• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hui Wang - Thesis - Final Draft.pdf
    Size:
    4.470Mb
    Format:
    PDF
    Download
    Type
    Thesis
    Authors
    Wang, Hui
    Advisors
    Alkhalifah, Tariq Ali cc
    Committee members
    Mahmoud, Sherif
    Wu, Ying cc
    Program
    Earth Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2014-05
    Embargo End Date
    2015-05-31
    Permanent link to this record
    http://hdl.handle.net/10754/317234
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2015-05-31.
    Abstract
    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth's subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my approaches.
    Citation
    Wang, H. (2014). Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy. KAUST Research Repository. https://doi.org/10.25781/KAUST-4O1ET
    DOI
    10.25781/KAUST-4O1ET
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-4O1ET
    Scopus Count
    Collections
    MS Theses; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.