Recent Submissions

  • Macrobenthic Community Structure in the Northwestern Arabian Gulf, Twelve Years after the 1991 Oil Spill

    Joydas, Thadickal V.; Qurban, Mohammad A.; Borja, Angel; Krishnakumar, Periyadan K.; Al-Suwailem, Abdulaziz M. (Frontiers Media SA, 2017-08-03)
    The biota in the Arabian Gulf faces stress both from natural (i.e., hyper salinity and high sea surface temperature), and human (i.e., from oil-related activities) sources. The western Arabian Gulf was also impacted by world's largest oil spill (1991 Oil Spill). However, benthic research in this region is scarce and most of the studies have been conducted only in small areas. Here, we present data on macrobenthos collected during 2002–2003 from the open waters and inner bays in the northwestern Arabian Gulf aimed to assess the ecological status and also to evaluate the long-term impact, if any, of the 1991 Oil Spill. A total of 392 macrobenthic taxa with an average (±SE) species richness (S) of 71 ± 2, Shannon-Wiener species diversity (H′) of 4.9 ± 0.1, and density of 3,181 ± 359 ind. m−2 was recorded from the open water stations. The open waters have “slightly disturbed” (according to AZTI's Marine Biotic Index, AMBI) conditions, with “good-high” (according to multivariate-AMBI, M-AMBI) ecological status indicating the absence of long-term impacts of the oil spill. Overall, 162 taxa were recorded from inner bays with average (±SE) values of S 41 ± 9, H′ 3.48 ± 0.39, and density 4,203 ± 1,042 ind. m−2. The lower TPH (Total Petroleum Hydrocarbons) stations (LTS, TPH concentrations <70 mg kg−2) show relatively higher S, H' and density compared to the higher TPH stations (HTS, TPH concentrations ≥100 mg kg−2). In the inner bays, AMBI values indicate slightly disturbed conditions at all stations except one, which is moderately disturbed. M-AMBI values indicate good status at LTS, while, high, good, moderate, and poor status at HTS. The “moderately disturbed” conditions with “moderate-poor” ecological status in some locations of the inner bays specify a severe long-term impact of the oil spill.
  • Culture dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing

    Mannalamkunnath Alikunhi, Nabeel; Batang, Zenon B.; AlJahdali, Haitham A.; Aziz, Mohammed A.M.; Al-Suwailem, Abdulaziz M. (Elsevier BV, 2016-05-27)
    Fish contaminations have been extensively investigated in Saudi coasts, but studies pertaining to bacterial pathogens are meager. We conducted qualitative assessment and molecular identification of culture dependent bacteria in 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. The bacterial counts of gills, skin, gut and muscle were examined on agar plates of Macconkey’s (Mac), Eosin methylene blue (EMB) and Thiosulfate Citrate Bile Salts (TCBS) culture media. Bacterial counts exhibited interspecific, locational and behavioral differences. Mugil cephalus exhibited higher counts on TCBS (all body-parts), Mac (gills, muscle and gut) and EMB (gills and muscle). Samples of Area I were with higher counts, concurrent to seawater and sediment samples, revealing the influence of residing environment on fish contamination. Among feeding habits, detritivorous fish harbored higher bacterial counts, while carnivorous group accounted for lesser counts. Counts were higher in skin of fish obtained from market compared to field samples, revealing market as a major source of contamination. Bacterial counts of skin were positively correlated with other body-parts indicating influence of surface bacterial biota in overall quality of fish. Hence, hygienic practices and proper storage facilities in the Jeddah fish market is recommended to prevent adverse effect of food-borne illness in consumers. Rahnella aquatilis (Enterobacteriaceae) and Photobacterium damselae (Vibrionaceae) were among the dominant species identified from fish muscle samples using Sanger sequencing of 16S rRNA. This bacterial species are established human pathogens capable of causing foodborne illness with severe antibiotic resistance. Opportunistic pathogens such as Hafnia sp. (Enterobacteriaceae) and Pseudomonas stutzeri (Pseudomonadaceae) were also identified from fish muscle. These findings indicate bacterial contamination risk in commonly consumed fish of Jeddah region.
  • Data from: Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan (Dryad Digital Repository, 2016)
  • Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    Zhang, Weipeng; Tian, Renmao; Yang, Bo; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jingya; Zhang, Xixiang; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan (Wiley-Blackwell, 2015-11-28)
    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.
  • Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora

