• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Electronic transport through EuO spin-filter tunnel junctions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Electronic transport through EuO spin-filter tunnel junctions.pdf
    Size:
    2.472Mb
    Format:
    PDF
    Download
    Type
    Article
    Authors
    Jutong, Nuttachai
    Eckern, Ulrich
    Rungger, Ivan
    Sanvito, Stefano
    Schuster, Cosima
    Schwingenschlögl, Udo cc
    KAUST Department
    Computational Physics and Materials Science (CPMS)
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2012-11-12
    Preprint Posting Date
    2012-07-09
    Permanent link to this record
    http://hdl.handle.net/10754/315788
    
    Metadata
    Show full item record
    Abstract
    Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.
    Citation
    Jutong N, Rungger I, Schuster C, Eckern U, Sanvito S, et al. (2012) Electronic transport through EuO spin-filter tunnel junctions. Phys Rev B 86. doi:10.1103/PhysRevB.86.205310.
    Publisher
    American Physical Society (APS)
    Journal
    Physical Review B
    DOI
    10.1103/PhysRevB.86.205310
    arXiv
    1207.2061
    Additional Links
    http://link.aps.org/doi/10.1103/PhysRevB.86.205310
    http://arxiv.org/abs/1207.2061
    ae974a485f413a2113503eed53cd6c53
    10.1103/PhysRevB.86.205310
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; Computational Physics and Materials Science (CPMS)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.