Recent Submissions

  • LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes

    Della Valle, Francesco; Reddy, Pradeep; Yamamoto, Mako; Liu, Peng; Saera-Vila, Alfonso; Bensaddek, Dalila; Zhang, Huoming; Prieto Martinez, Javier; Abassi, Leila; Celii, Mirko; Ocampo, Alejandro; Nuñez Delicado, Estrella; Mangiavacchi, Arianna; Aiese Cigliano, Riccardo; Rodriguez Esteban, Concepcion; Horvath, Steve; Belmonte, Juan Carlos Izpisua; Orlando, Valerio (Science Translational Medicine, American Association for the Advancement of Science (AAAS), 2022-08-10) [Article]
    Constitutive heterochromatin is responsible for genome repression of DNA enriched in repetitive sequences, telomeres, and centromeres. During physiological and pathological premature aging, heterochromatin homeostasis is profoundly compromised. Here, we showed that LINE-1 (Long Interspersed Nuclear Element-1; L1) RNA accumulation was an early event in both typical and atypical human progeroid syndromes. L1 RNA negatively regulated the enzymatic activity of the histone-lysine N-methyltransferase SUV39H1 (suppression of variegation 3-9 homolog 1), resulting in heterochromatin loss and onset of senescent phenotypes in vitro. Depletion of L1 RNA in dermal fibroblast cells from patients with different progeroid syndromes using specific antisense oligonucleotides (ASOs) restored heterochromatin histone 3 lysine 9 and histone 3 lysine 27 trimethylation marks, reversed DNA methylation age, and counteracted the expression of senescence-associated secretory phenotype genes such as p16, p21, activating transcription factor 3 (ATF3), matrix metallopeptidase 13 (MMP13), interleukin 1a (IL1a), BTG anti-proliferation factor 2 (BTG2), and growth arrest and DNA damage inducible beta (GADD45b). Moreover, systemic delivery of ASOs rescued the histophysiology of tissues and increased the life span of a Hutchinson-Gilford progeria syndrome mouse model. Transcriptional profiling of human and mouse samples after L1 RNA depletion demonstrated that pathways associated with nuclear chromatin organization, cell proliferation, and transcription regulation were enriched. Similarly, pathways associated with aging, inflammatory response, innate immune response, and DNA damage were down-regulated. Our results highlight the role of L1 RNA in heterochromatin homeostasis in progeroid syndromes and identify a possible therapeutic approach to treat premature aging and related syndromes.
  • Nonseparable Space-Time Stationary Covariance Functions on Networks cross Time

    Porcu, Emilio; White, Philip A.; Genton, Marc G. (arXiv, 2022-08-09) [Preprint]
    The advent of data science has provided an increasing number of challenges with high data complexity. This paper addresses the challenge of space-time data where the spatial domain is not a planar surface, a sphere, or a linear network, but a generalized network (termed a graph with Euclidean edges). Additionally, data are repeatedly measured over different temporal instants. We provide new classes of nonseparable space-time stationary covariance functions where {\em space} can be a generalized network, a Euclidean tree, or a linear network, and where time can be linear or circular (seasonal). Because the construction principles are technical, we focus on illustrations that guide the reader through the construction of statistically interpretable examples. A simulation study demonstrates that we can recover the correct model when compared to misspecified models. In addition, our simulation studies show that we effectively recover simulation parameters. In our data analysis, we consider a traffic accident dataset that shows improved model performance based on covariance specifications and network-based metrics.
  • The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling

