• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Concept of Compound Retention Time for Organic Micro Pollutants in Anaerobic Membrane Bioreactor with Nanofiltration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    JiangjiangPanThesis.pdf
    Size:
    2.806Mb
    Format:
    PDF
    Description:
    PDF file
    Download
    Type
    Thesis
    Authors
    Pan, Jiangjiang
    Advisors
    Amy, Gary L.
    Committee members
    Wang, Peng cc
    Wei, Chunhai
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2011-12
    Embargo End Date
    2012-12-31
    Permanent link to this record
    http://hdl.handle.net/10754/209380
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2012-12-31.
    Abstract
    Organic micropollutants (OMPs) have received more and more attention in recent years due to their potential harmful effects on public health and aquatic ecosystems, and eliminating OMPs in wastewater treatment systems is an important solution to control OMPs wastage. An innovative hybrid process, anaerobic membrane bioreactor with nanofiltration (AnMBR-NF), in which enhanced OMPs removal is possible based on the concept of compound retention time (CRT) through coupling anaerobic biodegradation and NF rejection, is proposed and examined in terms of preliminary feasibility in this study. First, NF membrane screening through sludge water dead-end filtration tests demonstrated that KOCH NF200 (molecular weight cut-off (MWCO) 200 Da, acid/base stable) performed best in organic matter rejection. Then, selected OMPs (ketobrofen and naproxen) in MQ water and a biologically treated wastewater matrix were filtered through NF200 under constant-pressure dead-end mode, with and without stirring, and several methods (contact angle, scanning electronic microscopy, Zeta potential, Fourier transform infra-red spectroscopy) were used to characterize membranes. Results show selected OMPs in MQ could be rejected (about 40%) by a clean NF200 membrane. The main rejection mechanism was initial absorption by the membrane followed by size exclusion (electric charge interaction plays a less important role). The wastewater matrix could enhance the rejection significantly (up to 90%) because effluent organic matter (EfOM) enhanced size exclusion and electric charge interaction through blocking membrane pores and forming a gel layer as well as binding some OMPs through partitioning followed by retention by NF. Third, an anaerobic bioreactor was set up to evaluate the anaerobic biodegradability of selected OMPs. Results showed selected OMPs could be absorbed by sludge and reached equilibrium within one day, and then were consumed by anaerobic microorganism with a half life 9.4 days for ketoprofen and 11.6 days for naproxen. Finally, the CRT for selected OMPs was intensively analyzed under different hydraulic retention time (HRT), sludge retention time (SRT), sludge concentration, feed OMPs concentration, OMPs’ biodegradation rate and NF rejection. Full simulations of an AnMBR-NF for domestic wastewater containing selected OMPs from start-up to steady state showed CRT would be a useful concept for assessing the biodegradation of OMPs.
    Citation
    Pan, J. (2011). Concept of Compound Retention Time for Organic Micro Pollutants in Anaerobic Membrane Bioreactor with Nanofiltration. KAUST Research Repository. https://doi.org/10.25781/KAUST-LEX65
    DOI
    10.25781/KAUST-LEX65
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-LEX65
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Environmental Science and Engineering Program; Theses

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.