    Gao, Zhao-Ming; Wang, Yong; Tian, Ren-Mao; Lee, On On; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Lafi, Feras Fawzi; Bajic, Vladimir B.; Qian, Pei-Yuan (PeerJ, 2015-06-11)
    Sponge diseases have been widely reported, yet the causal factors and major pathogenic microbes remain elusive. In this study, two individuals of the sponge Crella cyathophora in total that showed similar disease-like characteristics were collected from two different locations along the Red Sea coast separated by more than 30 kilometers. The disease-like parts of the two individuals were both covered by green surfaces, and the body size was much smaller compared with adjacent healthy regions. Here, using high-throughput pyrosequencing technology, we investigated the prokaryotic communities in healthy and disease-like sponge tissues as well as adjacent seawater. Microbes in healthy tissues belonged mainly to the Proteobacteria, Cyanobacteria and Bacteroidetes, and were much more diverse at the phylum level than reported previously. Interestingly, the disease-like tissues from the two sponge individuals underwent shifts of prokaryotic communities and were both enriched with a novel clade affiliated with the phylum Verrucomicrobia, implying its intimate connection with the disease-like Red Sea sponge C. cyathophora. Enrichment of the phylum Verrucomicrobia was also considered to be correlated with the presence of algae assemblages forming the green surface of the disease-like sponge tissues. This finding represents an interesting case of sponge disease and is valuable for further study.
  • Characterization and cross-amplification of microsatellite markers in four species of anemonefish (Pomacentridae, Amphiprion spp.)

    Bonin, Mary C.; Saenz Agudelo, Pablo; Harrison, Hugo B.; Nanninga, Gerrit B.; Van Der Meer, Martin H.; Mansour, Hicham; Perumal, Sadhasivam; Jones, Geoffrey P.; Berumen, Michael L. (Springer Science + Business Media, 2015-04-09)
    Anemonefish are iconic symbols of coral reefs and have become model systems for research on larval dispersal and population connectivity in coral reef fishes. Here we present 24 novel microsatellite markers across four species of anemonefish and also test 35 previously published markers for cross-amplification on two anemonefish species in order to facilitate further research on their population genetics and phylogenetics. Novel loci were isolated from sequences derived from microsatellite-enriched or 454 GS-FLX shotgun sequence libraries developed using congeneric DNA. Primer testing successfully identified 15 new microsatellite loci for A. percula, 4 for A. melanopus, 3 for A. akindynos, and 2 for A. omanensis. These novel microsatellite loci were polymorphic with a mean of 10 ± 1.6 SE (standard error) alleles per locus and an average observed heterozygosity of 0.647 ± 0.032 SE. Reliable cross-amplification of 12 and 26 of the 35 previously published Amphiprion markers was achieved for A. melanopus and A. akindynos, respectively, suggesting that the use of markers developed from the DNA of congeners can provide a quick and cost-effective alternative to the isolation of new loci. Together, the markers presented here provide an important resource for ecological, evolutionary, and conservation genetic research on anemonefishes that will inform broader conservation and management actions for coral reef fishes. © 2015 Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg
  • Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    Roik, Anna Krystyna; Röthig, Till; Roder, Cornelia; Muller, Paul Joachim; Voolstra, Christian R. (PeerJ, 2015-01-20)
    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.
  • Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    Zhang, Wei Peng; Wang, Yong; Tian, Ren Mao; Bougouffa, Salim; Yang, Bo; Cao, Hui Luo; Zhang, Gen; Wong, Yue Him; Xu, Wei; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Zhang, Xixiang; Qian, Pei-Yuan (Nature Publishing Group, 2014-10-17)
    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.
  • Human Health Risk from Metals in Fish from Saudi Arabia: Consumption Patterns for Some Species Exceed Allowable Limits

