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Abstract: Climate change and human activities increasingly threaten lake water resources that 

account for 87% of Earth’s liquid surface freshwater (1–3). Yet, trends and drivers of lake water 

storage over decadal scales remain poorly constrained across the globe. Here, using three 

decades of satellite observations, climate data, and hydrologic models, we report declining 

storage for over 60% of both large natural lakes and reservoirs over 1992-2020. Roughly half of 

the net volume loss in natural lakes is attributable to unsustainable water consumption, climate 

warming or increasing evaporative demand with sedimentation dominating storage losses in 

drying reservoirs. Our findings indicate substantial human and climatic alteration of decadal lake 

water storage variability, underscoring the critical importance of incorporating climate 

adaptation and sustainable water use into water management. 
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One-Sentence Summary: Declining storage in two-thirds of Earth’s large lakes over the past 

three decades is due to both human and climatic drivers. 
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Lakes cover 3% of the global land area (4), storing standing or slowly flowing water that 

provides essential ecosystem services of freshwater and food supply, waterbird habitat, cycling 

of pollutants and nutrients, and recreational services (5). Lakes are also key components of 

biogeochemical processes and regulate climate through cycling of carbon (6). The potential 

goods and services from lakes are modulated by lake water storage (LWS) (7), which fluctuates 

in response to changes in precipitation and river discharge, as well as due to direct human 

activities (damming and water consumption), and climate change. It is well documented that 

some of the world’s largest lakes have recently experienced decline in water storage (2, 3, 7–9). 

However, the drivers of LWS decline have either been poorly constrained by inconsistent 

methods and assumptions or remain unknown for the majority of unstudied large lakes (> 100 

km2) that lack a decadal-scale LWS record (10). For example, recent level declines in the 

Caspian Sea have been primarily attributed to entirely different processes, either evaporative 

losses from the water body (11) or decreasing river discharge (12). Similarly, the decline of 

China’s largest freshwater body, Lake Poyang, has been separately attributed to either the 

operation of the Three Gorges Dam (9), or natural variability (13). More broadly, there have been 

indications of global shifts in LWS over recent decades. Between 1984 and 2015, a loss of 

90,000 km2 of permanent water area was observed using satellites—an area equivalent to the 

surface of Lake Superior, while 184,000 km2 of new water bodies, primarily reservoirs, were 

formed elsewhere (14). Yet, trends and drivers of global LWS remain poorly known, which 

impedes sustainable management of surface water resources, both now and into the future.  

The estimation of trends and variability in global LWS has been complicated by 

modeling and observational limitations. Current global hydrologic models either neglect LWS 

changes (15) or provide over-simplified simulations using one-dimension models of lake volume 

changes (16). In-situ measurements of lakes are spatially sparse, have irregular temporal 
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coverage, or are generally in decline (17). Satellites provide a crucial dimension for assessing 

large-scale LWS variability via repeat observations of lake areas and water levels from space. 

However, sensor limitations, such as coarse resolution, infrequent overpasses, large inter-track 

spacing, and mission gaps, prevent the direct development of a global inventory of LWS changes 

over time. As a result, existing global-scale studies that document lake volume changes lack the 

capability to attribute decadal-scale LWS variability due to limited spatial coverage (10, 18, 19) 

or short temporal duration (< 2 years) (20) or large gaps in the LWS time series (>9 years) (21). 

Using NASA’s ICESat-2 satellite and a one-dimension model (assuming a constant lake area), a 

recent study mapped water levels and storages in 227,386 global water bodies over 2018-2020 

and found that reservoirs, defined as water bodies regulated by a dam, dominated seasonal 

variability in global lake water storage (20). Given the brevity of the study period (< 2 years) and 

limited attribution, i.e., only separating natural lakes and reservoirs (20), decadal-scale LWS 

variability and attribution remains an open question. Another attempt combined water levels 

from ICESat and ICESat-2 to map LWS changes in 6,567 lakes over 2003-2020 and compared 

LWS changes across different climate regimes (21) but suffered from a 9-year discontinuity 

(2010-2018) in LWS time series and limited ability to capture and diagnose drivers of 

interannual variability and trends over the recent decades. Therefore, the human and climate 

change footprints on global LWS changes over decadal timescales remain critically unknown.     

