• Entropy Stability of Finite Difference Schemes for the Compressible Navier-Stokes Equations

      AlSayyari, Mohammed (2018-07)
      In this thesis, we study the entropy stability of the compressible Navier-Stokes model along with a modification of the model. We use the discretization of the inviscid terms with the Ismail-Roe entropy conservative flux. Then, we study entropy stability of the augmentation of viscous, heat and mass diffusion finite difference approximations to the entropy conservative flux. Additionally, we look at different choices of the diffusion coefficient that arise from combining the viscous, heat and mass diffusion terms. Lastly, we present numerical results of the discretizations comparing the effects of the viscous terms on the oscillations near the shock and show that they preserve entropy stability.
    • Indoor Localization Using Three dimensional Multi-PDs Receiver Based on RSS

      Liu, Yinghao (2018-07)
      In modern life, there are many applications where positioning plays an important role. People have developed the global positioning system (GPS) to locate world wide position with error in decameter scales, which brings people much convenience. However, the accuracy of GPS is too low for indoor localization. The signals will drop down due to the signal attenuation caused by construction materials. With the well-developed GPS being indispensable for outdoor activities, many researchers have been also devoted to seeking an indoor positioning system to realize indoor localization with acceptable error. Indoor localization can be very useful in different situations, like locating, tracking, navigation and identification. For example, in the mall, locating the exact goods for customers can provide much convenience and benefits. Locating and tracking in the airport can greatly help passengers save their time and energy in reaching the destination. In another general scenario of identification, the population of observed targets is usually larger than just one. Hence, only with small error, indoor localization system (ILS) can be able to identify the targets despite the neighbors. Due to the emerging and urging demands of increasing the accuracy of indoor localization, we propose a novel design of three dimensional (3-D). optical receiver for visible light communication (VLC) indoor positioning system. First, we model the optical wireless channel. Then we utilize modified triangulation method to obtain more robust receiver position by using at least two light-emitting diodes (LEDs) and one receiver consisting of nine photodetectors (PDs). Finally, the improved algorithm is implemented and the results are shown under our three dimensional multiple photodetectors (multi-PDs) structure receiver. In the simulation, we take the parameters of Lambertian radiation pattern, LEDs and PDs as those shown in [1] . To be noticed, our design of multi-PDs receiver is fully expanded into three dimensions compared with the pyramid receiver (PR), which allows indoor positioning with our receiver structure to be more robust to the higher or corner positions. The details will be explained in the following sections. Based on Multiple-Photodiodebased Indoor Positioning algorithm [1], the indoor positioning algorithm is improved by redefining the optimization problem of obtaining the direction from receiver to LED and using weighted triangulation method to locate receiver position. We admit the solution under the redefined problem is not optimal to the actual problem. Yet, our given solution is better to that in [1] due to the existence of noise, which is reasonable and has been verified.
    • Experimental Investigation on The Influence of Liquid Fuels Composition on The Operational Characteristics of The Liquid Fueled Resonant Pulse Combustor

      Qatomah, Mohammad (2018-07)
      In this study, the response of a liquid-fueled resonant pulse combustor to changes in liquid fuel composition was investigated. Experiments were performed with gasoline- ethanol, gasoline-diesel, and gasoline-heptane mixtures selected to produce meaningful variations in the ignition delay time. A review of ignition quality tester (IQT) data provided an expected increase in the overall delay for gasoline-ethanol mixtures with increasing ethanol concentrations, and a decrease for gasoline-diesel mixtures with increasing diesel concentrations in the mixture. By taking the phase of the ion signal as an indicator of heat release timing, the experimental results showed an agreement of gasoline-ethanol cases with the IQT data with a near linear increase with increasing ethanol concentrations. However, for gasoline-diesel, there exit no linear relation with the IQT data. For the case of gasoline-heptane mixtures, the results showed a linear decrease in delay with increasing heptane concentrations. Furthermore, it was shown that small changes in the physical properties of the fuel can significantly in sequence the cold-start operation of the combustor and alter the coupling between the unsteady heat release and resonant acoustic pressure wave during resonant operation. Dynamic combustion chamber pressure, stagnation temperature and pressure are recorded after a fixed warm-up time to characterize the performance and operation of the device. Results are interpreted in the context of fuel sensitivity and performance optimization of a resonant pulse combustor for pressure gain turbine applications.
    • Fabrication and Characterization of Geometrically Confined Fe3Sn2 Skyrmion-based Devices