    Cui, Huanhuan; Yi, Hongyang; Bao, Hongyu; Tan, Ying; Tian, Chi; Shi, Xinyao; Gan, Diwen; Zhang, Bin; Liang, Weizheng; Chen, Rui; Zhu, Qionghua; Fang, Liang; Gao, Xin; Huang, Hongda; Tian, Ruijun; Sperling, Silke R.; Hu, Yuhui; Chen, Wei (Nature Communications, Springer Science and Business Media LLC, 2022-08-09) [Article]
    DPF3, a component of the SWI/SNF chromatin remodeling complex, has been associated with clear cell renal cell carcinoma (ccRCC) in a genome-wide association study. However, the functional role of DPF3 in ccRCC development and progression remains unknown. In this study, we demonstrate that DPF3a, the short isoform of DPF3, promotes kidney cancer cell migration both in vitro and in vivo, consistent with the clinical observation that DPF3a is significantly upregulated in ccRCC patients with metastases. Mechanistically, DPF3a specifically interacts with SNIP1, via which it forms a complex with SMAD4 and p300 histone acetyltransferase (HAT), the major transcriptional regulators of TGF-β signaling pathway. Moreover, the binding of DPF3a releases the repressive effect of SNIP1 on p300 HAT activity, leading to the increase in local histone acetylation and the activation of cell movement related genes. Overall, our findings reveal a metastasis-promoting function of DPF3, and further establish the link between SWI/SNF components and ccRCC.
  • PYK2 senses calcium through a disordered dimerization and calmodulin-binding element

    Momin, Afaque Ahmad Imtiyaz; Mendes, Tiago; Barthe, Philippe; Faure, Camille; Hong, Seungbeom; Yu, Piao; Kadaré, Gress; Jaremko, Mariusz; Girault, Jean Antoine; Jaremko, Lukasz; Arold, Stefan T. (Communications Biology, Springer Science and Business Media LLC, 2022-08-09) [Article]
    Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity.
  • Desalination at ambient temperature and pressure by a novel class of biporous anisotropic membrane

    Qtaishat, Mohammed Rasool; Obaid, Mohammed; Matsuura, Takeshi; Al-Samhouri, Areej; Lee, Jung-Gil; Soukane, Sofiane; Ghaffour, NorEddine (Scientific reports, Springer Science and Business Media LLC, 2022-08-09) [Article]
    Recent scientific advances have made headway in addressing pertinient issues in climate change and the sustainability of our natural environment. This study makes use of a novel approach to desalination that is environment friendly, naturally sustainable and energy efficient, meaning that it is also cost efficient. Evaporation is a key phenomenon in the natural environment and used in many industrial applications including desalination. For a liquid droplet, the vapor pressure changes due to the curved liquid-vapor interface at the droplet surface. The vapor pressure at a convex surface in a pore is, therefore, higher than that at a flat surface due to the capillary effect, and this effect is enhanced as the pore radius decreases. This concept inspired us to design a novel biporous anisotropic membrane for membrane distillation (MD), which enables to desalinate water at ambient temperature and pressure by applying only a small transmembrane temperature gradient. The novel membrane is described as a super-hydrophobic nano-porous/micro-porous composite membrane. A laboratory-made membrane with specifications determined by the theoretical model was prepared for model validation and tested for desalination at different feed inlet temperatures by direct contact MD. A water vapor flux as high as 39.94 ± 8.3 L m-2 h-1 was achieved by the novel membrane at low feed temperature (25 °C, permeate temperature = 20 °C), while the commercial PTFE membrane, which is widely used in MD research, had zero flux under the same operating conditions. As well, the fluxes of the fabricated membrane were much higher than the commercial membrane at various inlet feed temperatures.
  • Impact of Side Chain Hydrophilicity on Packing, Swelling and Ion Interactions in Oxy-bithiophene Semiconductors.

    Siemons, Nicholas; Pearce, Drew; Cendra, Camila; Yu, Hang; Tuladhar, Sachetan M; Hallani, Rawad K; Sheelamanthula, Rajendar; LeCroy, Garrett S; Siemons, Lucas; White, Andrew J P; McCulloch, Iain; Salleo, Alberto; Frost, Jarvist M; Giovannitti, Alexander; Yan, Jun (Advanced materials (Deerfield Beach, Fla.), Wiley, 2022-08-09) [Article]
    Exchanging hydrophobic alkyl-based side chains to hydrophilic glycol-based side chains is a widely adopted method for improving mixed-transport device performance, despite the impact on solid state packing and polymer-electrolyte interactions being poorly understood. Presented here is a Molecular Dynamics (MD) force field for modelling alkoxylated and glycolated polythiophenes. The force field is validated against known packing motifs for their monomer crystals. MD simulations, coupled with X-ray Diffraction (XRD), show that alkoxylated polythiophenes will pack with a 'tilted stack' and straight interdigitating side chains, whilst their glycolated counterpart will pack with a 'deflected stack' and an s-bend side chain configuration. MD simulations reveal water penetration pathways into the alkoxylated and glycolated crystals - through the π-stack and through the lamellar stack respectively. Finally, the two distinct ways tri-ethylene glycol polymers can bind to cations are revealed, showing the formation of a meta-stable single bound state, or an energetically deep double bound state, both with a strong side chain length dependance. The minimum energy pathways for the formation of the chelates are identified, showing the physical process through which cations can bind to one or two side chains of a glycolated polythiophene, with consequences for ion transport in bithiophene semiconductors.
  • Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes

