An integrated energy-efficient capacitive sensor digital interface circuit
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Physical Science and Engineering (PSE) Division
Sensors Lab
Date
2014-05-23Online Publication Date
2014-05-23Print Publication Date
2014-09Permanent link to this record
http://hdl.handle.net/10754/322003
Metadata
Show full item recordAbstract
In this paper, we propose an energy-efficient 13-bit capacitive sensor interface circuit. The proposed design fully relies on successive approximation algorithm, which eliminates the need for oversampling and digital decimation filtering, and thus low-power consumption is achieved. The proposed architecture employs a charge amplifier stage to acheive parasitic insensitive operation and fine absolute resolution. Moreover, the output code is not affected by offset voltages or charge injection. The successive approximation algorithm is implemented in the capacitance-domain using a coarse-fine programmable capacitor array, which allows digitizing wide capacitance range in compact area. Analysis for the maximum achievable resolution due to mismatch is provided. The proposed design is insensitive to any reference voltage or current which translates to low temperature sensitivity. The operation of a prototype fabricated in a standard CMOS technology is experimentally verified using both on-chip and off-chip capacitive sensors. Compared to similar prior work, the fabricated prototype achieves and excellent energy efficiency of 34 pJ/step.Citation
Omran H, Arsalan M, Salama KN (2014) An integrated energy-efficient capacitive sensor digital interface circuit. Sensors and Actuators A: Physical 216: 43-51. doi:10.1016/j.sna.2014.04.035.Publisher
Elsevier BVAdditional Links
http://linkinghub.elsevier.com/retrieve/pii/S0924424714002180ae974a485f413a2113503eed53cd6c53
10.1016/j.sna.2014.04.035