To address this challenge, we construct a global database of time-varying LWS (GLWS) 

from 1992 to 2020, and then decouple the impacts of anthropogenic and natural factors on 

decadal-scale variability in LWS (Fig.1). This GLWS archive consists of sub-yearly storage time 

series for 1,980 large water bodies, including 1,061 natural lakes (100 - 377,002 km2) and 919 

reservoirs (4 – 67,166 km2), which account for 96% and 83% of Earth’s natural lake and 

reservoir storage, respectively (4, 22). We focus on large lakes because of the fidelity of satellite 
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observations at this scale, their dominance on controlling total lake volume change (8, 20), as 

well as their importance for human and wildlife populations (23). We leverage recent advances in 

both algorithms and cloud-based parallel computing to incorporate fine-resolution (30m) satellite 

observations (Methods). We apply a recently developed algorithm (24) to construct time-varying 

water areas for these lakes using a total of 248,649 Landsat scenes. We estimate lake volume 

variability by combining water areas with water surface elevation measurements from satellite 

altimeters, including CryoSat-2, ENVISAT, ICESat, ICESat-2, Jason series 1-3, SARAL, and 

Sentinel 3. On average, we derive six estimates per year over the 28-year study period for each 

studied water body. We further provide a global-scale attribution of volume trends in natural 

lakes using a statistical-learning framework that incorporates major natural and anthropogenic 

drivers estimated from global climate data and hydrologic models. For reservoirs, we aggregate 

impacts of recent dam construction and subsequent reservoir infilling using newly compiled 

global dam and reservoir inventories (26), as well as sedimentation using in-situ sediment 

surveys and upscaling methods. Finally, we isolate lake storage trends between arid and humid 

regions and quantify the numbers of local populations subject to lake water losses.  

Global LWS trends and drivers 

We identify widespread decline in global LWS over the past 28 years. Two-thirds of 

large lakes show a drying trend (Fig. 1). LWS loss prevails across major global regions including 

western Central Asia, the Middle East, western India, eastern China, northern and eastern 

Europe, Oceania, the conterminous United States, northern Canada, southern Africa, and most of 

South America. Globally, LWS shows a net decline at a rate of -22.34 ± 3.54 Gt yr-1 (Fig. 2A 

and 2D), or by 625.52 km3 in accumulative volume—equivalent to the total water use in the US 

for the entire year of 2015 or 17 times the volume of Lake Mead, the largest reservoir in the 

United States.  
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Fig. 1. Widespread storage decline in large global lakes from October 1992 to September 2020. Lake water storage (LWS) 

trends for 1,061 natural lakes (dark red and dark blue dots) and 919 reservoirs (light red and light blue dots). Note that recently 

filled reservoirs after 1992 are denoted as light purple dots. Classification of arid regions includes arid, semi-arid, and semi-

humid basins, using the aridity index (ratio of mean annual precipitation to mean annual potential evapotranspiration—Methods).  

Globally, natural lake volume declined at a rate of -26.74 ± 1.64 Gt yr-1, of which 42% is 

attributable to direct human activities or changes in temperature and potential evapotranspiration 

(PET), i.e., evaporative demand (Fig. 2G). Over 70% of the total decline stems from the 26 

largest losses (> 0.1 Gt yr-1, p < 0.05) (Fig. 3A). Unsustainable water consumption dominates the 

observed drying of the Aral Sea (-6.59 Gt yr-1) in Central Asia, Lake Mar Chiquita (-0.75 Gt yr-1) 

in Argentina, the Dead Sea (-0.63 Gt yr-1) in the Middle East, and the Salton Sea (-0.11 Gt yr-1) 

in California. Increasing temperature and PET led to the complete disappearance of Lake Good-

e-Zareh (-1.15 Gt yr-1) in Afghanistan, Toshka lakes (-0.40 Gt yr-1) in Egypt, and marked drying 

of Lake Kara-Bogaz-Gol (-1.27 Gt yr-1) in Turkmenistan, Lakes Khyargas (-0.35 Gt yr-1) and 

Uvs (-0.20 Gt yr-1) in Mongolia, Lake Zonag (-0.26 Gt yr-1) in China, and Lake Lama (-0.21 Gt 

yr-1) in Russia. The remaining change is primarily attributable to changes in precipitation and 
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runoff, including the Caspian Sea (-18.80 Gt yr-1), Lake Urmia (-1.05 Gt yr-1) in Iran, the Great 

Salt Lake (-0.29 Gt yr-1) in the United States, Lake Poyang (-0.13 Gt yr-1) in China, Lake 