    Shen, Jie; Cai, Yichen; Zhang, Chenhui; Wei, Wan; Chen, Cailing; Liu, Lingmei; Yang, Kuiwei; Ma, Yinchang; Wang, Yingge; Tseng, Chien-Chih; Fu, Jui-Han; Dong, Xinglong; Li, Jiaqiang; Zhang, Xixiang; Li, Lain-Jong; Jiang, Jianwen; Pinnau, Ingo; Tung, Vincent; Han, Yu (Nature Materials, Springer Science and Business Media LLC, 2022-08-08) [Article]
    The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m−2 h−1 bar−1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.
  • Low-voltage ultrafast nonvolatile memory via direct charge injection through a threshold resistive-switching layer

    Li, Yuan; Zhang, Zhi Cheng; Li, Jiaqiang; Chen, Xu-Dong; Kong, Ya; Wang, Fu-Dong; Zhang, Guo-Xin; Lu, Tong-Bu; Zhang, Jin (Nature communications, Springer Science and Business Media LLC, 2022-08-06) [Article]
    The explosion in demand for massive data processing and storage requires revolutionary memory technologies featuring ultrahigh speed, ultralong retention, ultrahigh capacity and ultralow energy consumption. Although a breakthrough in ultrafast floating-gate memory has been achieved very recently, it still suffers a high operation voltage (tens of volts) due to the Fowler-Nordheim tunnelling mechanism. It is still a great challenge to realize ultrafast nonvolatile storage with low operation voltage. Here we propose a floating-gate memory with a structure of MoS2/hBN/MoS2/graphdiyne oxide/WSe2, in which a threshold switching layer, graphdiyne oxide, instead of a dielectric blocking layer in conventional floating-gate memories, is used to connect the floating gate and control gate. The volatile threshold switching characteristic of graphdiyne oxide allows the direct charge injection from control gate to floating gate by applying a nanosecond voltage pulse (20 ns) with low magnitude (2 V), and restricts the injected charges in floating gate for a long-term retention (10 years) after the pulse. The high operation speed and low voltage endow the device with an ultralow energy consumption of 10 fJ. These results demonstrate a new strategy to develop next-generation high-speed low-energy nonvolatile memory.
  • Investigating calcification-related candidates in a non-symbiotic scleractinian coral, Tubastraea spp.

    Capasso, Laura; Aranda, Manuel; Cui, Guoxin; Pousse, Melanie; Tambutté, Sylvie; Zoccola, Didier (Scientific Reports, Springer Science and Business Media LLC, 2022-08-06) [Article]
    In hermatypic scleractinian corals, photosynthetic fixation of CO2 and the production of CaCO3 are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process. Despite this advantage, non-symbiotic scleractinian corals have been systematically neglected in calcification studies, resulting in a lack of data especially at the molecular level. Here, we combined a tissue micro-dissection technique and RNA-sequencing to identify calcification-related ion transporters, and other candidates, in the ahermatypic non-symbiotic scleractinian coral Tubastraea spp. Our results show that Tubastraea spp. possesses several calcification-related candidates previously identified in symbiotic scleractinian corals (such as SLC4-γ, AMT-1like, CARP, etc.). Furthermore, we identify and describe a role in scleractinian calcification for several ion transporter candidates (such as SLC13, -16, -23, etc.) identified for the first time in this study. Taken together, our results provide not only insights about the molecular mechanisms underlying non-symbiotic scleractinian calcification, but also valuable tools for the development of biotechnological solutions to better control the extreme invasiveness of corals belonging to this particular genus.
  • Topochemical Synthesis of Ca3CrN3H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis

    Cao, Yu; Kirsanova, Maria; Ochi, Masayuki; Almaksoud, Walid; Zhu, Tong; Rai, Rohit Kumar; Gao, Shenghan; Tsumori, Tatsuya; Kobayashi, Shintaro; Kawaguchi, Shogo; Abou-Hamad, Edy; Kuroki, Kazuhiko; Tassel, Cédric; Abakumov, Artem; Kobayashi, Yoji; Kageyama, Hiroshi (Angewandte Chemie (International ed. in English), Wiley, 2022-08-05) [Article]
    Topochemical reactions have led to great progress in the discovery of new metastable compounds with novel chemical and physical properties. With these reactions, the overall crystal structure of the host material is generally maintained. Here we report a topochemical synthesis of a hexagonal nitride hydride, h-Ca3CrN3H, by heating an orthorhombic nitride, o-Ca3CrN3, under hydrogen at 673 K, accompanied by a rotational structural transformation. The hydrogen intercalation modifies the Ca-N rock-salt-like atomic packing in o-Ca3CrN3 to a face-sharing octahedral chain in h-Ca3CrN3H, mimicking a 'hinged tessellation' movement. In addition, the h-Ca3CrN3H exhibited stable ammonia synthesis activity when used as a catalyst.
  • Various Wavefront Sensing and Control Developments on the Santa Cruz Extreme AO Laboratory (SEAL) Testbed

    Gerard, Benjamin L.; Perez-Soto, Javier; Chambouleyron, Vincent; Kooten, Maaike A. M. van; Dillon, Daren; Cetre, Sylvain; Jensen-Clem, Rebecca; Fu, Qiang; Amata, Hadi; Heidrich, Wolfgang (arXiv, 2022-08-05) [Preprint]
    Ground-based high contrast imaging (HCI) and extreme adaptive optics (AO) technologies have advanced to the point of enabling direct detections of gas-giant exoplanets orbiting beyond the snow lines around nearby young star systems. However, leftover wavefront errors using current HCI and AO technologies, realized as "speckles" in the coronagraphic science image, still limit HCI instrument sensitivities to detecting and characterizing lower-mass, closer-in, and/or older/colder exoplanetary systems. Improving the performance of AO wavefront sensors (WFSs) and control techniques is critical to improving such HCI instrument sensitivity. Here we present three different ongoing wavefront sensing and control project developments on the Santa cruz Extreme AO Laboratory (SEAL) testbed: (1) "multi-WFS single congugate AO (SCAO)" using the Fast Atmospheric Self-coherent camera (SCC) Technique (FAST) and a Shack Hartmann WFS, (2) pupil chopping for focal plane wavefront sensing, first with an external amplitude modulator and then with the DM as a phase-only modulator, and (3) a laboratory demonstration of enhanced linearity with the non-modulated bright Pyramid WFS (PWFS) compared to the regular PWFS. All three topics share a common theme of multi-WFS SCAO and/or second stage AO, presenting opportunities and applications to further investigate these techniques in the future.
  • Single-step post-production treatment of lead acetate precursor-based perovskite using alkylamine salts for reduced grain-boundary related film defects

    Gebremichael, Zekarias Teklu; Alam, Shahidul; Stumpf, Steffi; Diegel, Marco; Schubert, Ulrich S.; Hoppe, Harald (Nano Select, Wiley, 2022-08-04) [Article]
    Powered by the worldwide efforts of research groups experienced in dye-sensitized, and thin-film solar cells, perovskite solar cells (PSCs) reached a power conversion efficiency of 25.7% within 10 years. However, the presence of defects and trap density within the active layer's grain boundaries commonly operates as non-radiative recombination centers. Hence, intensive efforts have been reported to passivate the inevitable bulk and interface defects of the active layer using additives or post-treatment processing to enhance the efficiency and stability of PSCs. Herein, a facile post-treatment strategy based on wet processing methylammonium lead triiodide, MAPbI3 (prepared from lead acetate and methylammonium iodide precursors) films with organic amine salts (FABr and FAI) is demonstrated. As a result, high-quality films of mixed perovskites (FAxMA1-xPbI3-xBrx and FAxMA1-xPbI3) were obtained. The surface treatment has efficiently passivate the defects in the host film, suppressing the non-radiative carrier recombination. Compared to the control device, the increased open-circuit voltage (from 0.5 V to 1 V) and fill factor (FF) values of the optimized device based on FAxMA1-xPbI3 showed a PCE of 16.13%. And our findings revealed that post-treatment is possible on wet perovskite film aged for a few minutes prior to its post-treatment, which saved the energy used for pre-annealing.
  • A new species of Bathypathes (Cnidaria, Anthozoa, Antipatharia, Schizopathidae) from the Red Sea and its phylogenetic position