      GONG, CHEN (2018-06-27)
      Skyrmion is a topologically protected nanometer-sized spin configuration, which makes it a promising candidate for future memory devices. All skyrmion applications are based on the formation and manipulation of spin textures in nanostructured elements. Therefore, fabrication of geometrically confined skyrmion-based nanodevices is an essential step in the investigation of skyrmion properties. In this study, my research mainly focuses on the fabrication of high-quality Fe3Sn2 nanostripes with different geometric parameters for Lorentz transmission electron microscopy (LTEM) by a focused ion beam (FIB) system. The observation of the skyrmions using LTEM was mainly performed by Dr. Qiang Zhang, although I have deeply involved the discussion on new samples to be fabricated based on the results obtained from LTEM and also performed some LTEM experiments. To investigate the formation process and thermal stability of skyrmions in a geometrically confined environment, I have fabricated more than fifty high-quality nanostripes with a width of 265-4,000 nm. Studying with LTEM, a distinct evolutionary path of stripe-skyrmion transformation is observed after gradually increasing the magnetic field (out-of-plane direction) and the critical magnetic field of skyrmion is found to decrease with an increasing strength of confinements. Moreover, a series of racetrack devices with controlled thicknesses (125-404 nm) is fabricated to study the effect of thickness in skyrmion formation. Overall, in order to obtain less damaged, flat skyrmion-based devices by FIB system, experimental parameters are optimized and fabrication skills are improved. This method develops the possible application of centrosymmetric frustrated magnet Fe3Sn2 in skyrmion-based racetrack devices.
    • Optimization and Efficiency of DNA Extraction from Drinking Water Samples

      Felemban, Mashael (2018-05)
      Water quality evaluation is a global concern due to its effect on public health. Different procedures can be implemented to evaluate specific standards of water quality. DNA extraction to characterize the microbial community in the water distribution systems is important. To optimize the DNA extraction process the effect of residual chlorine and water composition was tested. The results exposed the limited effect of the samples dechlorination. Total cell number effect can be varied according to water quality. Also, the study indicated the possible inhibitory effect of the rust on the DNA extraction from drinking water samples.
    • Monitoring the effects of offshore aquaculture on water quality in the Red Sea

      Dunne, Aislinn (2018-06)
      The Saudi Arabian government has announced an economic development plan (Vision 2030) to invest in a range of industries across the Kingdom, one of which is the development of aquaculture. In the face of a likely increase in Red Sea fish farming, we investigated the impacts of offshore fish farms on the coastal water quality of the Red Sea by a) measuring the environmental impacts of an operational Red Sea fish farm, and b) testing whether an existing aquaculture modeling software can be used as a meaningful planning tool in the development of Red Sea aquaculture. Water quality parameters such as dissolved oxygen, nutrients, particulate matter, chlorophyll, ammonium, and bacterial abundance were measured seasonally over the course of a year around an offshore fish farm along the south-central coast of Saudi Arabia to determine the impacts of fish farm effluent on the surrounding waters. Bacteria, phosphate, inorganic nitrogen, and suspended particulate matter showed patterns of enrichment close to the fish farm. Additionally, dissolved oxygen has slightly lower concentrations close to and down current from the fish farms. Benthic sediments from a nearby coral reef were also assessed for organic enrichment, but concentrations of total organic carbon and total nitrogen were not significantly different from those at an offshore reef. The data from these sampling efforts were then used as input parameters for an aquaculture modeling software (AquaModel.net), however many of the input parameters required to run the model were unavailable and meaningful conclusions could not be drawn from the results. Through field studies and modeling, we assessed the current impact of a Red Sea fish farm on water quality with the goal of predicting the potential impacts of future offshore aquaculture development in Saudi Arabia.
    • Efficiency-limiting processes in OPV bulk heterojunctions of GeNIDTBT and IDT-based acceptors