Titicaca (-0.12 Gt yr-1) on the border of Bolivia and Peru, and others, which largely agrees with 

existing studies (8, 12, 13, 27). while a recent study suggests the drying of Lake Urmia was 

primarily attributed to human activities (28), we find that naturalized flows explain 67% of the 

variance in the annual mean lake volume compared with 52% explained by human water 

consumption. Thus, the decline of Lake Urmia is likely a concurrent result of both reduced 

natural flows and human activities. Arctic lakes are mostly in decline due to a combination of 

changes in precipitation, runoff, temperature and PET (Fig. 3A), which are likely a concurrent 

result of natural variability and climate change. Globally, temperature-and-PET changes 

dominate water loss in 23% of drying lakes (p < 0.05) (Fig. 3A). Approximately one-third of the 

total decline in all drying lakes is offset by precipitation-and-runoff-driven storage increases 

elsewhere, largely in remote areas such as the Tibetan Plateau, Northern Great Plains, and Great 

Rift Valley (Fig. 3B).  
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Fig. 2. Time series and drivers of global lake water storage, October 1992 to September 2020. A-F, time series and trends 

for aggregate storage anomalies for each type of water body for global, humid, and arid regions, respectively. G-L, attribution of 

storage trends in natural lakes and reservoirs. Temp, Prep, and PET stand for temperature, precipitation, and potential 

evapotranspiration, respectively. The shading denotes the LWS uncertainties in all water bodies (grey shading), natural lakes 

(blue shading), and reservoirs (green shading) at a 95% confidence interval. The error bars show the aggregate uncertainty in 

LWS trends at a 95% confidence interval. For natural lakes, 40% of the net global decline is attributable to human activities and 

increasing temperature and potential evapotranspiration. Recent dam construction, largely from humid basins, supported the net 

increase in global reservoir storage, although over 80% of the increased storage in recently filled reservoirs is offset by sediment-

induced storage loss in existing reservoirs. 

Two-thirds of all large reservoirs show a storage decline, although reservoirs show a net 

global increase at a rate of 4.41 ± 1.43 Gt yr-1, owing to 184 (20%) recently filled reservoirs. 

Storage declines in existing reservoirs, i.e., filled before 1992, are seen in most global regions. 

Global storage decline in existing reservoirs (-13.50 ± 1.13 Gt yr-1) can be largely attributed to 
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sedimentation (Fig. 2J), which is consistent with observations of substantial storage decline in 

US reservoirs due to sedimentation (36). Globally, sediment-induced storage loss offsets more 

than 80% of the increased storage from new dam construction (Fig. 2J). Our finding suggests 

that sedimentation is the primary contributor to the global storage decline in existing reservoirs 

and has a larger impact than hydroclimate variability, i.e., droughts and recovery from droughts 

(ref). Recent droughts may have contributed to reservoir storage declines, particularly in the 

southwestern United States (29), eastern and southern Brazil (30), the Middle East (31), southern 

India (32), eastern and southeastern Asia (33), eastern Oceania (34), and most of Europe (35). 

However, drought impacts on reservoir LWS have been partially offset by wetting trends 

elsewhere (12), such as the headwaters of the Nile River, southeastern Canada, and Mexico (Fig. 

1).  

Commented [FY1]: Change the order of references 

Commented [FY2]: Gao et al. 2012. Global monitoring of 
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Fig. 3. Attributions of significant volume changes (p < 0.05) in natural lakes. (A) Chief determinants for volume losses. (B) 

Chief determinants for volume gains. The inset pie charts show the aggregate impact (by magnitude) of each determinant based 

on relative contributions. For clarity, lake volume changes that are not significantly attributable (N/A) are not shown in panels 

(A) and (B), but their proportions are included in the inset. 

LWS trends in arid and humid regions 

Arid regions experienced a net storage decline for both natural lakes and reservoirs at a 

rate of -26.63 ± 3.22 Gt yr-1 and -5.58 ± 0.92 Gt yr-1, respectively. Over 70% of the total LWS 
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loss in arid regions stemmed from basins with either a drying climate or unsustainable human 

water consumption or both, such as in the Aral Sea Basin and the Colorado River Basin (Fig. 4). 

About 23% of the loss is attributable to changes in temperature and PET and another 18% is 

explained by human activities (Fig. 2I). Approximately, 60% of water bodies in arid regions 

show a significant water loss (p < 0.05). One-quarter of the water losses in natural lakes were 

dominated by changes in temperature and PET or human activities, while another 43% of the 

water losses were primarily attributable to reduced natural flows. Storage declined (p < 0.05) in 

over two-thirds of reservoirs in arid regions. The net reservoir storage loss was mostly attributed 

to sedimentation (Fig. 2L), although droughts likely aggravated reservoir storage losses, such as 

in the Colorado River Basin and the Tigris & Euphrates Basin (31, 37).  

