• Login
    Search 
    •   Home
    • Theses and Dissertations
    • Theses
    • Search
    •   Home
    • Theses and Dissertations
    • Theses
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorPerna, Gabriela (1)DepartmentBiological and Environmental Sciences and Engineering (BESE) Division (1)SubjectClimate Change (1)Coral Bleaching (1)Coral Reef (1)Heat Stress (1)
    Red Sea (1)
    View MoreThesis/Dissertation AdvisorVoolstra, Christian R. (1)Thesis/Dissertation ProgramMarine Science (1)TypeThesis (1)Year (Issue Date)
    2019 (1)
    Item AvailabilityEmbargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Standardized short-term bleaching assays resolve differences in coral thermotolerance across microhabitat reef sites

    Perna, Gabriela (2019-04) [Thesis]
    Advisor: Voolstra, Christian R.
    Committee members: Aranda, Manuel; Tester, Mark A.
    Coral bleaching is now the main driver of reef degradation. The common notion is that most corals bleach and suffer mortality at just 1-2°C above their mean summer maximum temperatures, but some species and genotypes resist or recover better than others. Here we conducted a series of 18-hour short-term heat stress assays side-by-side with a long-term heat stress experiment to assess the ability of both approaches to resolve putative differences in coral thermotolerance and provide a measure of in situ reef temperature thresholds. Using a suite of measures (photosynthetic performance, coral whitening, chlorophyll a, host protein, algal symbiont counts, and algal type association), we assessed bleaching sensitivity/resilience of Stylophora pistillata colonies from the exposed and protected sides of a near-shore coral reef in the central Red Sea. As suggested by the differential mortality during a previous bleaching event, coral colonies from the protected site exhibited less impacted physiological performance in comparison to their exposed site counterparts, and these differences were resolved using both experimental setups. Notably, the long-term experiment provided better resolution with regard to the different measures collected, but at the price of portability, cost, and duration of the experiment. Variability in resilience to ocean warming is critical to reef persistence, yet we lack standardized diagnostics to rapidly assess bleaching severity or resilience across different corals and locations. Using a newly developed portable experimental system termed CBASS (the Coral Bleaching Automated Stress System), we demonstrate that mobile, short-term heat stress assays can resolve fine-scale differences in coral thermotolerance across reef sites. Based on our results, photosynthetic efficiency measured by non-invasive PAM fluorometry provides a rapid and representative proxy of coral resilience. Our system holds the potential to be employed for large-scale determination of in situ bleaching temperature thresholds across reef sites and species. Such data can then be used to identify resistant genotypes (and reefs) for downstream experimental examination and to complement existing remote-sensing approaches.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.