    Burger, Joanna; Gochfeld, Michael; Mannalamkunnath Alikunhi, Nabeel; Al-Jahdali, Haitham; Al-Jebreen, Dalal Hamad; Al-Suwailem, Abdulaziz M.; Aziz, Mohammed A M; Batang, Zenon B. (Informa UK Limited, 2014-10-06)
    ABSTRACT: Fish are a healthful source of protein, but contaminants in some fish pose a risk. While there are multiple risk assessments from Europe and North America, there are far fewer for other parts of the world. We examined the risks from mercury, arsenic, lead, and other metals in fish consumed by people in Jeddah area, Saudi Arabia, using site-specific data on consumption patterns and metal levels in fish. The U.S. Environmental Protection Agency's Hazard Quotient (HQ) and cumulative Hazard Index (HI) for non-cancer endpoints and Carcinogenic Index for cancer were used to determine the health risk based on fish consumption rates. Of the 13 fish species examined, HQ was greater than 1 (indicating elevated risk) in two species for arsenic, and seven species for methylmercury. The cumulative HI for all metals was above 1 for all but three species of fish at the mean consumption rates. Generally, fish species with HI above 1 for one sampling location, had HI above 1 for all sampling locations. The implications of these findings are discussed in the light of strategies for reducing risk from fish consumption while encouraging dietary intakes of fish with low mercury and arsenic levels.
  • Fish consumption behavior and rates in native and non-native people in Saudi Arabia

    Burger, Joanna; Gochfeld, Michael; Batang, Zenon B.; Mannalamkunnath Alikunhi, Nabeel; Aljahdali, Ramzi; Al-Jebreen, Dalal Hamad; Aziz, Mohammed A M; Al-Suwailem, Abdulaziz M. (Elsevier BV, 2014-08)
    Fish are a healthy source of protein and nutrients, but contaminants in fish may provide health risks. Determining the risk from contaminants in fish requires site-specific information on consumption patterns. We examine consumption rates for resident and expatriates in the Jeddah region of Saudi Arabia, by species of fish and fishing location. For Saudis, 3.7% of males and 4.3% of females do not eat fish; for expatriates, the percent not eating fish is 6.6% and 6.1% respectively. Most people eat fish at home (over 90%), and many eat fish at restaurants (65% and 48%, respectively for Saudis and expatriates). Fish eaten at home comes from local fish markets, followed by supermarkets. Saudis included fish in their diets at an average of 1.4±1.2 meals/week at home and 0.8±0.7 meals/week at restaurants, while expats ate 2.0±1.7 meals/week at home and 1.1±1.1 meals/week in restaurants. Overall, Saudis ate 2.2 fish meals/week, while expats ate 3.1 meals/week. Grouper (Epinephelus and Cephalopholis) were eaten by 72% and 60% respectively. Plectropomus pessuliferus was the second favorite for both groups and Hipposcarus harid and Lethrinus lentjan were in 3rd and 4th place in terms of consumption. Average meal size was 68. g for Saudis and 128. g for expatriates. These data can be used by health professionals, risk assessors, and environmental regulators to examine potential risk from contaminants in fish, and to compare consumption rates with other sites. © 2014 Elsevier Inc.
  • Interspecific and locational differences in metal levels in edible fish tissue from Saudi Arabia

    Burger, Joanna; Gochfeld, Michael; Batang, Zenon B.; Mannalamkunnath Alikunhi, Nabeel; Aljahdali, Ramzi; Al-Jebreen, Dalal; Aziz, Mohammed A. M.; Al-Suwailem, Abdulaziz M. (Springer Science + Business Media, 2014-07-06)
    Metal levels in fish have been extensively studied, but little data currently exists for the Middle East. We examined the levels of metals and metalloids (aluminum, arsenic, copper, manganese, selenium, zinc, and mercury) in the flesh of 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. We tested the following null hypotheses: (1) there are no interspecific differences in metal levels, (2) there are no differences in metal levels in fishes between market and fishing sites, (3) there are no size-related differences in metal levels, and (4) there are no differences in selenium:mercury molar ratio among different fish species. There were significant interspecific differences in concentrations for all metals. There was an order of magnitude difference in the levels of aluminum, arsenic, mercury, manganese, and selenium, indicating wide variation in potential effects on the fish themselves and on their predators. Fishes from Area II, close to a large commercial port, had the highest levels of arsenic, mercury, and selenium, followed by market fishes. Mercury was positively correlated with body size in 6 of the 13 fish species examined. Mercury was correlated positively with arsenic and selenium, but negatively with aluminum, cobalt, copper, manganese, and zinc. Selenium:mercury molar ratios varied significantly among species, with Carangoides bajad, Cephalopholis argus, Variola louti, and Ephinephelus tauvina having ratios below 10:1. These findings can be used in risk assessments, design of mercury reduction plans, development of fish advisories to protect public health, and future management decision-making.
  • Pyrosequencing Reveals the Microbial Communities in the Red Sea Sponge Carteriospongia foliascens and Their Impressive Shifts in Abnormal Tissues

