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Abstract
Motivation: Genome Wide Association Studies (GWAS) present several computational and statistical challenges 
for their data analysis, including knowledge discovery, interpretability, and translation to clinical practice.
Results: We develop, apply, and comparatively evaluate an Automated Machine Learning (AutoML) approach, 
customized for genomic data that delivers reliable predictive and diagnostic models, the set of genetic variants 
that are important for predictions (called a biosignature), and an estimate of the out-of-sample predictive power. 
This AutoML approach discovers variants with higher predictive performance compared to standard GWAS 
methods, computes an individual risk prediction score, generalizes to new, unseen data, is shown to better 
differentiate causal variants from other highly correlated variants, and enhances knowledge discovery and 
interpretability by reporting multiple equivalent biosignatures.
Availability: Code for this paper is available at: https://github.com/mensxmachina/autoML-GWAS. JADBio 
offers a free version at: https://jadbio.com/sign-up/. SNP data can be downloaded from the EGA repository 
(https://ega-archive.org/). PRS data are found at: https://www.aicrowd.com/challenges/opensnp-height-
prediction. Simulation data to study population structure can be found at: 
https://easygwas.ethz.ch/data/public/dataset/view/1/
Contact: tsamard@jadbio.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Genome-wide association studies (GWAS) identify genetic loci 

associated with a specific trait or disease by scanning multiple markers 
across the genome. Although GWAS have led to the discovery of 
hundreds of thousands of risk variants (https://www.ebi.ac.uk/gwas/), the 
large numbers of false positives and the tiny effect size of most of these 
variants hinder their clinical use.

Translational genomics and precision medicine both promise to 
improve healthcare by bridging the gap between the lab and the clinic 

(Zeggini et al. 2019). Sporadic examples of success stories of GWAS for 
the clinic already exist for Mendelian diseases and pharmacogenomics 
(the identification of genetic variants that influence drug response) 
(Potamias et al. 2014) but for common complex diseases where multiple 
genetic and environmental factors affect disease risk, a systematic 
translation of research findings to clinical application demands not only 
large-scale genomic data linked to detailed electronic health records, but 
also robust statistical methods that will automate the entire data analysis 
life cycle.

The most studied genetic variants in GWAS are single-nucleotide 
polymorphisms (SNPs). Early GWAS were testing one SNP at a time 
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using univariate regression. Today, most approaches are based on linear 
mixed models (LMMs) with random effects (Zhang et al. 2010, Loh et al. 
2018, Runcie and Crawford 2019, Uffelmann et al. 2021). However, these 
methods are both computationally challenging for large datasets, and 
cannot distinguish causal SNPs from nearby variants, since neither are 
independent of the phenotype. Fine-mapping methods have been 
developed to identify causal SNPs in a post-hoc analysis (Schaid, Chen 
and Larson 2018). However, as genomic data increase in sample size, 
linkage disequilibrium becomes more apparent and fine-mapping tools 
face an increasingly complicated task of refining wider regions.

For translational genomics, discovering causal variants is not enough. 
Computing the individual genetic liability for a given trait is also essential. 
For complex diseases, the cumulative small effect of many variants often 
defines the individual disease risk. Using GWAS data, Polygenic Risk 
Score (PRS) analysis is performed that aggregates the effects of variants 
across the genome to predict phenotypes based on genetic profile 
(Dudbridge 2013). 

In PRS computation, however, different protocols for performing 
analyses often lead to inconsistency between studies and misinterpretation 
of results (Choi, Mak and O’Reilly 2020). Reproducibility and 
replicability in GWAS has been a major challenge over the years 
(Huffman 2018) and is directly related to generalization in machine 
learning. 

Machine learning (ML), the development and application of algorithms 
that learn from past data to make future predictions, have already been 
proved effective in the analysis of large, complex data sets, and is likely 
to become ever more important to genomic data (Libbrecht and Noble 
2015, Ho et al. 2019). In ML, feature selection, which aims at identifying 
the most important features in a data set, discarding those that are 
irrelevant or redundant (Guyon and Elisseeff 2003), is of specific interest 
for GWAS data which combine a high number of features (p) and a low 
sample size (n), or as it is called “large p, small n” setting, in the field of 
statistical machine learning. This high-dimensional, low sample-size 
setting drastically limits the power of general purpose statistical and ML 
approaches, and since there is a broadening gap between the number of 
features we are able to measure for a given sample (easily reaching tens 
or hundreds of millions with current technologies) and the number of 
samples we can collect (more commonly in the order of hundreds or 
thousands, or even as low as a few dozens in the case of rare diseases), 
feature selection becomes a crucial step in genomic data analysis.

Additionally, the presence of correlation between features and samples, 
due to linkage disequilibrium and population structure, respectively, 
combined with the existence of joint effects, either linear or nonlinear, like 
epistasis, make the analysis of genomic data even more challenging. The 
complex, highly interrelated biological and environmental network among 
human traits is directly related to the multiple feature selection in ML, the 
discovery of non-redundant sets of features that are equally predictive of 
the trait under investigation, a.k.a. statistical signatures or biosignatures 
for biological data. In our prior work we show empirical evidence that 
multiple biosignatures are indeed prevalent in omics data (Lagani et al. 
2017). 

Incorporating ML in genomic data analysis presents further burden 
from the ML side; manual construction of models requires significant 
statistical and coding knowledge, experience with the choice of algorithms 
and their tunable hyper-parameters, the feature selection process, and the 
estimation of performance protocols; furthermore, ML is prone to 
methodological errors that could lead to overfitting and overestimation of 
performance. Most importantly, ML requires significant time and effort.

The most recent solution to alleviate these problems comes from 
Automated Machine Learning (AutoML) (Guyon et al. 2015, Hutter, 

Kotthoff and Vanschoren 2020), a quickly rising sub-field of machine 
learning that tries to address the theoretical and algorithmic challenges, as 
well as create systems, that fully automate the ML process end-to-end. 
AutoML improves the productivity of the model development process in 
a way that minimizes errors and biases. AutoML automates algorithm 
selection, hyper-parameter tuning, performance estimation, and result 
visualization and interpretation. In this way, AutoML tools promise to 
improve replicability of the statistical analysis, deliver reliable predictive 
and diagnostic models that can be interpretable to a non-expert, while 
drastically increasing the productivity of expert analysts.