      Al-Saggaf, Sarah M. (2018-05-16)
      The successful realization of highly efficient bulk heterojunction OPV devices requires the development of organic donor and acceptor materials with tailored properties. Recently, non-fullerene acceptors (NFAs) have emerged as an alternative to the ubiquitously used fullerene derivatives. NFAs showed a rapid increase in efficiencies, now exceeding a PCE of 13%. In my thesis research, I used two small molecule IDT-based acceptors, namely O-IDTBR and O-IDTBCN, in combination with a wide bandgap donor polymer, GeNIDT-BT, as active material in BHJ solar cells and investigated their photophysical characteristics. The polymer combined with O-IDTBR as acceptor achieved a power conversion efficiency of only 2%, which is significantly lower than that obtained for the system of GeNIDT-BT: O-IDTBCN (5.3%). Using nano- to microsecond transient absorption spectroscopy, I investigated both systems and demonstrated that GeNIDT-BT:O-IDTBR exhibits more geminate recombination of interfacial charge-transfer states, leading to lower short circuit currents. Using time-delayed collection field experiments, I studied the field dependence of charge generation and its impact on the device fill factor. Overall, my results provide a qualitative understanding of the efficiency-limiting processes in both systems and their impact on device performance.
    • Genetic Characterization of the Gut Microbiome of Hajj Pilgrims

      Beaudoin, Christopher (2018-05)
      Hajj, the annual Islamic pilgrimage to Makkah, Saudi Arabia, is a unique mass gathering event that brings more than 2 million individuals from around the world. Several public health considerations, such as the spread of infectious diseases, must be taken into account with this large temporary influx of people. Gastrointestinal diseases, such as diarrhea, are common at Hajj, yet little is known about the etiology. The human gut microbiome, collection of organisms residing within the intestinal tract, has been under intense study recently, since next generation DNA sequencing technologies allow for extensive surveying of genetic material found in complex biological samples, such as those containing many different organisms. Thus, using 16S rRNA and metagenomic shotgun sequencing, we have characterized the gut microbiome of over 612 pilgrims with and without diarrhea. Several metadata factors, such as hospitalization and different comorbidities, were found to have significant effects on the overall gut microbiome composition. Metagenomic shotgun sequencing efforts revealed the presence of antimicrobial resistance genes originating from disparate regions from around the world. This study provides a snapshot of information concerning the health status of the gut microbiome of Hajj pilgrims and provides more context to the investigation of how to best prepare for mass gathering events.
    • A Game-theoretical Approach for Distributed Cooperative Control of Autonomous Underwater Vehicles

      Lu, Yimeng (2018-05)
      This thesis explores a game-theoretical approach for underwater environmental monitoring applications. We first apply game-theoretical algorithm to multi-agent resource coverage problem in drifting environments. Furthermore, existing utility design and learning process of the algorithm are modified to fit specific constraints of underwater exploration/monitoring tasks. The revised approach can take the real scenario of underwater monitoring applications such as the effect of sea current, previous knowledge of the resource and occasional communications between agents into account, and adapt to them to reach better performance. As the motivation of this thesis is from real applications, in this work we emphasize highly on implementation phase. A ROS-Gazebo simulation environment was created for preparation of actual tests. The algorithms are implemented in simulating both the dynamics of vehicles and the environment. After that, a multi-agent underwater autonomous robotic system was developed for hardware test in real settings with local controllers to make their own decisions. These systems are used for testing above mentioned algorithms and future development of other underwater projects. After that, other works related to robotics during this thesis will be briefly mentioned, including contributions in MBZIRC robotics competition and distributed control of UAVs in an adversarial environment.
    • A Study of Recurrent and Convolutional Neural Networks in the Native Language Identification Task

      Werfelmann, Robert (2018-05-24)
      Native Language Identification (NLI) is the task of predicting the native language of an author from their text written in a second language. The idea is to find writing habits that transfer from an author’s native language to their second language. Many approaches to this task have been studied, from simple word frequency analysis, to analyzing grammatical and spelling mistakes to find patterns and traits that are common between different authors of the same native language. This can be a very complex task, depending on the native language and the proficiency of the author’s second language. The most common approach that has seen very good results is based on the usage of n-gram features of words and characters. In this thesis, we attempt to extract lexical, grammatical, and semantic features from the sentences of non-native English essays using neural networks. The training and testing data was obtained from a large corpus of publicly available essays written by authors of several countries around the world. The neural network models consisted of Long Short-Term Memory and Convolutional networks using the sentences of each document as the input. Additional statistical features were generated from the text to complement the predictions of the neural networks, which were then used as feature inputs to a Support Vector Machine, making the final prediction. Results show that Long Short-Term Memory neural network can improve performance over a naive bag of words approach, but with a much smaller feature set. With more fine-tuning of neural network hyperparameters, these results will likely improve significantly.
    • Seismic Imaging and Velocity Analysis Using a Pseudo Inverse to the Extended Born Approximation