    Chimienti, Giovanni; Terraneo, Tullia Isotta; Vicario, Silvia; Marchese, Fabio; Purkis, Sam J.; Abdulla Eweida, Ameer; Rodrigue, Mattie; Benzoni, Francesca (ZooKeys, Pensoft Publishers, 2022-08-04) [Article]
    A black coral, Bathypathes thermophila Chimienti, sp. nov. is described from the Saudi Arabian coasts of the Gulf of Aqaba and north Red Sea (Neom area) using an integrated taxonomic approach. The morphological distinctiveness of the new species is confirmed by molecular analyses. The species thrives in warm and high salinity waters typical of the Red Sea at bathyal depths. It can form colony aggregations on muddy bottoms with scattered, small hard substrates. Colonies are monopodial, feather-like, and attached to a hard substrate through a thorny basal plate. Pinnules are simple, arranged biserially and alternately, and all the same length (up to approximately 20 cm) except for few, proximal ones. Spines are triangular, laterally compressed, subequal, smooth, and simple or rarely bifurcated. Polyps are elongated transversely, 1.5–2.0 mm in transverse diameter. Large colonies can have one or few branches, whose origin is discussed. The phylogenetic position of B. thermophila sp. nov. within the order Antipatharia, recovered using three mitochondrial markers, shows that it is nested within the family Schizopathidae. It is close to species in the genera Parantipathes, Lillipathes, Alternatipathes, and Umbellapathes rather than to the other available representatives of the genus Bathypathes, as currently defined based on morphology. In agreement with previous findings, our results question the evolutionary significance of morphological characters traditionally used to discriminate Antipatharia at higher taxonomic level.
  • Immunoinformatics-Aided Design and In Vivo Validation of a Peptide-Based Multiepitope Vaccine Targeting Canine Circovirus

    Kaushik, Vikas; Jain, Pankaj; Akhtar, Nahid; Joshi, Amit; Gupta, Lovi Raj; Grewal, Ravneet Kaur; Oliva, Romina; Shaikh, Abdul Rajjak; Cavallo, Luigi; Chawla, Mohit (ACS Pharmacology & Translational Science, American Chemical Society (ACS), 2022-08-03) [Article]
    Canine circovirus (CanineCV) is a deadly pathogen affecting both domestic and wild carnivores including dogs. No vaccine against CanineCV is available commercially or under clinical trials. In the present study, we have designed a promising multiepitope vaccine (MEV) construct targeting multiple strains of CanineCV. A total of 545 MHCII binding CD4+T cell epitope peptides were predicted from the capsid and replicase protein from each strain of CanineCV. Five conserved epitope peptides among the three CanineCV strains were selected. The final vaccine was constructed using antigenic, nontoxic, and conserved multiple epitopes identified in silico. Further, molecular docking and molecular dynamics simulations predicted stable interactions between the predicted MEV and canine receptor TLR-5. To validate antigenicity and immunogenicity, one of the mapped epitope peptides was synthesized. In vivo analysis of the selected epitope clearly indicates CD4+T-cell-dependent generation of antibodies which further suggests that the designed MEV construct holds promise as a candidate for vaccine against CanineCV.
  • Negative Frames Matter in Egocentric Visual Query 2D Localization