 

 
Fig. 4. Major losses and gains in basin-wide lake water storage (greater than 0.5 Gt yr-1). Bar colors represent the trending 

direction in aridity in arid and humid basins. The vertical line through a bar indicates basins where the LWS trend is dominated 

by recently filled reservoirs. Note that major losses are primarily found in arid basins that are getting drier and major gains in 

humid basins are mostly due to recent reservoir filling. 

Storage increase in newly filled reservoirs drives a net LWS gain in humid regions at a 

rate of 9.88 ± 1.15 Gt yr-1, although over 70% of the remaining water bodies show a storage 

decline. More than 85% of the newly filled reservoirs are concentrated in a few basins with 

Commented [FY4]: Figure 4 is hard to interpret. The 
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recent dam construction boom including the Nile, Yangtze, Mekong, Volta, Rajang, Pearl, 

Yellow, Amur, Uruguay, Tocantins, and Nottaway River Basins, as well as western India (Fig. 

4). About 60% of these regions experienced a drying climate during the study period, suggesting 

human activities partially reversed the negative impact of climate on basin-wide surface water 

storage by impounding more water in reservoirs. Beyond these dam-construction hotbeds, 

reservoir storage is mostly in decline (Fig. 1). Most natural lakes are also in decline in humid 

regions, including high latitudes and the tropics (Fig. 1). However, these natural lake volume 

losses are offset by precipitation-and-runoff-driven LWS gains in the northern Great Plains and 

the Laurentian Great Lakes of North America (Fig. 3B).  

Up to 1.9 billion people (roughly one-quarter of the global population in 2020) live in 

basins with large water bodies experiencing significant water storage losses (p < 0.05) (Fig. 5). 

Many of these lakes have been acknowledged as important sources of water and energy 

(hydropower) (22) or listed among Ramsar sites of International Importance (38). About 23%, 

7%, and 15% of the global population reside in basins experiencing freshwater decline, 

environmental degradation, and energy reduction associated with decreasing LWS, respectively 

(Fig. 5). We note that the population numbers are only estimates of potential impacts on lake 

basin residents who are likely the most vulnerable to lake water loss (refs). In line with the UN’s 

projection of two-thirds of the global population facing water shortage by 2025 (39), our 

estimates indicate water shortage related exclusively to populations living in basins with large 

lakes could potentially impact up to one-quarter of the global population, even though we did not 

account for remotely affected populations, such as those relying on virtual water trade from the 

affected regions. For arid regions, basins experiencing freshwater decline have the highest 

number (26%) of residents, followed by energy reduction in basins resided by 18% of the 

population, and environmental degradation in basins resided by 11% of the population. Despite 

Commented [FY5]: Wurtsbaugh, W.A., Miller, C., Null, 

S.E., DeRose, R.J., Wilcock, P., Hahnenberger, M., Howe, 
F., Moore, J., 2017. Decline of the world’s saline lakes. Nat. 

Geosci. 10, 816–821.  
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the net reservoir storage increase in humid regions, about 22% of the population are facing 

freshwater loss and about 13% are facing energy reduction in their residing basins, indicating 

that the benefits of increased reservoir storage are not equally distributed.  

 
 

 
Fig. 5. Percentages of the global population residing in basins experiencing lake water loss (p < 0.05). Impacted sectors 

associated lake water loss are freshwater decline, environmental degradation, and hydropower energy reduction. Overall, over 

one-fifth of the global population live in basins with lake water loss in both arid and humid regions.  

Discussion 

We leveraged three decades of fine-resolution satellite observations to map long-term 

global LWS variability, finding evidence of widespread decline in global LWS with almost half 

of the large water bodies (49%) exhibited a significant drying trend. One-fourth of the significant 

water losses (p < 0.05) in natural lakes were dominated by human activities or changes in 

temperature and PET which are primarily driven by climate change (refs). Before our study, 

most of these human and climate change footprints were either unknown, such as the 

desiccations of Lake Good-e-Zareh in Afghanistan and Lake Mar Chiquita in Argentina, or 

known only anecdotally, as in northern Eurasia and Canada. These water losses impact both the 

water and carbon cycles. For example, Arctic lakes are drying partially as a result of changes in 

temperature and PET (Fig. 3A), which is in line with the broader climate change pattern with 
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increasing evaporative loss due to rising lake temperature and decreasing lake ice (40, 41). 