      Alali, Abdullah A. (2018-05)
      Prestack depth migration requires an accurate kinematic velocity model to image the subsurface correctly. Wave equation migration velocity analysis techniques aim to update the background velocity model by minimizing image residuals to achieve the correct model. The most commonly used technique is differential semblance optimization (DSO), which depends on applying an image extension and penalizing the energy in the non-physical extension. However, studies show that the conventional DSO gradient is contaminated with artifact noise and unwanted oscillations which might lead to local minima. To deal with this issue and improve the stability of DSO, recent studies proposed to use an inversion formula rather than migration to obtain the image. Migration is defined as the adjoint of Born modeling. Since the inversion is complicated and expensive, a pseudo inverse is used instead. A pseudo inverse formula has been developed recently for the horizontal space shift extended Born. This formula preserves the true amplitude and reduces the artifact noise even when an incorrect velocity is used. Although the theory for such an inverse is well developed, it has only been derived and tested on laterally homogeneous models. This is because the formula contains a derivative of the image with respect to a vertical extension evaluated at zero offset. Implementing the vertical extension is computationally expensive, which means this derivative needs to be computed without applying the additional extension. For laterally invariant models, the inverse is simplified and this derivative is eliminated. I implement the full asymptotic inverse to the extended Born to account for laterally heterogeneity. I compute the derivative of the image with respect to a vertical extension without performing any additional shift. This is accomplished by applying the derivative to the imaging condition and utilizing the chain rule. The fact that this derivative is evaluated at zero offset vertical extension, makes it possible to compute the derivative without applying the extension. I also verify the newly proposed inversion formula on a laterally variant velocity model. In addition, I test the effect of the computed derivative and compare its contribution with the full formula. This additional term has overall limited influence on conventional images. Its largest impact is on vertical reflectors such as salt flanks, granted the velocity is varying laterally in the background as often is in this case. Otherwise, for most applications, we can obtain good quality extended images without this additional term.
    • Unveiling the role of PAK2 in CD44 mediated inhibition of proliferation, differentiation and apoptosis in AML cells

      Aldehaiman, Mansour M. (2018-04)
      Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accumulation of immature nonfunctional highly proliferative hematopoietic cells in the blood, due to a blockage in myeloid differentiation at various stages. Since the success of the differentiation agent, All-trans retinoic acid (ATRA), in the treatment of acute promyelocytic leukemia (APL), much effort has gone into trying to find agents that are able to differentiate AML cells and specifically the leukemic stem cell (LSC). CD44 is a cell surface receptor that is over-expressed on AML cells. When bound to anti-CD44 monoclonal antibodies (mAbs), this differentiation block is relieved in AML cells and their proliferation is reduced. The molecular mechanisms that AML cells undergo to achieve this reversal of their apparent phenotype is not fully understood. To this end, we designed a study using quantitative phosphoproteomics approaches aimed at identifying differences in phosphorylation found on proteins involved in signaling pathways post-treatment with CD44-mAbs. The Rho family of GTPases emerged as one of the most transformed pathways following the treatment with CD44-mAbs. The P21 activated kinase 2(PAK2), a target of the Rho family of GTPases, was found to be differentially phosphorylated in AML cells post-treatment with CD44-mAbs. This protein has been found to possess a role similar to that of a switch that determines whether the cell survives or undergoes apoptosis. Beyond confirming these results by various biochemical approaches, our study aimed to determine the effect of knock down of PAK2 on AML cell proliferation and differentiation. In addition, over-expression of PAK2 mutants using plasmid cloning was also explored to fully understand how levels of PAK2 as well as the alteration of specific phospohorylation sites could alter AML cell responses to CD44-mAbs. Results from this study will be important in determining whether PAK2 could be used as a potential therapeutic target for AML once its levels are altered.
    • Neural Inductive Matrix Completion for Predicting Disease-Gene Associations