We propose the use of an AutoML tool, named Just Add Data Bio 
(JADBio) (Tsamardinos et al. 2022) to analyze genomic data. JADBio has 
been validated by the machine learning and statistical community and has 
been successfully applied to biological and medical data e.g. protein 
function prediction (Orfanoudaki et al. 2017), breast cancer prognosis and 
drug response prediction (Panagopoulou et al. 2019), tissue-specific 
methylation biosignature discovery (Karaglani, Panagopoulou, Baltsavia, 
et al. 2022), predictive modeling for: early and late mortality for patients 
with thrombosis or cancer (Danilatou et al. 2022), early diagnosis of type 
2 diabetes (Karaglani, Panagopoulou, Cheimonidi, et al. 2022), COVID-
19 (Papoutsoglou et al. 2021, Nagy et al. 2021, Bowler et al. 2022), non-
small cell lung cancer (Rounis et al. 2021), autism diagnosis (Batsakis et 
al. 2021), and also to other scientific fields such as nanomaterial property 
predictions (Borboudakis et al. 2017), suicide prediction (Adamou et al. 
2019), speech classification, or bank failure prediction (Agrapetidou et al. 
2021).

In this work we customized JADBio to include a feature selection 
algorithm named εpilogi (standing for selection in Greek), a variant of γ-
OMP (Tsagris et al. 2022) that returns multiple feature subsets that are 
equally predictive. While for prediction purposes all these subsets are 
equivalent, it is important to inform the user of their presence for 
knowledge discovery purposes. Specifically, two variants A and B may be 
informationally equivalent for the outcome, however, only one of them 
may be causal. Hence, it is important to report both of them as being 
equivalent. JADBio equipped with epilogi (hereafter simply referred to as 
JADBio-Gεn) is optimized to apply to the low- sample, high-dimensional 
omics data and thus makes it an ideal choice for genome wide data 
analysis. In addition to predictive and diagnostic models ready for clinical 
use, JADBio-Gεn also returns the corresponding multiple – statistically 
equivalent - biosignatures, a notion that is not currently considered in 
GWAS, although it could be proved extremely important due to genetic 
redundancy. JADBio-Gεn automatically selects the best model and 
generates unbiased estimates of the mean performance and 95% 
confidence intervals. Experiments on simulated data, as well as on real 
human data from the European Genome-phenome Archive (EGA, 
https://ega-archive.org/) and OpenSNP (Greshake et al. 2014), prove that 
JADBio-Gεn creates predictive models of high predictive performance, 
discovers causal variants, selects parsimonious sets of variants, and is 
exclusively data driven with no need of prior knowledge.

2 Methods

2.1 Auto-ML as implemented by JADBio
JADBio is an AutoML platform that, given a dataset and a selected 

outcome, returns among others (a) the best-found ML or statistical 
predictive model for the outcome, (b) a selected minimal-size feature 
subset that leads to the winning model, and (c) out-of-sample (i.e., on new 
data) estimates of the performance of the model. A full presentation of 
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JADBio is in (Tsamardinos et al. 2022). JADBio may try hundreds or 
thousands of ML pipelines (called configurations in this context) on a 
given problem. Each configuration consists of a pipeline of algorithms for 
preprocessing, feature construction (for complex data types), imputation, 
feature selection, and modeling and a choice for the values of their hyper-
parameters. An example of a configuration is “impute missing values with 
their mean, run the εpilogi algorithm for feature selection with hyper-
parameter values ΔBIC = 2, and equivalence threshold = 0.05, then run a 
Support Vector Machine with linear kernel and cost hyper-parameter 
C = 100”. Typically, the number of possible configurations ranges 
between a few tens to a few thousands. The system automatically decides 
which algorithms to try and which hyper-parameter values. It also decides 
how to evaluate the performance of the models produced by that 
configuration using (repeated) K-fold cross-validation or a hold-out.

The winning configuration is applied on all available data to (a) produce 
the final model and (b) select features in the feature selection step. Hence, 
JADBio does not “lose samples to estimation” as it uses all data for the 
training of the final model (Tsamardinos 2022). To estimate the 
performance of this final model JADBio employs the Bootstrap Bias 
Corrected Cross Validation (BBC-CV) estimate (Tsamardinos, Greasidou 
and Borboudakis 2018) that corrects cross-validation estimates for trying 
multiple configurations (called “winner’s curse” in statistics). JADBio has 
been shown not to over-estimate the predictive performance of the models 
produced in an extensive study with more than 360 omics datasets 
(Tsamardinos et al. 2022). Currently, for feature selection JADBio 
employs the εpilogi (details are presented below), SES (Lagani et al. 
2017), and Lasso (Tibshirani 1996), for feature selection, and Decision 
Tree, Random Forest, Ridge Logistic Regression, Support Vector 
Machines with linear and non-linear kernels, for modeling classification 
problems. For the experiments in this paper, only the εpilogi algorithm for 
feature selection was employed, as it is the only one that scales to the sizes 
of GWAS. Also, we should denote here that, in this work, features 
correspond to genomic variants and we will be using these terms 
interchangeably.

2.2 Feature Selection for GWAS and the εpilogi algorithm
GWAS measuring millions or even tens of millions of SNPs require 

highly scalable feature selection algorithms. In addition, when feature 
selection is employed for knowledge discovery and identifying important 
SNPs, one needs to solve the multiple feature selection problem and 
identify not a single optimal feature subset (signature), but ideally all 
feature subsets that lead to optimal predictions: it is misleading to return 
to the domain expert a set of SNPs as the only ones required for building 
an optimal predictive model, if there exist a second set of SNPs with 
equally good predictive power. εpilogi is such an algorithm developed as 
part of this paper that scales to millions of features. In addition, it is an 
algorithm for solving the multiple feature selection problem. First, we 
describe how εpilogi identifies a single feature subset, and then how to 
extend it to identify multiple such subsets. 

εpilogi is a greedy feature selection algorithm based on the 
generalization of the Orthogonal Matching Pursuit algorithm (Pati, 
Rezaiifar and Krishnaprasad 1993) called the γ-OMP (Tsagris et al. 2022). 
γ-OMP generalizes the standard OMP to any type of outcome, any type of 
predictor feature, metric for measuring residuals, and predictive model 
used internally by the algorithm. The algorithm starts with an empty set of 
selected features. In each iteration it builds a predictive model (e.g., using 
logistic regression) with the selected features and computes the residuals 
of the model (e.g., deviance residuals or raw residuals) (Tsagris et al. 

