• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    MIMO Radar Transceiver Design for High Signal-to-Interference-Plus-Noise Ratio

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    John Lipor Final Thesis.pdf
    Size:
    1.044Mb
    Format:
    PDF
    Description:
    John Lipor Final Thesis
    Download
    Type
    Thesis
    Authors
    Lipor, John
    Advisors
    Alouini, Mohamed-Slim cc
    Committee members
    Alouini, Mohamed-Slim cc
    Sultan Salem, Ahmed Kamal
    Turkiyyah, George
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2013-05-12
    Permanent link to this record
    http://hdl.handle.net/10754/291103
    
    Metadata
    Show full item record
    Abstract
    Multiple-input multiple-output (MIMO) radar employs orthogonal or partially correlated transmit signals to achieve performance benefits over its phased-array counterpart. It has been shown that MIMO radar can achieve greater spatial resolution, improved signal-to-noise ratio (SNR) and target localization, and greater clutter resolution using space-time adaptive processing (STAP). This thesis explores various methods to improve the signal-to-interference-plus-noise ratio (SINR) via transmit and receive beamforming. In MIMO radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Current methods involve a two- step process of designing the transmit covariance matrix R via iterative solutions and then using R to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this document, a closed- form method to design R is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniform elemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented 
that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved. It is also desirable to receive signal power only from a given set of directions defined by a beampattern. In a later chapter of this document, the problem of receive beampattern matching is formulated and three solutions to this problem are demonstrated. We show that partitioning the received data vector into subvectors and then multiplying each subvector with its corresponding weight vector can improve performance and reduce the length of the data vector. Simulation results show that all methods are capable of matching a desired beampattern. Signal-to-interference- plus-noise ratio (SINR) calculations demonstrate a significant improvement over the unaltered MIMO case.
    Citation
    Lipor, J. (2013). MIMO Radar Transceiver Design for High Signal-to-Interference-Plus-Noise Ratio. KAUST Research Repository. https://doi.org/10.25781/KAUST-MV58H
    DOI
    10.25781/KAUST-MV58H
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-MV58H
    Scopus Count
    Collections
    Theses; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.