• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zahed - Thesis_FinalVersion_25Dec2013_Revised.pdf
    Size:
    5.903Mb
    Format:
    PDF
    Description:
    Zahed_Final_PhD_Dissertation
    Download
    Type
    Dissertation
    Authors
    Khan, Mohammed Zahed Mustafa cc
    Advisors
    Ooi, Boon S. cc
    Committee members
    Alshareef, Husam N. cc
    Helmy, Amr S.
    Kosel, Jürgen cc
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2013-10
    Embargo End Date
    2014-12-31
    Permanent link to this record
    http://hdl.handle.net/10754/311056
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2014-12-31.
    Abstract
    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. Recent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. In this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis of a novel epitaxial structure design. The layered structure is based on chirping the barrier layer thickness of the over grown quantum dash layer, in a multi-stack quantum dash/barrier active region, with the aim of inducing additional inhomogeneity. Based on material-structure and device characterization, enhanced lasing-emission bandwidth is achieved from the narrow (2 u m)ridge-waveguide LDs as a result of the formation of multiple ensembles of quantum dashes that are electronically different, in addition to improved device performance. Moreover, realization of SLDs from this device structure demonstrated extra-ordinary emission bandwidth covering the entire international telecommunication union (O- to U-) bands. This accomplishment is a collective emission from quantum wells and quantum dashes of the device active region. All these results lead to a step forward in the eventual realization of more than 150 nm lasing bandwidth from a single semiconductor laser diode.
    Citation
    Khan, M. Z. M. (2013). Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments. KAUST Research Repository. https://doi.org/10.25781/KAUST-3Y3BH
    DOI
    10.25781/KAUST-3Y3BH
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-3Y3BH
    Scopus Count
    Collections
    Dissertations; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.