Constrained Wrapped Least Squares: A Tool for High Accuracy GNSS Attitude Determination

Xing Liu, Tarig Ballal, Member, IEEE, Hui Chen, Member, IEEE, and Tareq Y. Al-Naffouri, Senior Member, IEEE

Abstract—Attitude determination is a popular application of Global Navigation Satellite Systems (GNSS). Many methods have been developed to solve the attitude determination problem with different performance offerings. We develop a constrained wrapped least-squares (C-WLS) method for high-accuracy attitude determination. This approach is built on an optimization model that leverages prior information related to the antenna array and the integer nature of the carrier-phase ambiguities in an innovative way. The proposed approach adopts an efficient search strategy to estimate the vehicle’s attitude parameters using ambiguous carrier-phase observations directly, without requiring prior carrier-phase ambiguity fixing. The performance of the proposed method is evaluated via simulations and experimentally utilizing data collected using multiple GNSS receivers. The simulation and experimental results demonstrate excellent performance, with the proposed method outperforming receivers. The simulation and experimental results demonstrate excellent performance, with the proposed method outperforming receivers. The simulation and experimental results demonstrate excellent performance, with the proposed method outperforming receivers.

Index Terms—GNSS, attitude determination, phase observations, integer ambiguity resolution, wrapped least squares.

I. INTRODUCTION

PLATFORM attitude, crucial information in navigation and vehicle control, is defined as the orientation of a given body frame relative to a reference coordinate [1]. Many attitude determination methods have been discussed in the literature [2]–[6]. Attitude determination via multiple GNSS antennas mounted on a moving vehicle is an important research field with a wide variety of applications [2], [5], [7]–[9]. Recent developments and interest in autonomous systems have drawn even more attention to this research area [10]–[13].

GNSS attitude determination makes use of simultaneous pseudo-range and carrier-phase observations at multiple antennas from one or more GNSS frequencies [14]. It is well known that carrier-phase observations are some orders of magnitude more precise than pseudo-range data [15]. The latter cannot satisfy the needs of high-quality attitude estimation and localization applications. On the other hand, carrier-phase measurements are ambiguous by unknown integer numbers of cycles or wavelengths. Consequently, carrier-phase integer ambiguity resolution is a key and prime difficulty in precise attitude determination. Several ambiguity resolution methods have been proposed over the years, which can be categorized into motion-based methods [16]–[19] and search-based methods [2], [20]–[27]. Motion-based methods have no capacity for real-time solutions due to the requirement of motion information. In contrast, search-based methods can provide instantaneous attitude estimation using the observations from a single time point (or epoch) [22].

Two classes of search-based attitude determination methods can be identified. In the first category, the search is conducted in the (float) attitude domain. Among these methods, the ambiguity function method (AFM) [28]–[30] is the most popular. AFM-based algorithms generally minimize an objective function over a grid of possible attitude angles [22]. A considerable number of grid points in the search domain are required to obtain the global optimal, which results in high computational complexity [31].

The second category of search-based method applies the search in the ambiguity domain over the space of all potential integer combinations. The most prominent approaches of this class are the LAMBDA method [20] and its various modified versions [24], [32]–[35]. The LAMBDA method searches for the optimal carrier-phase integer ambiguities based on the integer least-squares (ILS) principle with high efficiency. However, it does not consider the prior knowledge of the antenna array configuration. This prior information is beneficial for both enhancing the success rate of ambiguity resolution and the accuracy of attitude estimation [36]–[38]. Integer ambiguity resolution under the antenna-geometry constraints is a complex non-convex problem that is very difficult to solve, especially in real-time. The constraint LAMBDA (C-LAMBDA) method has been developed for single-baseline attitude determination, which integrates the baseline length into the optimization model [35]. In the same spirit, the multivariate constraint LAMBDA (MC-LAMBDA) method was proposed to improve 3-D attitude determination by incorporating information from multiple baselines [39], [40]. These two approaches can significantly enhance the performance of ambiguity resolution at the cost of requiring a more sophisticated search algorithm to meet the nonlinear constraints on the antenna array geometry [15], [41]. Despite the resounding success of these LAMBDA variants, their computational efficiency might be inadequate in challenging environments with significant multipath effects or an adverse view of satellites, such as in urban canyon scenarios.