Changes in runoff could be in part caused by climate change through increasing evaporation 

(refs). Assuming runoff-driven water loss in each lake is partially attributed to climate change, 

48% of the drying lakes (p < 0.05) were at least partially influenced by climate change as their 

water losses were dominated by changes in temperature, PET, or runoff (fig. S7). Widespread 

LWS decline, particularly along with rising lake temperature, could reduce the amount of 

absorbed carbon dioxide and increase carbon emissions to the atmosphere given that lakes are 

hotspots of carbon cycling (6, 42). Increasing lake water storage could also be in part impacted 

by climate change, particularly in the Tibetan Plateau where glacier retreat and permafrost 

thawing partially led to the alpine lake expansion (refs).  

Our findings suggest that drying trends worldwide are more extensive than previously 

thought (8, 12, 21). Luo et al. (21) reported a net global increase in natural lake storage at a rate 

of 16.12 Gt yr-1 and that most of the global lakes in humid regions gained water storage whereas 

lakes in arid regions with high human water stress were generally in decline over 2003-2020. 

While we confirm a “dry-get-drier” pattern in LWS, our findings also show widespread LWS 

decline in the humid tropics and high latitude regions over the last three decades, as well as a net 

global decline (-26.74 ± 1.64 Gt yr-1) in natural lake storage. This contrast indicates that 

extrapolating the trends inferred from a brief time series could be problematic, suggesting the 

necessity for long-term observations. For example, Luo et al. (21) concluded that Amazon lakes 

are largely expanding by comparing LWS changes between two short periods (2003-2009 and 

2018-2020). By contract, the vast majority of Amazon lakes in our study show a decreasing 

LWS trend because our detailed multi-decadal LWS time series fully capture the impacts of 

major droughts during the early 2000s, 2010 and 2015. More broadly, our finding indicates that 

an intensified water cycle in a warming climate (43) may not result in increased water storage in 
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humid regions, in part due to increasing land ET (44) and potentially longer drought recovery 

times (45). The continued observations from ongoing and new satellites, in particular the Surface 

Water and Ocean Topography (SWOT) mission (planned to launch in 2022), will be useful to 

extend the LWS trends observed here and enable longer-term assessments of the interactions 

among LWS, the water cycle, and climate change.   

This global-scale attribution of LWS trends has important implications for water resource 

management. Sedimentation dominates the water loss in existing reservoirs, which suggests our 

heavily reliant reservoirs will become less reliable for freshwater and hydroelectric energy 

supply because of aging reservoirs. Nearly half of the net loss in natural lake volume (40%) is 

attributable to human activities or increasing temperature and PET, indicating that any recovery 

of water storage in these lakes could require substantial management efforts. Our findings are 

broadly consistent with existing studies (3, 28, 46) on human footprints on the Aral Sea, Dead 

Sea, and Lake Urmia, but also reveal additional undocumented human-driven LWS losses in 

other large lakes, such as the Salton Sea in California and Lake Chiquita in Argentina. The 

strongest attribution of human activities to LWS losses generally occurred in basins that were 

getting drier. This suggests that under conditions of declining precipitation, more intensive 

human-water withdrawal from rivers led at least partially to the desiccations of closed lakes. We 

detect that increasing temperature and PET is the chief determinant of water loss in 23% of 

drying natural lakes, a cautionary finding for a projected warmer future, underscoring the 

importance of accounting for climate adaptation within future surface water management. 
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The Landsat images, including Landsat 5 Thematic Mapper, Landsat 7 Enhanced Thematic 

Mapper-plus, and Landsat 8 Operational Land Imager, are available from the US Geological 

Survey at http://earthexplorer.usgs.gov and the Google Earth Engine platform at 

https://earthengine.google.com. ICESat and ICESat-2 data are available from the National Snow 

and Ice Data Center (NSIDC) at https://nsidc.org/data. Water levels derived from ICESat-2 are 

available at https://doi.org/10.5281/zenodo.4489056. Water level products from radar altimeters 

can be downloaded from the Hydroweb at http://hydroweb.theia-land.fr, the Database for 

Hydrological Time Series of Inland Waters (DAHITI) at https://dahiti.dgfi.tum.de/en, and the 

USDA Global Reservoir and Lake Monitor database at 

https://ipad.fas.usda.gov/cropexplorer/global_reservoir. The CryoSat-2 data are available from 

the European Space Agency (ESA) at https://earth.esa.int/eogateway/catalog/cryosat-products. 