      Hou, Siqing (2018-05-21)
      In silico prioritization of undiscovered associations can help find causal genes of newly discovered diseases. Some existing methods are based on known associations, and side information of diseases and genes. We exploit the possibility of using a neural network model, Neural inductive matrix completion (NIMC), in disease-gene prediction. Comparing to the state-of-the-art inductive matrix completion method, using neural networks allows us to learn latent features from non-linear functions of input features. Previous methods use disease features only from mining text. Comparing to text mining, disease ontology is a more informative way of discovering correlation of dis- eases, from which we can calculate the similarities between diseases and help increase the performance of predicting disease-gene associations. We compare the proposed method with other state-of-the-art methods for pre- dicting associated genes for diseases from the Online Mendelian Inheritance in Man (OMIM) database. Results show that both new features and the proposed NIMC model can improve the chance of recovering an unknown associated gene in the top 100 predicted genes. Best results are obtained by using both the new features and the new model. Results also show the proposed method does better in predicting associated genes for newly discovered diseases.
    • Exploring Trianglamine Derivatives and Trianglamine Coordination Complexes as Porous Organic Materials

      Eziashi, Magdalene (2018-05)
      Trianglamines are triangular chiral macrocycles that were first synthesized by Gawronski’s group in Poland in the year 2000.1 Despite their unique properties; triangular pore shape, chirality, symmetric structure and tunable pore size, they are still a poorly researched class of macrocycles today. Trianglamines have yet a role to play as porous organic molecules for separation processes, as macrocyclic precursors to build increasingly complex supramolecular assemblies and as building blocks for caged porous organic structures. The aim of the Thesis work is to explore trianglamine, its derivatives, and assemblies as viable porous organic molecules for potential gas capture and separation.
    • Large-scale Comparative Study of Hi-C-based Chromatin 3D Structure Modeling Methods

      Wang, Cheng (2018-05-17)
      Chromatin is a complex polymer molecule in eukaryotic cells, primarily consisting of DNA and histones. Many works have shown that the 3D folding of chromatin structure plays an important role in DNA expression. The recently proposed Chro- mosome Conformation Capture technologies, especially the Hi-C assays, provide us an opportunity to study how the 3D structures of the chromatin are organized. Based on the data from Hi-C experiments, many chromatin 3D structure modeling methods have been proposed. However, there is limited ground truth to validate these methods and no robust chromatin structure alignment algorithms to evaluate the performance of these methods. In our work, we first made a thorough literature review of 25 publicly available population Hi-C-based chromatin 3D structure modeling methods. Furthermore, to evaluate and to compare the performance of these methods, we proposed a novel data simulation method, which combined the population Hi-C data and single-cell Hi-C data without ad hoc parameters. Also, we designed a global and a local alignment algorithms to measure the similarity between the templates and the chromatin struc- tures predicted by different modeling methods. Finally, the results from large-scale comparative tests indicated that our alignment algorithms significantly outperform the algorithms in literature.
    • Nanoscopical dissection of ancestral nucleoli in Archaea: a case of study in Evolutionary Cell Biology

      Islas Morales, Parsifal (2018-04)
      Is the nucleolus a sine qua non condition of eukaryotes? The present project starts from this central question to contribute to our knowledge about the origin and the evolution of the cells. The nucleolus is a cryptic organelle that plays a central role in cell function. It is responsible for the orchestration of ribosomal RNA expression, maturation and modification in the regulatory context of cellular homeostasis. Ribosomal expression is undoubtedly the greatest transcriptional and regulatory activity of any cell. The nucleolus is not just a conventional organelle –membrane-limited-, but a magnificent transcriptional puff: a dichotomy between structure and process, form and function. What is the minimum nucleolus? Evolution should bring some light into these questions. Evolutionary cell biology (ECB) has raised increasing attention in the last decades. Is this a new discipline and an historical opportunity to combine functional and evolutionary biology towards the insight that cell evolution underlies organismic complexity? In the post-genomic era, we have developed the potential of combining high throughput acquisition of data with functional in situ and in sillico approaches: integration understood as omics approaches. Can this provide a real consilience between evolutionary and functional approaches? The reduced number of model organisms and cultivation techniques still excludes the majority of the extant diversity of cells from the scope of experimental inquiry. Furthermore, at the conceptual level, the simplification of evolutionary processes in biosciences still limits the conformation of a successful disciplinary link between functional and evolutionary biology. This limits the formulation of questions and experiments that properly address the mechanistic nature of cellular events that underlie microbial and organismic diversity and evolution. Here we provide a critical and comparative review to the historical background of ECB. This project takes the lessons learned from ECB and attempts to find a homologue structure of the eukaryotic nucleolus within the Archaea. We found nanometric structures in S. solfactarius that either are positive to specific nucleolar techniques such as Nucleolar organizer regions NOR silver staining. These is structures are novel and its significance should be revised on the evolutionary cell biology perspective.
    • Collision Analysis at 60-GHz mmWave Mesh Networks: The Case With Blockage and Shadowing