The main contribution of this paper lies in developing a novel GNSS attitude determination method based on a proposed constrained wrapped least-squares (C-WLS) optimization criterion. This is an extended version of our previous...
work [42]. The designed approach incorporates the antenna array information, the ambiguity integer characteristics, and residual phase constraints into the optimization model. The proposed approach belongs to the search-based category. The method considers the attitude parameters as the only unknown variables and rigorously assimilates all the available constraints. Compared with existing algorithms in the float domain [28]–[30], the computational complexity of the proposed method is kept low by reducing the search space to a subset that most likely contains the correct solution. This is done without sacrificing any prior information or constraints. Instead of performing integer ambiguity resolution and attitude estimation in two separate steps, as is done in most traditional approaches [43], [44], we use the ambiguous carrier-phase measurements directly to estimate the attitude information. We demonstrate the effectiveness of our approach in different scenarios. As shown by our simulation and experimental results, the main benefit of the proposed method is improving the success rate and computational complexity, especially in challenging situations with a limited number of satellites or large measurement noise.

This paper is organized as follows. Section II-A formulates the fundamental GNSS attitude determination problem using the double-difference observation model. Section II-B discusses the standard optimization model to solve the attitude determination problem. Section III presents the proposed constraint wrapped least-squares method and theoretically analyzes various aspects of the proposed approach. Section IV describes the adopted search strategy to find the attitude solution. In Section V, simulation and experimental results are presented, demonstrating the feasibility of the proposed approach. In Section VI, we draw the conclusion of this work.

II. BACKGROUND

A. Observation Model

For a platform with $A + 1$ GNSS antennas tracking $S + 1$ satellites, the original observations collected at the a-th antenna ($a = 0, 1, 2, \cdots, A$) from the s-th satellite’s signal ($s = 0, 1, 2, \cdots, S$) can be modelled as

$$
\begin{align*}
\rho_a^s &= P_a^s + I_a^s + T_a^s + c(\delta t_a - \delta t^s) + e_a^s, \\
\psi_a^s &= P_a^s + N_a^s - I_a^s + T_a^s + c(\delta t_a - \delta t^s) + \eta_a^s,
\end{align*}
$$

with

$$
P_a^s = \frac{1}{\lambda}||L^s - l_a||_2.
$$

The variables in (1)–(2) are defined as follows: ρ_a^s and ψ_a^s are the pseudo-range and carrier-phase observables (respectively), P_a^s denotes the distance between the s-th satellite and the a-th antenna, I_a^s is the ionospheric delay, T_a^s is the tropospheric delay, N_a^s is the carrier-ambiguity, λ represents the wavelength for the given frequency, c is the speed of light, δt^s and δt_a denote the satellite and receiver clock biases, respectively, L^s is the satellite location, l_a is the antenna position, and e_a^s and η_a^s account for unmodelled errors and noise.

For a configuration with multiple antennas, as shown in Fig. 1, let us denote the baseline vector between antenna 0 and antenna a represented in the reference coordinate by $x_a \in \mathbb{R}^3$. To mitigate the atmospheric effect and satellite clock biases, we calculate the difference of observations at antenna a and the reference antenna, say, antenna 0. This operation is usually denoted as single difference, and it results in the observation model

$$
\begin{align*}
\rho_{a0}^s &= \rho_a^s - \rho_0^s = P_a^s + P_0^s + c\delta t_{a0} + \epsilon_{a0}^s, \\
\psi_{a0}^s &= \psi_a^s - \psi_0^s = P_a^s + N_a^s + N_0^s + c\delta t_{a0} + \eta_{a0}^s.
\end{align*}
$$

In the attitude determination problem, the baseline length is usually quite short (meter-level or shorter) [45]. This makes the atmospheric delays for two antennas highly correlated and can almost be eliminated by the single-difference operation. Since the baseline length is far smaller than the distance from the satellite to the antennas, P_{a0}^s can be represented as [46]

$$
P_{a0}^s = P_a^s - P_0^s = \frac{1}{\lambda}(h^s)^T x_a,
$$

where $h^s \in \mathbb{R}^3$ is the unit line-of-sight vector between the receiver and satellite s, and T denotes the matrix transpose.