The Global Reservoir Bathymetry Dataset can be downloaded from 

https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/TO5HJG. The Global 

Surface Water (GSW) dataset is available from https://global-surface-water.appspot.com/ and the 

Google Earth Engine platform at https://earthengine.google.com. Reservoir sedimentation survey 

data from the U.S. Army Corps can be accessed at https://water.usace.army.mil/ and 

https://nicholasinstitute.duke.edu/reservoir-national-trends/sediment/. USGS gauge data can be 

downloaded from https://waterdata.usgs.gov/nwis/, U.S. Army Corps gauge data can be 

downloaded from https://water.usace.army.mil/ and https://nicholasinstitute.duke.edu/reservoir-

data/, California Department of Water Resources gauge data can be downloaded from 

https://cdec.water.ca.gov/, gauge data from Texas Water Development Board can be downloaded 

from https://waterdatafortexas.org/reservoirs/statewide, gauge data from Spain can be 

downloaded from https://ceh.cedex.es/anuarioaforos/afo/embalse-nombre.asp, and gauge data 

from Bureau of Meteorology in Australia can be downloaded from 

https://earthengine.google.com/
https://nsidc.org/data
https://doi.org/10.5281/zenodo.4489056
http://hydroweb.theia-land.fr/
https://dahiti.dgfi.tum.de/en
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http://www.bom.gov.au/waterdata/.  The HydroLAKES database can be downloaded from 

https://www.hydrosheds.org/page/hydrolakes. The Georeferenced global dam and reservoir 

dataset (GeoDAR) can be downloaded from https://doi.org/10.6084/m9.figshare.13670527. The 

database of Roller-Compacted Concrete (RCC) dams can be accessed at 

http://www.rccdams.co.uk/. The Global Lake area, Climate, and Population (GLCP) dataset can 

be downloaded at https://portal.edirepository.org/nis/mapbrowse?packageid=edi.394.4. The 

HydroSHEDS dataset can be downloaded from https://hydrosheds.org/page/overview. The 

Climatic Research Unit (CRU) data are available from https://crudata.uea.ac.uk/cru/data/hrg/. 

ECMWF Reanalysis v5 (ERA5) data are available from 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. Modern-Era Retrospective 

analysis for Research and Applications version 2 (MERRA-2) are available from 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. Multi-Source Weighted-Ensemble 

Precipitation (MSWEP) are available from http://www.gloh2o.org/mswep/. Global Historical 

Climatology Network data are available from https://www.ncei.noaa.gov/products/land-based-

station/global-historical-climatology-network-monthly. Global Land Evaporation Amsterdam 

Model (GLEAM) data are available from https://www.gleam.eu/. Global Reach-scale A priori 

Discharge Estimates for SWOT (GRADES) dataset can be downloaded from 

http://hydrology.princeton.edu/data/mpan/GRFR/discharge/daily/. The reconstructed human 

water use data derived from four global hydrologic models can be downloaded from 

https://zenodo.org/record/1209296#.YZPcr2DMKM8. The water body masks delineated from 

the GSW dataset, lake volume time series derived from Landsat images and satellite altimeters, 

lake volume trend estimates, and all validation analyses are available on the zenodo data 

repository no later than upon publication.  

 

Code availability 

http://www.bom.gov.au/waterdata/
https://www.hydrosheds.org/page/hydrolakes
https://doi.org/10.6084/m9.figshare.13670527
http://www.rccdams.co.uk/
https://portal.edirepository.org/nis/mapbrowse?packageid=edi.394.4
https://hydrosheds.org/page/overview
https://crudata.uea.ac.uk/cru/data/hrg/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
http://www.gloh2o.org/mswep/
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly
https://www.gleam.eu/
http://hydrology.princeton.edu/data/mpan/GRFR/discharge/daily/
https://zenodo.org/record/1209296#.YZPcr2DMKM8
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R scripts that were used to process hydroclimate and human water use data, to derive water 

levels from ICESat and ICESat-2, to construct lake water storage time series, to estimate the 

mean rate of sedimentation in reservoirs, to estimate trends in lake water storage and basin 

aridity, to conduct validation, to construct regression model ensemble, and to estimate affected 

population, is available on the CodeOcean at https://codeocean.com/capsule/9674488. JavaScript 

scripts for mapping water areas from Landsat images and IDL Scripts for processing CyoSat-2 

data are available in the Auxiliary Supplementary Materials. 

 

 

 

Supplementary Materials 

 

Materials and Methods 

References (47-79) 

Figs. S1 to S9 
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