (BOM) and humic organic matter (HOM) using two different pore sizes of UF ceramic membranes, 5 and 50 kDa. The main aim of this comparison is to examine fouling behavior and mechanism and removal efficiency. The study revealed that AOM can induce organic fouling in DMF during simulated algal bloom conditions at biopolymer concentrations as low as 0.2 mg C/L. DMF performance was strongly affected by AOM concentration as observed by flow rate decline through time. Liquid chromatography – organic carbon detection (LC-OCD) analysis showed higher removal rates of biopolymers than lower molecular weight fractions (i.e., humic substances, building blocks and low molecular weight neutrals) for all pretreatment scenarios. The study also indicated that while DMF performance was enhanced with coagulation and sedimentation, the most significant improvement in performance was observed for DMF operation preceded by coagulation and DAF. Hydraulic performance of DMF correlated well with biopolymers removal, with removal rates of 72%, 53% and 39%, for coagulation/DAF, coagulation/sedimentation, and no coagulation, respectively. For UF ceramic membranes, results showed that more TEP/organics were removed by the 5 kDa membranes compared to the 50 kDa membrane, which is accounted for lower MWCO. The UF 5 kDa membrane also showed low fouling formation than 50 kDa membrane for all of three types of organic matter tested. Analysis of the fouled membranes by SEM images showed that fouling was dominated by cake layer formation for the 5 kDa membrane while pore blockage followed by cake layer formation is apparent for the 50 kDa membrane.
    • Application of Nanostructured Materials and Multi-junction Structure in Polymer Solar Cells

      Gao, Yangqin (2015-12-09)
      With power conversion efficiency surpassing the 10% milestone for commercialization, photovoltaic technology based on solution-processable polymer solar cells (PSCs) provides a promising route towards a cost-efficient strategy to address the ever-increasing worldwide energy demands. However, to make PSCs successful, challenges such as insufficient light absorption, high maintenance costs, and relatively high production costs must be addressed. As solutions to some of these problems, the unique properties of nanostructured materials and complimentary light absorption in multi-junction device structure could prove to be highly beneficial. As a starting point, integrating nanostructure-based transparent self-cleaning surfaces in PSCs was investigated first. By controlling the length of the hydrothermally grown ZnO nanorods and covering their surface with a thin layer of chemical vapor-deposited SiO2, a highly transparent and UV-resistant superhydrophobic surface was constructed. Integrating the transparent superhydrophobic surface in a PSC shows minimal impact on the figure of merit of the PSC. To address the low mechanical durability of the transparent superhydrophobic surface based on SiO2-coated ZnO nanorods, a novel method inspired by the water condensation process was developed. This method involved directly growing hollow silica half-nanospheres on the substrate through the condensation of water in the presence of a silica precursor. Benefit from the decreased back scattering efficiency and increased light transport mean free path arise from the hollow nature, a transparent superhydrophobic surface was realized using submicrometer sized silica half-nanospheres. The decent mechanical property of silica and the “direct-grown” protocol are expected to impart improved mechanical durability to the transparent superhydrophobic surface. Regarding the application of multi-junction device structure in PSCs, homo multi-junction PSCs were constructed from an identical polymer absorber, in which the homo-tandem device showed an enhanced power conversion efficiency (PCE) (8.3% vs 7.7%) relative to the optimized single junction PSC. The high open voltage (>1.8 V) achieved in homo-tandem PSCs allowed for water splitting with an estimated solar-to-fuel conversion efficiency of 6%. Lastly, a hybrid tandem cell was also constructed using a polymer and a colloidal quantum dot subcell. Different hybrid tandem device architectures were proposed and show a promising PCE of 6.7%.
    • Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

      Sajid, Muhammad Bilal (2015-05)
      Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of acetylene. Furthermore, methane and acetylene sensors are developed for shock tube applications. The application of these sensors (along with an ethylene sensor) has been demonstrated to measure these species during the pyrolysis of n-pentane and iso-pentane.
    • The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