    Xu, Mengmeng; Fu, Cheng-Yang; Li, Yanghao; Ghanem, Bernard; Perez-Rua, Juan-Manuel; Xiang, Tao (arXiv, 2022-08-03) [Preprint]
    The recently released Ego4D dataset and benchmark significantly scales and diversifies the first-person visual perception data. In Ego4D, the Visual Queries 2D Localization task aims to retrieve objects appeared in the past from the recording in the first-person view. This task requires a system to spatially and temporally localize the most recent appearance of a given object query, where query is registered by a single tight visual crop of the object in a different scene. Our study is based on the three-stage baseline introduced in the Episodic Memory benchmark. The baseline solves the problem by detection and tracking: detect the similar objects in all the frames, then run a tracker from the most confident detection result. In the VQ2D challenge, we identified two limitations of the current baseline. (1) The training configuration has redundant computation. Although the training set has millions of instances, most of them are repetitive and the number of unique object is only around 14.6k. The repeated gradient computation of the same object lead to an inefficient training; (2) The false positive rate is high on background frames. This is due to the distribution gap between training and evaluation. During training, the model is only able to see the clean, stable, and labeled frames, but the egocentric videos also have noisy, blurry, or unlabeled background frames. To this end, we developed a more efficient and effective solution. Concretely, we bring the training loop from ~15 days to less than 24 hours, and we achieve 0.17% spatial-temporal AP, which is 31% higher than the baseline. Our solution got the first ranking on the public leaderboard.
  • Methane and n-hexane ignition in a newly developed diaphragmless shock tube

    Subburaj, Janardhanraj; Kashif, Touqeer Anwar; Farooq, Aamir (arXiv, 2022-08-03) [Preprint]
    Shock tubes have been routinely used to generate reliable chemical kinetic data for gas-phase chemistry. The conventional diaphragm-rupture mode for shock tube operation presents many challenges that may ultimately affect the quality of chemical kinetics data. Numerous diaphragmless concepts have been developed to overcome the drawbacks of using diaphragms. Most of these diaphragmless designs require significant alterations in the driver section of the shock tube and, in some cases, fail to match the performance of the diaphragm-mode of operation. In the present work, an existing diaphragm-type shock tube is retrofitted with a fast-acting valve, and the performance of the diaphragmless shock tube is evaluated for investigating the ignition of methane and n-hexane. The diaphragmless shock tube reported here presents many advantages, such as eliminating the use of diaphragms, avoiding substantial manual effort during experiments, automating the shock tube facility, having good control over driver conditions, and obtaining good repeatability for reliable gas-phase chemical kinetic studies. Ignition delay time measurements have been performed in the diaphragmless shock tube for three methane mixtures and two n-hexane mixtures at P5 = 10 - 20 bar and T5 = 738 - 1537 K. The results obtained for fuel-rich, fuel-lean, and oxygen-rich (undiluted) mixtures show very good agreement with previously reported experimental data and literature kinetic models (AramcoMech 3.0 [1] for methane and Zhang et al. mechanism [2] for n-hexane). The study presents an easy and simple method to upgrade conventional shock tubes to a diaphragmless mode of operation and opens new possibilities for reliable chemical kinetics investigations.
  • Ocean Warming Amplifies the Effects of Ocean Acidification on Skeletal Mineralogy and Microstructure in the Asterinid Starfish Aquilonastra yairi

    Khalil, Munawar; Doo, Steve S.; Stuhr, Marleen; Westphal, Hildegard (Journal of Marine Science and Engineering, MDPI AG, 2022-08-03) [Article]
    Ocean acidification and ocean warming compromise the capacity of calcifying marine organisms to generate and maintain their skeletons. While many marine calcifying organisms precipitate low-Mg calcite or aragonite, the skeleton of echinoderms consists of more soluble Mg-calcite. To assess the impact of exposure to elevated temperature and increased pCO2 on the skeleton of echinoderms, in particular the mineralogy and microstructure, the starfish Aquilonastra yairi (Echinodermata: Asteroidea) was exposed for 90 days to simulated ocean warming (27 °C and 32 °C) and ocean acidification (455 µatm, 1052 µatm, 2066 µatm) conditions. The results indicate that temperature is the major factor controlling the skeletal Mg (Mg/Ca ratio and Mgnorm ratio), but not for skeletal Sr (Sr/Ca ratio and Srnorm ratio) and skeletal Ca (Canorm ratio) in A. yairi. Nevertheless, inter-individual variability in skeletal Sr and Ca ratios increased with higher temperature. Elevated pCO2 did not induce any statistically significant element alterations of the skeleton in all treatments over the incubation time, but increased pCO2 concentrations might possess an indirect effect on skeletal mineral ratio alteration. The influence of increased pCO2 was more relevant than that of increased temperature on skeletal microstructures. pCO2 as a sole stressor caused alterations on stereom structure and degradation on the skeletal structure of A. yairi, whereas temperature did not; however, skeletons exposed to elevated pCO2 and high temperature show a strongly altered skeleton structure compared to ambient temperature. These results indicate that ocean warming might exacerbate the skeletal maintaining mechanisms of the starfish in a high pCO2 environment and could potentially modify the morphology and functions of the starfish skeleton.
  • Coverage Enhancement of Underwater Internet of Things Using Multi-Level Acoustic Communication Networks

