• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jin Sun Dissertation.pdf
    Size:
    5.409Mb
    Format:
    PDF
    Description:
    Dissertation
    Download
    Type
    Dissertation
    Authors
    Sun, Jian
    Advisors
    Kosel, Jürgen cc
    Committee members
    Foulds, Ian G.
    Grundler, Dirk
    Hadwiger, Markus cc
    Program
    Electrical and Computer Engineering
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2013-06-27
    Permanent link to this record
    http://hdl.handle.net/10754/300641
    
    Metadata
    Show full item record
    Abstract
    In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices for sensor applications. Two novel concepts are presented, which are promising for realizing EMR devices with high spatial resolution and for opening new applications for EMR sensors in the low-field regime.
    Citation
    Sun, J. (2013). Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure. KAUST Research Repository. https://doi.org/10.25781/KAUST-KM2JN
    DOI
    10.25781/KAUST-KM2JN
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-KM2JN
    Scopus Count
    Collections
    PhD Dissertations; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.