2022). Next, εpilogi selects as the next best feature to include the one that 
is mostly correlated with the residuals. Intuitively, it selects the SNP that 
provides the most information about the errors of the current model, which 
should approximately be the SNP with the largest added value for the 
model. The algorithm terminates when a stopping criterion has been 
satisfied, namely the p-value testing whether the difference between the 
Bayesian Information Criterion (BIC) (Neath and Cavanaugh 2012) of the 
models with and without the next-best feature is significant at a given 
threshold. The threshold is automatically tuned by JADBio by trying 
various reasonable values. JADBio will calculate ΔBIC values that are 
directly affected by training sample size and p-values of an X2 distribution. 
Please refer to supplementary for detailed information on the exact 
formula.

A major difference between εpilogi and γ-OMP is that the former has 
been extended to heuristically discover multiple equivalent feature 
subsets. Two SNPs R and C are informationally equivalent with respect to 
predicting a given outcome, when one can substitute the other in the set of 
selected SNPs, and still obtain a model that is statistically 
indistinguishable in terms of predictive performance. More details on the 
theory of multiple feature selection and informational equivalence is in 
(Tsamardinos et al. 2017). The heuristic method to consider two SNP R 
and C informationally equivalent given the current selected SNPs S is 
determined as follows: first, the residuals r of the model using S are 
computed. Then, if the following two conditions hold R and C are 
considered equivalent: Ind(R; r | C) and Ind(r ; C | R), where Ind(R; r | C) 
denotes the conditional independence of R with r given C. When linearity 
is assumed, the test can be implemented by testing for significance the 
corresponding partial correlation.  The tests Ind return a p-value and 
independence is accepted when it is larger than a threshold. Intuitively, R 
and C are heuristically considered equivalent, if C is known, then R 
provides no additional information for the residuals r, and if R is known, 
then C provides no additional information for r. A similar technique has 
been employed in the Statistical Equivalent Signatures (SES) algorithm 
(Lagani et al. 2017). The pseudocode is provided in the supplementary. 
The first signature returned by εpilogi without considering the feature 
equivalences is called the reference signature. 

Regarding algorithmic complexity, εpilogi is independent on the 
number of samples and linearly dependent on the number of features. 
Moreover, εpilogi can be easily parallelized since in every iteration, the 
most correlated with the residuals variable enters the candidate set. This 
selection criterion allows splitting the datasets into separate chunks of 
features C, storing the most correlated variable in each chunk and selecting 
the one with the highest correlation coefficient across all chunks. The 
number of chunks, C, and the sequence of chunk processing is 
independent of the final selected variables, thus parallelization depends 
only on computing resources (e.g. a high-dimensional problem of 2·103 
samples and 106 features, is solvable in a few minutes on a typical 16GB 
RAM personal computer).

2.3 JADBio-Gεn : AutoML for Genetic Data
We denote with JADBio-Gεn the version of JADBio equipped with 

only the εpilogi algorithm as the feature selection algorithm, and all other 
feature selection algorithms disabled. The set of predictive models to try 
and tune (e.g., Support Vector Machines, Random Forests, Ridge Linear 
Regression) remain the same as in the standard JADBio. 

2.4 Multiple Feature Selection for detecting causal genetic 
variants
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In GWAS studies one seeks to detect the genetic variants that are 
causally related to the outcome. Feature selection has been theoretically 
connected to causality (Spirtes, Glymour and Scheines 1993, Tsamardinos 
and Aliferis 2003) under some broad conditions (Tsamardinos and Aliferis 
2003) and assuming there are no latent confounding factors, the data 
distribution can be represented by a Causal Bayesian Network, where the 
edges of the network denote direct causal relations. In this case, the 
minimal-size, optimally predictive feature subset (i.e., the solution of the 
feature selection problem) is the set of direct causes, direct effects, and the 
direct causes of the direct effects of the outcome, called the Markov 
Boundary (Pearl 2009). Since, no SNP can be causally affected by the 
outcome, in this domain, the Markov Boundary of the outcome consists 
only of its direct causes. If there are multiple Markov Boundaries, or the 
sample size is too small to statistically distinguish between the true 
Markov Boundary and some other feature subset (i.e., both subsets lead to 
models whose predictive power cannot be statistically distinguished) then 
the direct causes of the outcome are contained within the union of the 
Markov Boundaries. In cases of latent confounding factors being present 
(e.g., SNPs in linkage disequilibrium are correlated due to their proximity 
in the genome with distance being a confounding factor), then the selected 
feature subsets may contain confounded features that are not directly 
causally affecting the outcome. However, the causal variants are still 
guaranteed to be members of the union of the Markov Boundaries. In 
summary, under the standard assumptions and conditions of causal 
discovery and modeling (Spirtes, Glymour and Scheines 1993, Lagani et 
al. 2016), an optimal multiple feature selection algorithm should select 
feature subsets that not only lead to optimal predictive models, but also, 
they contain the causal genetic variants. 

2.5 Standard practices in selecting variants in GWAS 
studies 

The standard practice in selecting variants in GWAS studies is not 
based on ML feature selection. First SNPs are filtered based on linkage 
disequilibrium, minimum allele frequency, and other factors to reduce 
their numbers (Uffelmann et al. 2021). This step may potentially lose 
useful information. Second, every variant’s association (correlation in a 
general sense) with the outcome is tested and a p-value is produced. These 
p-values stem from testing pairwise associations (a SNP with the 
phenotype). Hence, each SNP is considered in isolation and independently 
of any other variant.  SNP-to-SNP correlations are ignored. Finally, a p-
value threshold is determined (typically equaling 5×10−8) that controls for 
multiple hypothesis testing. All SNPs with p-values smaller than the 
threshold are accepted as correlated with the outcome and as potentially 
biologically important. We will call this practice standard GWAS 
selection.

The difference of standard GWAS selection against ML feature 
selection is that the later selects SNPs in a combinatorial, multi-variate 
fashion. This has two ramifications. First, only the SNPs that provide 
added value to the already selected SNPs and the corresponding predictive 
model are selected. Hence, an optimal feature selection algorithm not only 
removes informationally irrelevant SNPs, but also removes SNPs 
redundant for optimal prediction; in contrast, standard GWAS selection 
may include redundant SNPs. Second, SNPs with low association when 
examined in isolation (high p-value) may actually be highly predictive in 
combination with other SNPs. These SNPs will not be included by 
standard GWAS selection. For all these reasons, ML feature selection is 
expected to not only select fewer genetic variants, but also lead to more 
predictive models.

2.6 Polygenic risk score (PRS) analysis
In contrast to variant selection in GWAS data, PRS does not aim to 

identify individual SNPs associated to a given phenotype, but aggregates 
information from SNPs across the genome in order to provide 
individual‐level scores of genetic risk.

To compute the PRS one needs to first select variants based on the 
published literature and combine them using published effect sizes in a 
linear model. Therefore, PRS computation requires not only SNP values 
for all samples, but also a file containing the summary statistics for all 
SNPs, acquired from previous studies on a specific outcome, e.g. human 
height. 