      Alqurashi, May M. (2013-11)
      Protein phosphorylation governs many regulatory pathways and an increasing number of kinases, proteins that transfer phosphate groups, are in turn activated by cyclic nucleotides. One of the cyclic nucleotides, cyclic adenosine monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP-dependent phosphorylation. To increase our understanding of the role of cAMP, proteomic and phosphoproteomic profiles of Arabidopsis thaliana suspension culture cells were analyzed before and after treatment of cells with two different concentrations of 8-Bromo-cAMP (1 µM and 100 nM) and over a time-course of one hour. A comparative quantitative analysis was undertaken using two- dimensional gel electrophoresis and the Delta 2D software (DECODON) followed by protein spot identification by tandem mass spectrometry combined with Mascot and Scaffold. Differentially expressed proteins and regulated phosphoproteins were categorized according to their biological function using bioinformatics tools. The results revealed that the treatment with 1 µM and 100 nM 8-Bromo-cAMP was sufficient to induce specific concentration- and time-dependent changes at the proteome and phosphoproteome levels. In particular, different phosphorylation patterns were observed overtime preferentially affecting proteins in a number of functional categories, notably phosphatases, proteins that remove phosphate groups. This suggests that cAMP both transiently activates and deactivates proteins through specific phosphorylation events and provides new insight into biological mechanisms and functions at the systems level.
    • Architectural Surfaces and Structures from Circular Arcs

      Shi, Ling (2013-12)
      In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the generation of smooth sur- faces composed of Darboux cyclide patches. In this way we not only eliminate the restriction to surfaces with negative Gaussian curvature, but, also obtain surfaces consisting of circular arcs.
    • Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

      Zernickel, Anna (2014-10)
      With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the incorporation of boronic acids, an aqueous protocol for Miyaura borylation using a highly active palladacycle catalyst was established and can be transferred to a selective borylation of proteins. It allows subsequent Suzuki cross coupling and therefore broadens the possibilities for chemical modifications and the establishment of new metalloenzymes. Different metal chelating amino acids were investigated, such as Hydrochinolin-Alanine, Bipyridyl-Alanine, Dipyridine-Lysines and phosphorous containing amino acids.
    • The Assessment of Current Biogeographic Patterns of Coral Reef Fishes in the Red Sea by Incorporating Their Evolutionary and Ecological Background

      Robitzch Sierra, Vanessa S. N. (2017-03)
      The exceptional environment of the Red Sea has lead to high rates of endemism and biodiversity. Located at the periphery of the world’s coral reefs distribution, its relatively young reefs offer an ideal opportunity to study biogeography and underlying evolutionary and ecological triggers. Here, I provide baseline information on putative seasonal recruitment patterns of reef fishes along a cross shelf gradient at an inshore, mid-shelf, and shelf-edge reef in the central Saudi Arabian Red Sea. I propose a basic comparative model to resolve biogeographic patterns in endemic and cosmopolitan reef fishes. Therefore, I chose the genetically, biologically, and ecologically similar coral-dwelling damselfishes Dascyllus aruanus and D. marginatus as a model species-group. As a first step, basic information on the distribution, population structure, and genetic diversity is evaluated within and outside the Red Sea along most of their global distribution. Second, pelagic larval durations (PLDs) within the Red Sea environmental gradient are explored. For the aforementioned, PLDs of the only other Red Sea Dascyllus, D. trimaculatus, are included for a more comprehensive comparison. Third, to further assess ongoing pathways of connectivity and geneflow related to larval behavior and dispersal in Red Sea reef fishes, the genetic composition and kinship of a single recruitment cohort of D. aruanus arriving together at one single reef is quantified using single nuclear polymorphisms (SNPs). Genetic diversity and relatedness of the recruits are compared to that of the standing population at the settlement reef, providing insight into putative dispersal strategies and behavior of coral reef fish larvae. As a fourth component to study traits shaping biogeography, the ecology and adaptive potential of the cosmopolitan D. aruanus is described by studying morphometric-geometrics of the body structure in relation to the stomach content and prey type from specimen along the cross-shelf of the central Red Sea and at a site outside the Red Sea, in Madagascar, and approach whether foraging strategies change depending on geographic location and environment, and if differences in diet are followed by phenotypic plasticity. Jointly, results suggest that biological responses and putative adaptive strategies are correlated with different biogeographic ranges and habitat preferences.
    • An Assessment of Subsurface Intake Systems: Planning and Impact on Feed Water Quality for SWRO Facilities