      Lyu, Kangjia (2018-05)
      This thesis can be viewed as two parts. The first part focuses on performance analysis of millimeter wave (mmWave) communications. We investigate how the interference behaves in the outdoor mesh network operating at 60-GHz when block age and shadowing are present using the probability of collision as a metric, under both the protocol model and the physical model. In contrast with results reported in mmWave mesh networks at 60-GHz that advocates that interference has only a marginal effect, our results show that for a short-range link of 100 m, the collision probability gets considerably larger (beyond 0.1) at the signal-to-interference-plus-noise ratio (SINR) of interest (for example, the reference value is chosen as 15 dB for uncoded quadrature phase shift keying (QPSK)). Compensation or compromise should be made in order to maintain a low probability of collision, either by reducing transmitter node density which is to the detriment of the network connectivity, or by switching to a compact linear antenna array with more at-top elements, which places more stringent requirements in device integration techniques. The second part of this thesis focuses on finding the optimal unmanned aerial vehicle (UAV) deployment in the sense that it can maximize over specific network connectivity. We have introduced a connectivity measure based on the commonly used network connectivity metric, which is refered to as global soft connectivity. This measure can be easily extended to account for different propagation models, such as Rayleigh fading and Nakagami fading. It can also be modified to incorporate the link state probability and beam alignment errors in highly directional networks. As can be shown, under the line-of-sight (LOS) and Rayleigh fading assumptions, the optimization regarding the global soft connectivity can be expressed as a weighted sum of the square of link distances between the nodes within the network, namely the ground-to-ground links, the UAV-to-UAV links and the ground-to-UAV links. This can be shown to be a quadratically constrained quadratic program (QCQP) problem with non-convex constraints. We have also extended our global connectivity to other types of connectivity criteria: network k-section connectivity and k-connectivity. In all the three cases, we have proposed a heuristic and straightforward way of finding the suboptimal UAV locations. The simulation results have shown that all these methods can improve our network connectivity considerably, which can achieve a gain of up to 30% for a five UAV scenario.
    • System on Package (SoP) Millimeter Wave Filters for 5G Applications

      Showail, Jameel (2018-05)
      Bandpass filters are an essential component of wireless communication systems that only transmits frequencies corresponding to the communication band and rejects all other frequencies. As the deployment of 5G draws nearer, first deployments are expected in 2020 [1], the need for viable filters at the new frequency bands becomes more imminent. Size and performance are two critical considerations for a filter that will be used in emerging mobile communication applications. The high frequency of 5G communication, 28 GHz as opposed to sub 6 GHz for nearly all previous communication protocols, means that previously utilized lumped component based solutions cannot be implemented since they are ill-suited for mm-wave applications. The focus of this work is the miniaturization of a high-performance filter. The Substrate Integrated Waveguide (SIW) is a high performance and promising structure and Low Temperature Co-Fired Ceramic (LTCC) is a high-performance material that both can operate at higher frequencies than the technologies used for previous telecommunication generations. To miniaturize the structure, a compact folded four-cavity SIW filter is designed, implemented and tested. The feeding structure is integrated into the filter to exploit the System on Package (SoP) attributes of LTCC and further reduce the total area of the filter individually and holistically when looking at the final integrated system. Two unique three dimensional (3D) integrated SoP LTCC two-stage SIW single cavity filters and one unique four-cavity filter all with embedded planar resonators are designed, fabricated and tested. The embedded resonators create a two-stage effect in a single cavity filter. The better single cavity design provides a 15% fractional bandwidth at a center frequency of 28.12 GHz, and with an insertion loss of -0.53 dB. The fabricated four-cavity filter has a 3-dB bandwidth of .98GHz centered at 27.465 GHz, and with an insertion loss of -2.66 dB. The designs presented highlight some of the previously leveraged advantages of SoP designs while also including additions of embedded planar resonators to feed the SIW cavity. The integration of both elements realizes a compact and high-performance filter that is well suited for future mm-wave applications including 5G.
    • The regeneration of a liquid desiccant using direct contact membrane distillation to unlock the potential of coastal desert agriculture