PRS is a single score value, for every sample, independently of the 
collection of samples. Depending on a p-value threshold, either a specific 
value, or a range of lower and upper values, PRS scores are based only on 
the SNPs that pass this filter (p-value information should be always 
available in summary statistic file). Therefore, PRS computation will 
exploit information from a potentially large list of SNPs, where the 
association with the outcome is derived univariately and requires an 
already well studied phenotype. 

Furthermore, methods that either control for linkage disequilibrium 
(LD), or shrink the effect size estimates are applied. Both methods are 
prone to parameter tuning, e.g. in the widely used C+T (clumping + 
thresholding) method (for details see (Choi, Mak and O’Reilly 2020)), the 
p-value threshold of variants to be included in the PRS score should be 
optimized. Additionally, those parameters may be incorrectly 
approximated when base and target samples are drawn from different 
populations or differ in size (Dudbridge 2013). In general, when hyper-
parameter tuning is poorly performed, it may lead to overfitted, non-
parsimonious predictive models, and to overestimation of their predictive 
performance (Tsamardinos, Rakhshani and Lagani 2014). In our proposed 
AutoML approach, optimal hyperparameter tuning is ensured without the 
need of advanced statistical or bioinformatics knowledge. Moreover, 
multivariate variant selection by εpilogi is performed in a data-driven way 
without the need of extra files or prior knowledge.

3 Results

3.1 εpilogi discovers more predictive and causally related 
variants than QTCAT

In this section we compare εpilogi (Tsagris et al. 2022) with a state of the 
art method in discovering causal variants called Quantitative Trait Cluster 
Association Test (QTCAT) (Klasen et al. 2016). QTCAT is also a multi-
variate feature selection algorithm, specifically designed for genetic 
variants and arguably, the algorithm mostly related to εpilogi. QTCAT 
accounts for population structure and has been shown to outperform linear 
mixed model approaches on simulated data, as demonstrated in (Klasen et 
al. 2016). Briefly, QTCAT works as follows: QTCAT starts by generating 
a hierarchical clustering of all covariates based on their correlations, 
followed by testing these clusters for significant associations to the 
response variable along this hierarchy. The lowest, still significant clusters 
in the hierarchy are the final result clusters, which include all those 
covariates that are significantly associated to the response variable.

To ensure a fair comparison we integrated both εpilogi and QTCAT in 
JADBio’s automated pipeline (for details see supplementary methods) and 
tested which method will select the most informative and the most 
causally related SNPs, after optimizing the modeling algorithm and its 
hyper-parameter values within JADBio. Notice that εpilogi returns 
multiple feature subsets that are informationally equivalent, but for a fair 
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comparison with QTCAT we only use the first (reference) subset found by 
εpilogi.

To have a gold standard regarding which are the causal SNPs that the 
methods should identify we applied the simulation procedure proposed in 
(Klasen et al. 2016). Specifically, the simulator uses real SNP 
measurements, but simulates an outcome to be causally determined by a 
number of stochastically selected SNPs. The number of the causal SNPs 
is denoted as the “Number of SNPs” simulation parameter. The simulation 
parameter distribution, taking values gamma and Gaussian, determines 
how causal SNPs are selected depending on their position. The heritability 
h2 parameter determines the explained variance of the outcome by the 
causal SNPs ( h2 = 1 implies the outcome is a deterministic function of the 
causal SNPs). 

In the first set of experiments, we applied four different simulation 
scenarios ( ) as in (Klasen et al. 2016), corresponding to different 𝐼 ― 𝐼𝑉
combinations of values of the simulation parameters. For each simulation 
scenario, we generated 50 simulated outcomes. We then compare the two 
methods in terms of their efficacy of discovering predictive sets of SNPs 
by computing the coefficient of determination R2 of the best model 
produced by JADBio using the selected SNPs. Notice that an optimally 
predictive model can at most reach predictive performance R2=h2=0.7. 
We also compare the methods in terms of their efficacy in identifying the 
causal SNPs, by computing the True Positive Rate (TPR) and False 
Discovery Rate (FDR) defined as the percentage of returned causal SNPs 
(true positives) out of all causal SNPs (positives) and the percentage of 
returned non-causal SNPs (False Positives) out of all SNPs returned, 
respectively. 

Figure 1A, presents the predictive performance results for scenario I 
(Gaussian distribution for the SNP position, Number of SNPs: 20, and 
heritability h2: 0.7). The other scenarios produce qualitatively similar 
results and are shown in the Supplementary. Specifically, the y-axis 
corresponds to the difference of the predictive performance measured in 
R2 between the best JADBio model using the SNPs selected by εpilogi or 
QTCAT minus the best model using the truly causative SNPs. The R2 

performances are estimated on a hold-out test set of ~130 samples. The 
distributions of performances over the 50 runs, along with their mean and 
median are presented for εpilogi and QTCAT, respectively. The figure 
contains two lines corresponding to 0 performance difference (achieved 
by the optimal model) and a baseline model, named max and base, 
respectively. The baseline model that achieves R2 = 0 (difference equals -
0.7) is a model that always predicts the mean value of the outcome without 
consideration of any SNPs. The estimated performances above 0 (i.e., 
better than the theoretical optimum) are due to the estimation variance due 
to the finite size of the hold out set. Estimates performances below 0.7 are 
due to either estimation variance or because the model is worse than the 
baseline model. The p-value of the paired t-test testing whether the 
average performance of models using SNPs selected by εpilogi equals the 
average performance of models using the QTCAT method is also reported 
in the figure (p-value = 1.97e-10) indicating the average performances are 
statistically significantly different. Importantly, εpilogi’s distribution of 
predictive performance, acquired from these  repeats, is of smaller 50
variance, which is an indicative characteristic of a consistent model-
producing methodology. 

Figure 1B shows the trade-off between FDR and TRP achieved by the 
two algorithms for various p-value thresholds on the algorithms’ hyper-
parameter values. We used 10 different values logarithmically spaced 
between  and  for both algorithms. Overall, εpilogi selects the 10 ―6 0.8
causal variants with higher TPR and smaller FDR than QTCAT across all 
thresholds. 