    Gao, Zhaoming; Wang, Yong; Lee, Onon; Tian, Renmao; Wong, Yuehim; Bougouffa, Salim; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Lafi, Feras Fawzi; Bajic, Vladimir B.; Qian, Peiyuan (Springer Science + Business Media, 2014-04-24)
    Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species “Candidatus Synechococcus spongiarum,” were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.
  • Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    Gao, Zhao-Ming; Wang, Yong; Tian, Ren-Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Bajic, Vladimir B.; Qian, Pei-Yuan (American Society for Microbiology, 2014-04-01)
    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge's mild intercellular environment. 2014 Gao et al.
  • Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea

    Wang, Yong; Zhang, Wei Peng; Cao, Hui Luo; Shek, Chun Shum; Tian, Ren Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan (Frontiers Media SA, 2014-02-04)
    A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. 2014 Wang, Zhang, Cao, Shek, Tian, Wong, Batang, Al-suwailem and Qian.
  • In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    Lee, O.O.; Wang, Y.; Tian, R.; Zhang, W.; Shek, C.S.; Bougouffa, Salim; Al-Suwailem, A.; Batang, Z.B.; Xu, W.; Wang, G.C.; Zhang, Xixiang; Lafi, F.F.; Bajic, Vladimir B.; Qian, P.-Y. (Nature Publishing Group, 2014-01-08)
    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.
  • Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y. (American Society for Microbiology, 2013-03-29)
    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.
  • Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria

    Ross, Avena C.; Xü, Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Peiyuan; Moore, Bradley S. (American Chemical Society, 2013-01-23)
    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus. © 2012 American Chemical Society.
  • Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    Lee, O. O.; Yang, J.; Bougouffa, S.; Wang, Y.; Batang, Zenon B.; Tian, R.; Al-Suwailem, A.; Qian, P.-Y. (American Society for Microbiology, 2012-08-03)
    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.
  • Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia

    Lai, PokYui; Miao, Li; Lee, Onon; Liu, Lingli; Zhou, Xiaojian; Xü, Ying; Al-Suwailem, Abdulaziz M.; Qian, Peiyuan (Microbiology Society, 2012-06-08)
    A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20-25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18: 1ω6c and/or C18:1ω7c, C18:1ω7c 11-methyl and C16:1ω7c and/or C16:1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius. The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae, for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T (= JCM 17872T = NRRL B-59665T) as the type strain. © 2013 IUMS.
  • First discovery of a cold seep on the continental margin of the central Red Sea

    Batang, Zenon B.; Papathanassiou, Evangelos; Al-Suwailem, Abdulaziz M.; Smith, Chris J M; Salomidi, Maria; Petihakis, George; Mannalamkunnath Alikunhi, Nabeel; Smith, Edward Lloyd; Mallon, Francis; Yapici, Tahir; Fayad, Nabil (Elsevier BV, 2012-06)
    A new cold brine seep system with microbial mats and metazoan assemblages was discovered by a remotely operated vehicle (ROV) on the Saudi continental margin of central Red Sea. Now named as Thuwal Seeps, it has a shallow brine pool between 840 and 850. m water depths that is formed by focused brine expulsions from two sites (Seep I: 22°17.3'N, 38°53.8'E; Seep II: 22°16.9'N, 38°53.9'E). The seep is located at the base of a steep wall rock closer to the shore (20. km) than to the axial trough (120. km). The brine pool does not exhibit a significant thermal anomaly (<. 0.3°C) and is so far the coldest (21.7°C) and least saline (74‰) among brine pools in the Red Sea. This discovery provides the first direct evidence of a cold seep with associated biota on the continental margin of the Red Sea. © 2011 Elsevier B.V.

View more