Show simple item record

dc.contributor.authorCheng, Yingchun
dc.contributor.authorHan, Yu
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorWang, H. T.
dc.contributor.authorZhang, Xixiang
dc.contributor.authorZhu, Yihan
dc.contributor.authorZhu, Zhiyong
dc.date.accessioned2014-04-13T14:03:36Z
dc.date.available2014-04-13T14:03:36Z
dc.date.issued2012-02-17
dc.identifier.citationCheng YC, Wang HT, Zhu ZY, Zhu YH, Han Y, et al. (2012) Strain-activated edge reconstruction of graphene nanoribbons. Phys Rev B 85. doi:10.1103/PhysRevB.85.073406.
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.doi10.1103/PhysRevB.85.073406
dc.identifier.urihttp://hdl.handle.net/10754/315773
dc.description.abstractThe edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.
dc.language.isoen
dc.publisherAmerican Physical Society (APS)
dc.relation.urlhttp://link.aps.org/doi/10.1103/PhysRevB.85.073406
dc.rightsArchived with thanks to Physical Review B
dc.titleStrain-activated edge reconstruction of graphene nanoribbons
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentChemical Science Program
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentNanostructured Functional Materials (NFM) laboratory
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalPhysical Review B
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInstitute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
kaust.personCheng, Yingchun
kaust.personZhu, Zhiyong
kaust.personZhu, Yihan
kaust.personHan, Yu
kaust.personZhang, Xixiang
kaust.personSchwingenschlögl, Udo
refterms.dateFOA2018-06-14T04:01:20Z


Files in this item

Thumbnail
Name:
Strain-activated edge reconstruction of graphene nanoribbons.pdf
Size:
558.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record