In a second set of experiments (see Fig. 1C), we compare the scalability 
in terms of sample size and feature space of εpilogi and QTCAT, for an 
arbitrarily chosen simulation scenario ( , 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑔𝑎𝑚𝑚𝑎

, ). The maximum number of  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑃𝑠 = 20 ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.7
samples and features is limited by the size of the original SNP dataset to 

 samples and  features. We vary the feature size within the 1,307 214,051
range [ , ] and sample size within [ , ] or the original 10% 60% 10% 100%
dataset and select features and samples with uniform probability. Each 
setting is repeated 50 times. As shown in Fig. 1C-left, εpilogi’s scales better 
with both increasing sample size and feature size. For the full dataset, 
QTCAT requires about 6 hours of computational time. All simulations and 
experiments were performed on a machine with Intel Core i7-7700 
processor running at 4.2GHz with 32GB RAM, and 64bit Windows 10.

We note that εpilogi and QTCAT are implemented in different 
programming languages (MATLAB and R respectively); hence, it is better 
to compare the slopes and scaling trends of the execution times, not the 
absolute times. In Fig. 1 we present the comparison between εpilogi and 
QTCAT in terms of a) predictive performance, b) ability to detect true 
associations and c) scalability in terms of computational time. 

We applied four different simulation scenarios ( ). Results on all 𝐼 ― 𝐼𝑉
scenarios and details on the simulation parameters are described in 
supplementary. In Fig. 1A, we show results of the Scenario I (Gaussian 
distribution for the SNP position, Number of SNPs: 20, and heritability h2: 
0.7). Each simulation scenario was repeated  times. During each repeat 50
we computed the relative performance (coefficient of determination R2) as 
the result of the regression between the ground truth SNPs and the those 
resulting from each feature selection method1. When plotting the 
distribution of these relative performances, we expect models that 
performed closer to the ground truth model (i.e. the linear models built 
with ground truth predictors) to lie near the zero value of y-axis (max line), 
while the worst ones to reside around . The value of  is the minimum ℎ2 ℎ2

theoretical performance (base) corresponding to the random guessing in 
ML terms. In practice, since  is a statistical parameter, the minimum ℎ2

actual performance will vary around this parameter. Models that perform 
higher than the base line identify SNPs which are associated with the 
random independent noise dictated by  parameter and this is a statistical ℎ2

artifact which should not be considered. Models with lower performance 
than the minimum actual performance select SNPs that systematically 
predict worse than using the average value of phenotype2. P-value of the 
paired t-test, i.e. when testing the null hypothesis of equal performances 
between εpilogi and QTCAT method is also reported.

Regarding predictive performance, εpilogi’s reference signature 
produces models that are statistically significantly more accurate than the 
corresponding models of QTCAT, across all four simulation scenarios. 
More importantly, εpilogi’s distribution of predictive performance, 
acquired from these  repeats, is of smaller variance (distributions with 50
tighter bounds), which is an indicative characteristic of a consistent 
model-producing methodology. With respect to ground-truth signature 
retrieval, εpilogi always detects more true positive features (higher TPR), 
in all selection thresholds. εpilogi also achieves lower FDR for the most 
qualified (most frequent hyper-parameter value used in best model) 
selection threshold. 

To compare the efficiency of εpilogi and QTCAT on detecting true 
association, we calculated the true positive rate, (TPR) and false discovery 

1 We note that we use the value of the best configuration reported from the 
machine learning pipeline.
2 Negative values of  can occur here. From the formula: 𝑅2 𝑅2 = 1 ― (∑𝑖

 this is apparent when  is true on (𝑦𝑖 ― 𝑦𝑖)2 )/(∑𝑖(𝑦𝑖 ― 𝑦𝑖)
2) |𝑦𝑖 ― 𝑦𝑖| > |𝑦𝑖 ― 𝑦|

average.
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rate, (FDR) (see Fig. 1B). We note that for QTCAT we used  p-values 10
logarithmically spaced between  and  (we chose these boundary 10 ―6 0.8
values to vary from a particularly strict, in terms of selection, scenario to 
including nearly all associations), while for εpilogi the equivalent  𝛥𝐵𝐼𝐶
scores range from  to  respectively (please refer to supplementary 31 7,13
for the detailed ΔBIC formula that generates these values directly from the 
p-value set).

In see Fig. 1C we examine the algorithmic (time) complexity for each 
feature selection method, i.e. the scalability in terms of sample size and 
feature space, by analyzing an arbitrarily chosen simulation scenario (

, , ). 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑔𝑎𝑚𝑚𝑎  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑃𝑠 = 20 ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.7
Since the simulation occurs only for the phenotype, the maximum sample 
and dimensionality size are initially limited to the corresponding size of 
the original dataset, that is  samples and  features. 1,307 214,051
Nonetheless, QTCAT requires a substantial amount of computational time 
to complete when feature size is maximum, approximately  for 6ℎ

 dataset. Thus, we constrained feature size to a range of 1,307 × 214,051
 to , while sample size to a range of  to . Regarding 10% 60% 10% 100%

time complexity, εpilogi is more efficient regardless of sample or feature 
space size. As shown in see Fig. 1C-left, εpilogi’s computational time is 
invariant of sample size, while QTCAT’s is linearly dependent, with 
increasing slope as sample size increases. Regarding feature size (see Fig. 

1C-right) both methods have linearly dependent computational time, 
however again, the corresponding slopes are substantially larger for 
QTCAT. Since εpilogi and QTCAT are implemented in different 
programming languages in these experiments (MATLAB and R 

respectively), the absolute time differences between these methods should 
not be considered, rather than the differences between the respective 
derivatives (slopes), which capture the inherent Big-O notation of each 
algorithm. 

3.2 εpilogi discovers more predictive and disease related 
variants than standard GWAS variant selection 

In this section, we compare the variants selected by εpilogi and standard 
GWAS selection with respect to the predictive power of the selections and 
their biological relevance. Same as in the previous experiment, for a fair 
comparison, both types of selecting variants are embedded within JADBio 
to optimize the final predictive model and estimate its performance. 
Specifically for standard GWAS selection, we directly selected the same 
variants as the ones reported in the published papers introducing the 
datasets employed for the comparison. On one hand, this direct selection 
ensures we apply the exact methodology of the authors of the published 
studies as intended. On the other hand, it is important to note that the 
variants selected in the publications are based on the same data that are 
being cross validated during model optimization, i.e. variant selection is 
not cross-validated. Hence, the performance estimates reported for the 
standard GWAS selection are expected to be optimistic (Tsamardinos 
2022) favoring this methodology.

