• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Advanced Nanofabrication Process Development for Self-Powered System-on-Chip

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    JhonathanPrietoRojasThesis-final.pdf
    Size:
    2.748Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Type
    Thesis
    Authors
    Rojas, Jhonathan Prieto cc
    Advisors
    Hussain, Muhammad Mustafa cc
    Committee members
    Foulds, Ian G.
    Kosel, Jürgen cc
    Program
    Applied Mathematics and Computational Science
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2010-11
    Embargo End Date
    2014-12-31
    Permanent link to this record
    http://hdl.handle.net/10754/134734
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2014-12-31.
    Abstract
    In this work the development of a Self-Powered System-On-Chip is explored by examining two components of process development in different perspectives. On one side, an energy component is approached from a biochemical standpoint where a Microbial Fuel Cell (MFC) is built with standard microfabrication techniques, displaying a novel electrode based on Carbon Nanotubes (CNTs). The fabrication process involves the formation of a micrometric chamber that hosts an enhanced CNT-based anode. Preliminary results are promising, showing a high current density (113.6mA/m2) compared with other similar cells. Nevertheless many improvements can be done to the main design and further characterization of the anode will give a more complete understanding and bring the device closer to a practical implementation. On a second point of view, nano-patterning through silicon nitride spacer width control is developed, aimed at producing alternative sub-100nm device fabrication with the potential of further scaling thanks to nanowire based structures. These nanostructures are formed from a nano-pattern template, by using a bottom-up fabrication scheme. Uniformity and scalability of the process are demonstrated and its potential described. An estimated area of 0.120μm2 for a 6T-SRAM (Static Random Access Memory) bitcell (6 devices) can be achieved. In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.
    Citation
    Rojas, J. P. (2010). Advanced Nanofabrication Process Development for Self-Powered System-on-Chip. KAUST Research Repository. https://doi.org/10.25781/KAUST-34MCI
    DOI
    10.25781/KAUST-34MCI
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-34MCI
    Scopus Count
    Collections
    Applied Mathematics and Computational Science Program; Theses; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.