Quantum magnetotransport properties of topological insulators under strain
Name:
Quantum magnetotransport properties of topological insulators under strain.pdf
Size:
237.7Kb
Format:
PDF
Type
ArticleKAUST Department
Computational Physics and Materials Science (CPMS)Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2012-08-15Permanent link to this record
http://hdl.handle.net/10754/315787
Metadata
Show full item recordAbstract
We present a detailed theoretical investigation of the quantum magnetotransport properties of topological insulators under strain. We consider an external magnetic field perpendicular to the surface of the topological insulator in the presence of strain induced by the substrate. The strain effects mix the lower and upper surface states of neighboring Landau levels into two unequally spaced energy branches. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for the beating of Shubnikov–de Haas oscillations is found from the temperature and magnetic field dependence of the collisional and Hall conductivities. In the regime of a strong magnetic field, the beating pattern is replaced by a splitting of the magnetoresistance peaks due to finite strain energy. These results are in excellent agreement with recent HgTe transport experiments.Citation
Tahir M, Schwingenschlögl U (2012) Quantum magnetotransport properties of topological insulators under strain. Phys Rev B 86. doi:10.1103/PhysRevB.86.075310.Publisher
American Physical Society (APS)Journal
Physical Review BarXiv
1603.03584Additional Links
http://link.aps.org/doi/10.1103/PhysRevB.86.075310ae974a485f413a2113503eed53cd6c53
10.1103/PhysRevB.86.075310