The evaluation is performed on four real disease related datasets, i.e., 
datasets where the outcome is the disease status, leading to binary 
classification task. The data has been deposited at the European Genome-
phenome Archive. EGA offers a vast amount of genotyped human 
samples diagnosed with a certain disease, alongside with control datasets 
such as 1958 British Birth cohort and National Blood Donors cohort. We 
analyzed datasets from the following human disease studies: 1) 
Ankylosing Spondylitis-EGAS00000000104 (Evans et al. 2011), 2) 
Multiple Sclerosis- EGAS00000000101 (Sawcer et al. 2011), 3) 
Parkinson’s-EGAS00000000034 (Spencer et al. 2011) and 4) Psoriasis-
EGAS00000000108 (Strange et al. 2010). In each study a number of filters 
(e.g. Hardy–Weinberg equilibrium, minor allele frequency (MAF), e.t.c.) 
that excludes either samples or variants, here Single Nucleotide 
Polymorphisms (SNPs), has been applied first, as indicated in the 
respective originally published study. This time, both the outcome and the 
variant data are real and not simulated, hence, the optimal predictive 
performance and the true causal variants are unknown. 

To find the optimal model, JADBio trains tens of thousands of model 
instances produced by thousands of configurations (ML pipelines). As an 
example, in the psoriasis dataset, the analysis completed within 10 hours 
after cross-validating 4340 configurations, producing 43400 
corresponding model instances. All runs took place on a machine running 
the Fedora OS with AMD Ryzen Threadripper 3960X 24-Core processor, 
and 128Gb ram. The comparison results are shown in Table 1. The results 
clearly demonstrate that εpilogi discovers variants that lead to more 
predictive models than the standard methodology outperforming standard 
GWAS selection by more than 25 AUC points in the Ankylosing 
Spondylitis dataset.

Table 1. Comparing predictive performance in four disease datasets. 
AUC refers to the Area Under the ROC Curve (higher is better, 1.0 is 
optimal)as our metric of predictive performance of accuracy. CIAUC 
provides the 95% confidence interval of the predictive performance. 
Winning performances are designated with italics. JADBio-Gεn 
discovers more predictive sets of SNPs associated to the disease 
compared to the published studies. It also discovers SNPs that are 

Fig. 1 Comparison between epilogi and GTCAT. (A) Distribution of differences of 

performances of the best models using signatures selected by εpilogi (light blue) and QTCAT 

(red) from the theoretical optimal model. The horizontal line base is the difference with the 

baseline model that always predicts the mean value of the outcome, and line max is the 

maximum difference from the optimal that can be achieved. The p-value of a t-test comparing 

the means of the distributions is shown. εpilogi discovers signatures that are statistically 

significant-ly more predictive than QTCAT.  (B) Average True Positive Rate (TPR) and False 

Discovery Rate (FDR) of causal variants identification across 10 p-value thresholds for 

QTCAT and εpilogi. The threshold most frequently selected by JADBio when optimizing 

model performance is circled in dotted line, while the percentage of selection lies right above. 

εpilogi dominates QTCAT in both TRP and FDR. The threshold that most frequently 

optimizes performance achieves a balance between TRP and FDR, which is not true for 

QTCAT, while circle radius is inversely proportional to this frequency. (C) Computational 

time comparison between QTCAT and εpilogi. Left plot shows computational time for each 

feature selection method, as a function of relative sample size (100% corresponds to 1,307 

samples) for 4 different relative feature sizes (100% corresponds to 214,051 SNPs). The plot 

on the right shows computational time as a function of relative feature size for 4 different 

relative sample sizes. εpilogi scales better with both increasing sample size and feature size.
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informationally equivalent (i.e., one can substitute the other in the model 
and still obtain optimal performance) reported in the parenthesis.

Disease SNPs in reference 
signature (# of 
informationally 
equivalent SNPs)

Predictive 
Performance – 
AUC [CIAUC]

Optimal 
classification 
model type

Variant selection by εpilogi
Ankylosing 
Spondylitis 13 (2) 0.887 [0.861–

0.914]
Support Vector 
Machines

Multiple 
Sclerosis 92 (19) 0.823 [0.797 - 

0.851]
Random 
Forests

Parkinson’s 11 (8) 0.758 [0.728 – 
0.79]

Ridge 
Regression

Psoriasis 27 (29) 0.893 [0.865 – 
0.907]

Random 
Forests

Variant selection by standard GWAS practices as in the original 
published studies

Ankylosing 
Spondylitis 8 0.612 [0.574 – 

0.649]
Random 
Forests

Multiple 
Sclerosis 34 0.586 [0.546 - 

0.625]
Random 
Forests

Parkinson’s 9 0.566 [0.527 – 
0.605]

Random 
Forests

Psoriasis 17 0.752 [0.721 – 
0.782]

Random 
Forests

There is no significant overlap between the SNP’s discovered in the 
original studies and those reported by εpilogi. This is explained by the fact 
that εpilogi removes redundant SNPs, as well as potentially including low 
association variants with high added value, as described above. However, 
we note that in the case of Multiple Sclerosis even though there are no 
common SNPs discovered initially, we did find five common genes 
selected after mapping those SNPs to their corresponding genomic 
regions.
To study disease association of the discovered SNPs we measured the 
gene overlap in known pathways related to the disease studied. We 
consider related pathways as those including the disease term in their 
description. For example, for the Ankylosing Spondylitis disease we 
consider the following pathways: Ankylosing spondylitis in the 
Jensen_DISEASES library, Self-reported ankylosing spondylitis 20002 
1313 and ICD10 ankylosing spondylitis M45 in the 
UK_Biobank_GWAS_v1 library, Ankylosing spondylitis in the 
PheWeb_2019 library, Ankylosing spondylitis in the DisGeNET library, 
Spondylitis, Ankylosing in the dbGAP, e.tc. We downloaded 193 different 
libraries including 382,983 pathways from the Enrichr database (Xie et al. 
2021, Chen et al. 2013, Kuleshov et al. 2016). In Enrichr, each gene set is 
associated with a functional term or an enrichment term such as a pathway, 
cell line, or disease. We refer to any of those terms as entities. For each 
entity we counted how many genes that are linked to the discovered 
variants are involved in the entity.