      Cribbs, Kimberly (2018-04)
      In Gulf Cooperation Council (GCC) countries, a lack of freshwater, poor soil quality, and ambient temperatures unsuitable for cultivation for parts of the year hinders domestic agriculture. The result is a reliance on a fluctuating supply of imported fresh produce which may have high costs and compromised quality. There are agricultural technologies available such as hydroponics and controlled environment agriculture (CEA) that can allow GCC countries to overcome poor soil quality and ambient temperatures unsuitable for cultivation, respectively. Evaporative cooling is the most common form of cooling for CEA and requires a significant amount of water. In water-scarce regions, it is desirable for sea or brackish water to be used for evaporative cooling. Unfortunately, in many coastal desert regions, evaporative cooling does not provide enough cooling due to the high wet-bulb temperature of the ambient air during hot and humid months of the year. A liquid desiccant dehumidification system has been proven to lower the wet-bulb temperature of ambient air in the coastal city of Jeddah, Saudi Arabia to a level that allows for evaporative cooling to meet the needs of heat-sensitive crops. Much of the past research on the regeneration of the liquid desiccant solution has been on configurations that release water vapor back to the atmosphere. Studies have shown that the amount of water captured by the liquid desiccant when used to dehumidify a greenhouse can supply a significant amount of the water needed for irrigation. This thesis studied the regeneration of a magnesium chloride (MgCl2) liquid desiccant solution from approximately 20 to 31wt% by direct contact membrane distillation and explored the possibility of using the recovered water for irrigation. Two microporous hydrophobic PTFE membranes were experimentally tested and modeled when the bulk feed and coolant temperature difference was between 10 and 60°C. In eight experiments, the salt rejection was higher than 99.97% and produced permeate suitable for irrigation with a concentration of MgCl2 less than 94 ppm.
    • Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

      Grajales Gonzalez, Edwing Javier (2018-05)
      The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with their favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular and H-assisted tautomerism of propen-2-ol to acetone, which are included in butanol combustion kinetic models, are assigned rate parameters based on the analogous unimolecular tautomerism vinyl alcohol ↔ acetaldehyde and H addition to the double bound of iso-butene, respectively. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the unimolecular and H-assisted tautomerism, i-C3H5OH⟺CH3COCH3 and i-C3H5OH+Ḣ⟺CH3COCH3+Ḣ, was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) and CCSD(T)/aug-cc-pVTZ//M062X/cc-pVTZ ab initio calculations, respectively. For H-assisted tautomerism, the reaction takes place in two consecutive steps: i-C3H5OH+Ḣ⟺CH3ĊOHCH3 and CH3ĊOHCH3⟺CH3COCH3+Ḣ. Multistructural torsional anharmonicity and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both isomerizations. Results for unimolecular tautomerism differ from vinyl alcohol ↔ acetaldehyde analogue reactions, which shows lower rate constant values. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed unimolecular rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption. In the combustion and pyrolysis batch reactor simulations, using all the rate constants computed in this work, H-assisted reactions are limited because H radicals become abundant once the propen-2-ol has been consumed by other reactions, such as the non-catalyzed tautomerism i-C3H5OH⟺CH3COCH3, which becomes one of the main source of acetone. The intermediate radical (CH3ĊOHCH3) is formed exclusively from tert-butanol, with its concentration in 2-butanol oxidation being smaller because the secondary alcohol is unable to produce the radical directly. In all cases, the intermediate is converted effectively to acetone.