Protocol for classical molecular dynamics simulations of nano-junctions in solution
Name:
Protocol for classical molecular dynamics simulations of nano-junctions in solution.pdf
Size:
2.001Mb
Format:
PDF
Type
ArticleKAUST Department
Computational Physics and Materials Science (CPMS)Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2012-10-19Online Publication Date
2012-10-19Print Publication Date
2012-10-15Permanent link to this record
http://hdl.handle.net/10754/315806
Metadata
Show full item recordAbstract
Modeling of nanoscale electronic devices in water requires the evaluation of the transport properties averaged over the possible configurations of the solvent. They can be obtained from classical molecular dynamics for water confined in the device. A series of classical molecular dynamics simulations is performed to establish a methodology for estimating the average number of water molecules N confined between two static and semi-infinite goldelectrodes. Variations in key parameters of the simulations, as well as simulations with non-static infinite goldsurfaces of constant area and with anisotropically fluctuating cell dimensions lead to less than 1% discrepancies in the calculated N. Our approach is then applied to a carbon nanotube placed between the goldelectrodes. The atomic density profile along the axis separating the slabs shows the typical pattern of confined liquids, irrespective of the presence of the nanotube, while parallel to the slabs the nanotube perturbs the obtained profile.Citation
Gkionis K, Rungger I, Sanvito S, Schwingenschlögl U (2012) Protocol for classical molecular dynamics simulations of nano-junctions in solution. Journal of Applied Physics 112: 083714. doi:10.1063/1.4759291.Publisher
AIP PublishingJournal
Journal of Applied Physicsae974a485f413a2113503eed53cd6c53
10.1063/1.4759291