Table 2. JADBio-Gεn discovers SNPs associated to genes that are 
involved in more related entities. Related entities are considered those 
that include the disease terms in their description. Bold indicate higher 

values when comparing JADBio results to those of the originally 
published studies.
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Variant selection by εpilogi
Ankylosing 
Spondylitis

13 0 21 0 13 8 3

Multiple 
Sclerosis

92 0 79 5 65 33 13

Parkinson’s 11 1 12 2 139 64 62
Psoriasis 27 1 21 1 149 49 19

Variant selection by standard GWAS practices as in the original 
published studies

Ankylosing 
Spondylitis

8 0 8 0 13 5 3

Multiple 
Sclerosis

34 0 37 5 65 25 13

Parkinson’s 9 1 11 2 139 65 62

Psoriasis 17 1 17 1 149 30 19

As shown in Table 2, εpilogi discovers more “disease-related” SNPs since 
they are found in more entities that have been related to the disease. To 
compare the biological impact of the discovered SNPs we used Ensembl 
Variant Effect Predictor (VEP) and the Genome Reference Consortium 
Human Build 37 (McLaren et al. 2016), to determine any affected genes 
and the consequences of the variants on the protein sequence. Since many 
genes have more than one transcript, VEP provides a prediction for each 
transcript that a variant may overlap. We run VEP with the default 
settings, without filtering for consequence data per variant or gene 
transcription to allow for the maximum biological discovery. To visualize 
our data we used circlize (Gu et al. 2014), biomaRt (Durinck et al. 2009), 
ggplot2 (Durinck et al. 2009) R packages, and a customized version of the 
PieDonut function in (Gu et al. 2014). We also used the h19 cytoband data 
when needed. In Fig. 2 we provide circular genomic plots with cytoband 
data on the left to show where on the genome the discovered SNPs lie and 
pie and donut plots on the right to show the impact of those SNPs on 
protein function. Here, we show results for the Multiple Sclerosis (MS) 
disease. Similar plots for all other diseases can be found in supplementary 
methods. Most SNPs found in both cases are “Modifiers”, meaning that 
are usually non-coding variants or variants affecting non-coding genes, 
where predictions are difficult or there is no evidence of impact, according 
to VEP definitions. It is already known that most of the variants discovered 
by standard GWAS selection lie in non-coding regions making their 
functional interpretation challenging (Gu et al. 2014). With εpilogi we 
discovered more missense variants compared to the original study. A 
missense variant is a sequence variant, that changes one or more bases, 
resulting in a different amino acid sequence but where the length is 
preserved, according to VEP definition. Also, many variants discovered 
by εpilogi lie in chromosome 6, the majority of which lies in the major 
histocompatibility complex (MHC) which was the first susceptibility 
locus related to multiple sclerosis (Patsopoulos et al. 2013). 
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3.3 Automated Machine Learning with JADBio-Gεn 
generalizes Polygenic risk score analysis

In this section, we focus on the complete Auto-ML system, JADBio-Gεn, 
that includes not only the variant selection part (i.e., the εpilogi algorithm), 
but also the optimization of the hyper-parameters and the modeling step, 
as well as the estimation of predictive performance. We show that 
JADBio-Gεn generalizes the Polygenic risk score (PRS) analysis. 

PRS analysis computes a multi-variate risk score for each new sample. 
This score could be used to directly classify new samples, but it is often 
employed as an extra predictive feature along the measured genetic 
variants. 

Hence, as already mentioned, PRS computation requires prior 
knowledge of the variants associated with the outcome. Similarly, 
JADBio-Gεn computes a risk score using ML modeling and feature 
selection, but it (a) it does not require prior knowledge about the variants 
to include in the final model; these are discovered by the feature selection 
algorithm using the data. (b) it does not require knowledge of the 
coefficients of the selected variables; they are estimated from the data. (c) 
It does not limit itself to a linear predictive model, but it explores several 
non-linear ML models, such as Random Forests and non-linear Support 
Vector Machines.
For the purposes of this section, we used data from the open online 
challenge on the CrowdAI platform (crowdai.org) aiming at predicting the 
height of an individual from genome-wide genotyping data. The initial 
dataset contained 7,252,636 variants which passed a quality threshold, 
defined as an imputation score INFO > 0.8, genotyping missingness 
frequency Fm<0.1, and a Hardy- Weinberg equilibrium exact test p-value 
<10-5. Each genetic variant was represented by 0 (homozygous for 
reference), 1 (heterozygous), 2 (homozygous for the alternative allele) or 
NA (missing data or variants of allosomes). The data were partitioned by 

the challenge organizers into two sets, a training set with 784 samples and 
a test set of 137 samples. 

The winning method in the competition was based on PRS using 
publicly available summary statistics of the GIANT study to achieve the 
best result (Naret et al. 2020). The training set and testing set were 
combined for quality control, data preparation and gender imputation. 
Several preprocessing steps took place before modeling: 1) removing 
duplicate SNPs and invalid SNPs (i.e those without ids), 2) keeping only 
SNPs that are common in train and test set, 3) removing SNPs with 
multiple positions and 4) LD pruning (removing SNPs based on high 
levels of pairwise LD). LD pruning significantly shrinks feature size, from 
6,854,199 variants that had left after the first three steps to 729,726. The 
winning model in the competition was a simple linear model including 
gender, three first principal components (PCs), and the PRS. 

We reproduced all the steps of the winning method as stated in (Naret 
et al. 2020). These include: 1) gender imputation using PLINK (Dudbridge 
2013), 2) removal of related individuals using PLINK by computing 
identity-by-descent (IBD), which is a degree of recent shared ancestry. 
This analysis removed 24 individuals. The winner provided the indices of 
the individuals removed, therefore we removed the same individuals 
without reproducing this step, 3) principal component analysis with 
PLINK, keeping the first three principal components to include in the 
model as proposed in the winning method, and 4) PRS computation using 
PRSice (Dudbridge 2013). The winner computed a PRS using the training 
data at different p-value thresholds and then fitted a linear model on the 
training samples to select the p-value threshold with the highest additional 
variance explained. Then, using this p-value threshold they fit a linear 
model with all the covariates (gender, PCs and PRS) to produce the final 
R2 =0.53 on the test set. 

To study the effects of the five covariates (gender, 3PCs and PRS) we 
run JADBio-Gεn on the training data. We computed the PRS for twelve 
different p-value thresholds ranging from 10-16 to 1. The number of SNPs 
included in the PRS computation ranges from 98 to 91260, respectively. 
We then run JADBio-Gεn on each dataset including all the five covariates. 
We found the best R2=0.495 on the test set when we used p-value 
threshold of 10-10 for the PRS computation including 230 SNPs. It is 
important to note here that JADBio-Gεn computes R2 exclusively on the 
test set to avoid any possible sources of overestimation of performance. 
We also applied JADBio-Gεn on the initial dataset of 6,854,199 variants, 
without the preprocessing steps that significantly shrink the feature set. 
The question here is whether we can develop prediction models from SNP 
data only, without including any other covariates or prior knowledge. This 
run took 100 CPU hours. To reduce computational time in analyzing the 
entire dataset of 6,854,199 we set a threshold of maximum 50 SNPs to be 
selected. This run took place on a machine running the Fedora OS with 
AMD Ryzen Threadripper 3960X 24-Core processor, and 128Gb ram. 

