• Login
    Search 
    •   Home
    • Core Labs and Major Facilities
    • Analytical Chemistry Core Lab
    • Search
    •   Home
    • Core Labs and Major Facilities
    • Analytical Chemistry Core Lab
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAfzaal, Mohammad (1)Bański, Mateusz (1)Cha, Dong Kyu (1)Misiewicz, Jan J. (1)Podhorodecki, Artur P. (1)View MoreDepartmentAdvanced Nanofabrication, Imaging and Characterization Core Lab (1)Analytical Chemistry Core Lab (1)Analytical Core Lab (1)Computational Bioscience Research Center (CBRC) (1)Imaging and Characterization Core Lab (1)Journal
    J. Mater. Chem. C (1)
    Publisher
    Royal Society of Chemistry (RSC) (1)
    TypeArticle (1)Year (Issue Date)2014 (1)Item AvailabilityMetadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Crystal phase transition in LixNa1-xGdF4 solid solution nanocrystals - Tuning of optical properties

    Bański, Mateusz; Afzaal, Mohammad; Cha, Dong Kyu; Wang, X.; Tan, Hua; Misiewicz, Jan J.; Podhorodecki, Artur P. (J. Mater. Chem. C, Royal Society of Chemistry (RSC), 2014-09-29) [Article]
    The influence of precursor composition on the crystallization of LixNa1-xGdF4 is investigated and discussed. Nanocrystals are prepared from the thermal decomposition of trifluoroacetates in the presence of trioctylphosphine oxide to provide control over particle size. A crystal phase transition from hexagonal to cubic and to tetragonal is observed by increasing lithium trifluoroacetate (Li-TFA) in the solution. Controlling the composition of LixNa1-xGdF4 nanocrystals results in modified crystal field symmetry and emission properties from doped europium (Eu3+) ions. We report that for lithium (Li+) substitution <15%, the hexagonal crystal field is preferred, while the Eu3+ emission is already tuned, whereas at higher Li+ substitution, a phase change takes place and the number of crystalline matrix defects increases which is reflected in the optical properties of Eu3+. From Eu3+ emission properties, the optimum Li+ content is determined to be ∼6.2% in the prepared LixNa1-xGdF4 nanocrystals.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.