• Login
    View Item 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Science & Engineering (CEMSE)
    • Sensors Lab
    • View Item
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Science & Engineering (CEMSE)
    • Sensors Lab
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TimedomainoscillatingpolesStabilityredefinedinMemristorbasedWien-oscillator.pdf
    Size:
    805.6Kb
    Format:
    PDF
    Download
    Type
    Conference Paper
    Authors
    Talukdar, Abdul Hafiz Ibne
    Radwan, Ahmed G.
    Salama, Khaled N. cc
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Physical Science and Engineering (PSE) Division
    Sensors Lab
    Date
    2011-01-21
    Online Publication Date
    2011-01-21
    Print Publication Date
    2010-12
    Permanent link to this record
    http://hdl.handle.net/10754/236092
    
    Metadata
    Show full item record
    Abstract
    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.
    Description
    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics.
    Citation
    Talukdar A, Radwan AG, Salama KN (2010) Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators. 2010 International Conference on Microelectronics. doi:10.1109/ICM.2010.5696140.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2010 International Conference on Microelectronics
    Conference/Event name
    2010 International Conference on Microelectronics, ICM'10
    DOI
    10.1109/ICM.2010.5696140
    Additional Links
    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5696140
    ae974a485f413a2113503eed53cd6c53
    10.1109/ICM.2010.5696140
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Electrical and Computer Engineering Program; Sensors Lab; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.