We achieved an R2=0.45 on the test data by using only SNP data. 
Although prediction accuracy is higher when using gender, PCs and the 
PRS, there are several disadvantages in including these covariates in the 
statistical analysis. First, the gender has been imputed in the dataset, 
increasing thus the stochasticity of the data, and the PCs have been 
computed on the entire dataset violating the golden rule in ML, that the 
test data cannot influence training the model in any way, introducing thus 
a source of bias. Last, PRS demands the existence of a well-studied 
phenotype and is not applicable in the absence of summary statistics, for 
example in the case of some rare or understudied phenotypes.
In this work we also provide visual insights of the loci of the variants 
detected, accompanied by some functional annotation (i.e. variant 
consequences). In Fig. 3 we show the chromosomal distribution and 
consequences of variants associated with height as detected by JADBio-

Fig. 2 Genomic view of the variants and genes associated with Multiple Sclerosis (left) 

and their impact on protein function (right). Top left: variants and genes discovered by 

JADBio- Gεn. Many variants lie in chromosome 6, the majority of which lies in the major 

histocompatibility complex (MHC) which was the first susceptibility locus related to 

Multiple Sclerosis. Bottom left: variants and genes discovered by the published study. 

JADBio-Gεn discovers more low or moderate impact SNPs than the original study and also 

a higher percentage of missense (6.9% vs. 2.16%) variants (top and bottom right).
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Gεn. Using VEP and the R visualization packages mentioned in the 
previous section we found all height variants have “modifier impact” and 
most of SNPs are found on the X chromosome.

4 Discussion
In this work, we compare εpilogi, a novel proposed multiple feature 
selection method included against QTCAT, an alternative GWAS multi-
marker method proposed in the literature, in their ability to discover truly 
causal variants by comparing their TPR and FDR scores. εpilogi selected 
systematically more truly associated SNPs than QTCAT, while keeping 
FDR reasonably low. The TPR and FDR values improve further when 
considering the corresponding statistically equivalent features, pointing 
out again the importance of multiple signatures.

It is not trivial to identify molecular signatures in genomic datasets 
since multiplicity, a phenomenon where different analysis methods 
applied on the same or similar data, lead to different but apparently 
maximally predictive signatures, makes consistent generation of 
biological hypothesis very hard, hindering their translation to clinical 
practice (Statnikov and Aliferis 2010). This problem is particularly 
apparent in biology, where redundancy plays a key role to shield 
organisms against adverse events (see for example genetic redundancy 
(Nowak et al. 1997)). Discovering multiple and statistically equivalent 
feature subsets has several advantages. Apart from increasing biological 
knowledge discovery, it may be proved very useful in biotechnology and 
translational genomics by offering different alternatives in designing 
measurement or diagnostic assays, or even drug targets, by considering 
different cost/effort solutions.

The εpilogi algorithm discovered multiple statistically equivalent 
solutions in all analyzed datasets. Specifically, in public disease datasets 
from EGA, we showed that those multiple alternative signatures map to 
similar biological entities. This indicates that there are many different 
genetic paths that may lead to the same phenotype. Methods that are able 
to discover most of those alternate genetic signatures provide valuable 
knowledge to life scientists and researchers.

Predictive performance is also important when it comes to computing 
individualized disease risk. We embedded εpilogi within an AutoML 
platform that we call JADBio-Gεn, that automatically optimizes the ML 
pipeline. Variants discovered with JADBio-Gεn led to predictive models 
of higher predictive performance than those discovered by standard 
GWAS in several disease studies. Furthermore, variants discovered by 

εpilogi, outperformed the ones discovered by QTCAT, in terms of 
predictive performance, in all simulation scenarios, in a consistent way. 

In terms of time complexity, εpilogi proved to be far more 
computationally efficient than QTCAT, owing much of its superiority to 
the residual-based selection strategy. Arguably, QTCAT allocates high 
computational load to its initial hierarchical clustering step carried over a 
large portion of available SNPs. This clustering step is needed in order to 
deal with the multicollinearity present in the data. In contrast, εpilogi 
identifies correlated SNPs only for the few features that are included in 
the reference signature, forgoing unnecessary operations on unrelated 
SNPs. Furthermore, QTCAT uses an internal 10-fold cross validation in 
order to tune the λ regularization parameter for LASSO selection 
procedure, thus burdened by additional operations on lower sample size 
parts of the data and although one may argue that QTCAT’s initial 
clustering is carried out only once for a given genomic dataset, in order to 
decrease computational time, this leads to a methodologically incorrect 
and biased data analysis, since cross-validation is performed on a pre-
filtering step on all available samples leading to information leakage on 
the subsequent analysis. Moreover, εpilogi can be easily parallelized by 
running the work separated into several chunks that proceed totally 
independently of one another, as described in methods.

Experiments on real, publicly available datasets showed that JADBio-
Gεn discovers signatures of SNPs with systematically higher predictive 
performance than those reported in the standard GWAS. This means that 
there is hidden information in genomic data waiting to be discovered and 
that the most predictive signature is not always composed of the most 
associated SNPs, but rather by SNPs who complement each other in terms 
of informational content. It is actually possible that SNPs with no pairwise 
association with the phenotype to be necessary for optimal prediction, 
when considered jointly. JADBio-Gεn is able to recognize and filter out 
the redundant features and can be proved extremely useful also in 
combining genetic and clinical prediction models.

JADBio-Gεn can be efficiently used to provide genetic liability to a trait 
at the individual level. A major issue in PRS, is that it is computed based 
on summary statistics reported in the literature. Therefore, prior 
knowledge is necessary for PRS to work effectively. Another issue is that 
since the training is performed on the target data set and the base data is 
only used to prefilter some SNPs, a third dataset is required to avoid 
overfitting. Another solution would be to split the target data and keep a 
separate hold-out set to estimate performance. These samples however are 
“lost to estimation” which is unacceptable in biomedical applications 
where sample collection is extremely difficult and costly. In rare diseases, 
for example, this would be almost impossible. JADBio-Gεn does not lose 
samples to estimation as it uses all data for the training of the final model, 
estimates out of sample predictive performance using advanced 
techniques, and does not require an external dataset for statistical 
validation of performance (Tsamardinos 2022). Specifically, it employs 
the BBC-CV estimate (Tsamardinos, Greasidou and Borboudakis 2018) 
to estimate the performance of this final model that corrects cross-
validation estimates for trying multiple configurations. Also, JADBio-Gεn 
is an entirely data driven approach and does not need any prior knowledge 
to work.
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