      Dehwah, Abdullah (2017-12)
      Subsurface intake systems are known to improve the feed water quality for SWRO plants. However, a little is known about the feasibility of implementation in coastal settings, the degree of water quality improvements provided by these systems, and the internal mechanisms of potential fouling compounds removal within subsurface intake systems. A new method was developed to assess the feasibility of using different subsurface intake systems in coastal areas and was applied to Red Sea coastline of Saudi Arabia. The methodology demonstrated that five specific coastal environments could support well intake systems use for small-capacity SWRO plants, whereas large-capacity SWRO facilities could use seabed gallery intake systems. It was also found that seabed intake system could run with no operational constraints based on the high evaporation rates and associated diurnal salinity changes along the coast line. Performance of well intake systems in several SWRO facilities along the Red Sea coast showed that the concentrations of organic compounds were reduced in the feed water, similar or better than traditional pretreatment methodologies. Nearly all algae, up to 99% of bacteria, between 84 and 100% of the biopolymer fraction of NOM, and a high percentage of TEP were removed during transport through the aquifer. These organics cause membrane biofouling and using well intakes showed a 50-75% lower need to clean the SWRO membranes compared to conventional open-ocean intakes. An assessment of the effectiveness of seabed gallery intake systems was conducted through a long-term bench-scale column experiment. The simulation of the active layer (upper 1 m) showed that it is highly effective at producing feed water quality improvements and acts totally different compared to slow sand filtration systems treating freshwater. No development of a “schmutzdecke” layer occurred and treatment was not limited to the top 10 cm, but throughout the full column thickness. Algae and bacteria were removed in a manner similar to slow sand filtration, but it took many months to produce consistent reductions in NOM fractions and TEP. The data suggested that a thicker active layer (2m) is needed to facilitate a more rapid reduction in the main potential fouling organics.
    • Auto-ignition Quality of high octane blended fuels in SI, HCCI and CI combustion modes

      Waqas, Muhammad (2018-11)
      Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency will be to improve the anti-knock quality of the fuels by blending high-octane fuel with a low-octane fuel. In this study, the non-linear blending effect by blending oxygenated/non-oxygenated fuels of high octane number with low octane fuels were studied in three different combustion modes: Spark ignition (SI), Homogeneous Charge Compression ignition (HCCI) and Compression Ignition (CI). For SI combustion, RON and MON was used for the fuel rating, for HCCI combustion, Lund Chevron HCCI fuel number and for rich combustion conditions, Derived Cetane Number (DCN) was used to understand the fuel auto-ignition behavior. A Cooperative Fuel Research (CFR) engine was used for SI and HCCI mode whereas Ignition Quality Tester (IQT) was used for CI mode. The non-linear blending behavior was described using the concept of blending octane number. Five octane additives including ethanol, methanol, 1-butanol, toluene and iso-octane were used in this study, of which ethanol and methanol gave the strongest octane enhancement effect whereas iso-octane resulted in the weakest octane enhancement. The base fuel composition and octane number also had an important role in the blending behavior of the fuels. The non-linear blending of fuels highlighted that some of the blended fuels behaved similarly in both SI and HCCI combustion mode, therefore the study was further extended to understand the pre-spark heat release or Low temperature heat release (LTHR) in both the combustion modes. Knock occurs in SI due to end-gas auto-ignition and for HCCI, the combustion is controlled by auto-igniting of the complete charge inside the cylinder. Therefore fundamentally the combustion process in the end gas region of SI and HCCI combustion modes is controlled by auto-ignition. In this respect, HCCI combustion was used as an alternative path to understand the end-gas auto-ignition in SI engine using the standard CFR engine. Pre-spark heat release or low temperature reactions were detected in both the combustion modes.