    Xu, Jiajie; Kishk, Mustafa Abdelsalam; Alouini, Mohamed-Slim (IEEE Internet of Things Journal, Institute of Electrical and Electronics Engineers (IEEE), 2022-08-03) [Article]
    Underwater acoustic communication networks (UACNs) are considered a key-enabler to the underwater internet of things (UIoT). UACN is regarded as essential for various marine applications such as monitoring, exploration, and trading. However, a large part of existing literature disregards the 3-dimensional (3D) nature of the underwater communication system. In this paper, we propose a K-tier UACN that acts as a gateway that connects the UIoT with the Space-Air-Ground-Sea Integrated System (SAGSIS). The proposed network architecture consists of several tiers along the vertical direction with adjustable depths. On the horizontal dimension, the best coverage probability (CP) is computed and maximized by optimizing the densities of surface stations (SSs) in each tier. On the vertical dimension, the depth of each tier is also optimized to minimize inter-tier interference and maximize overall system performance. Using tools from stochastic geometry, the total CP of the proposed K-tier network is analyzed. For given spatial distribution of UIoT device’s depth, the best CP can be achieved by optimizing the depths of the transceivers connected to the SSs through a tether. We verify the accuracy of the analysis using Monte-Carlo simulations. In addition, we draw multiple useful system-level insights that help optimize the design of underwater 3D networks based on the given distribution of UIoT device’s depths.
  • Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: a review

    Iftekhar, Sidra; Heidari, Golnaz; Amanat, Neda; Zare, Ehsan Nazarzadeh; Asif, Muhammad Bilal; Hassanpour, Mahnaz; Lehto, Vesa Pekka; Sillanpaa, Mika (Environmental Chemistry Letters, Springer Science and Business Media LLC, 2022-08-03) [Article]
    The demand for valuable metals such as rare earth elements and platinum group metals is rising fast in the context of the depletion of natural resources and international conflicts. Moreover, the future circular economy requires that raw material be recycled from waste by advanced methods such as adsorption by innovative porous materials. Here, we review the recovery of metals using porous materials with focus on adsorbent properties, factors governing the performance, and adsorption mechanisms. Porous materials include carbon-based, oxygen-containing, organic polymer-based, nanoparticle-based, ionic liquid-based, and composite material-based adsorbents. Both soft and hard templating methods yield mesoporous porous materials, yet enhanced metal recovery is achieved by cross-linking and metal-doping to improve electrostatic interaction and complexation. Compared to other porous materials, metal–organic and covalent organic frameworks are effective for metal recovery under a wide range of operating conditions, e.g., pH, but the pollution of effluents should be prevented. The major adsorption mechanisms are understood, but mechanisms of spatial nanoconfinement are poorly known.
  • Set-aware Entity Synonym Discovery with Flexible Receptive Fields (Extended Abstract)

    Pei, Shichao; Yu, Lu; Zhang, Xiangliang (IEEE, 2022-08-02) [Conference Paper]
    Entity synonym discovery (ESD) from text corpus is an essential problem in many entity-leveraging applications. This paper aims to address three limitations that widely exist in the current ESD solutions: 1) the lack of effective utilization for synonym set information; 2) the feature extraction of entities from restricted receptive fields; and 3) the incapacity to capture higher-order contextual information. We propose a novel set-aware ESD model that enables a flexible receptive field for ESD by using entity synonym set information and constructing a two-level network. Extensive experimental results on public datasets show that our model consistently outperforms the state-of-the-art with significant improvement.

View more