Another difference operation is carried out on the single-difference observations over pairs of satellites to cancel out the receiver clock bias. By designating satellite 0 as a reference, the difference process results in the so-called double-difference model, which is given by

$$
\begin{align*}
\rho_{a0}^s &= \rho_a^s - \rho_0^s = \frac{1}{\lambda}(h^s - h^0)^T x_a + \epsilon_{a0}^s, \\
\psi_{a0}^s &= \psi_a^s - \psi_0^s = \frac{1}{\lambda}(h^s - h^0)^T x_a + N_{a0}^s + \eta_{a0}^s.
\end{align*}
$$

The double-difference operation eliminates most of the common errors such as atmospheric delay, ephemeris errors, and clock errors.

For a-th baseline (the baseline between antenna 0 and antenna a), we can arrange the double-difference observations from various satellites in the vectors

$$
\rho_a = \begin{bmatrix} \rho_{a0}^1 & \cdots & \rho_{a0}^S \end{bmatrix}^T, \quad \psi_a = \begin{bmatrix} \psi_{a0}^1 & \cdots & \psi_{a0}^S \end{bmatrix}^T.
$$

By arranging the other parameters in (5) in a vector or a matrix to match (6), the standard double-difference model is given by the following linear observation equations:

$$
\begin{align*}
\rho_a &= Hx_a + \epsilon_a, \\
\psi_a &= Hx_a + N_a + \eta_a.
\end{align*}
$$
where $\epsilon_n, \eta_n \in \mathbb{R}^S$ are the unmodeled error and noise vectors, $N_a \in \mathbb{Z}^S$ is the unknown integer ambiguity vector, and $H \in \mathbb{R}^{S \times 3}$ is a design (non-singular) matrix with the form

$$H = \frac{1}{\lambda} \begin{bmatrix} (h^1 - h^0)^T \\ \vdots \\ (h^S - h^0)^T \end{bmatrix} = \begin{bmatrix} \tilde{h}_1 \\ \vdots \\ \tilde{h}_S \end{bmatrix}. \quad (8)$$

The process of estimating X_b based on (7) is referred to as single-baseline attitude determination. The baseline orientation given by the vector x_a only partly characterizes the platform’s attitude. To fully describe the platform’s attitude, two or more non-collinear baselines are required. By combining the measurement vectors for multiple baselines in a matrix, the 3-D GNSS attitude observation model is given by

$$P = HX + \Xi, \quad \Psi = HX + N + \Pi, \quad (9)$$

with

$$P \equiv \begin{bmatrix} \rho_1 & \cdots & \rho_A \end{bmatrix}, \quad \Psi \equiv \begin{bmatrix} \psi_1 & \cdots & \psi_A \end{bmatrix}, \quad X \equiv \begin{bmatrix} x_1 & \cdots & x_A \end{bmatrix},$$

where N, Ξ and Π are the corresponding matrix forms of the integer ambiguities and error variables. Note that the pseudo-range and carrier-phase are assumed to be uncorrelated, whose covariance matrices are given by

$$Q_P = \text{cov}[\text{vec}(P)] = E\left[\text{vec}(P - E(P)) [\text{vec}(P - E(P))]^T \right],$$

$$Q_\Psi = \text{cov}[\text{vec}(\Psi)] = E\left[\text{vec}(\Psi - E(\Psi)) [\text{vec}(\Psi - E(\Psi))]^T \right],$$

$$Q = \begin{bmatrix} Q_\Psi & O \\ O & Q_P \end{bmatrix},$$

where $\text{vec}(\cdot)$ is the vectorization operation, $E(\cdot)$ denotes the expectation operator, and O is a zero matrix of dimension $(AS) \times (AS)$.

B. The Constrained Integer Least-Squares Solution

In this subsection, we summarize the standard technique for solving the attitude determination problem based on the observation model (9). In the setup under consideration, the antennas are firmly fixed on a rigid platform such that their coordinates in the body frame can be precisely measured. Hence, the baseline coordinate matrix expressed in the body-frame coordinate system, X_b, is known. The matrix X_b represents the translation of the matrix X in (9) from the chosen reference coordinate system to the body frame. For both X and X_b, all the nonlinear geometrical constraints of the baseline lengths and the baseline relative orientations are satisfied. A rotation matrix links these two baseline matrices and maintains the geometrical constraints intact, that is

$$X = RX_b, \quad (10)$$

where $R \in \mathbb{O}^{3 \times q}$ is an orthogonal matrix, $R^T R = I_q$, I_q is an identity matrix of dimension q, and $q = \min(3, A)$. The essence of the 3-D attitude determination is to estimate the rotation matrix R, which represents the orientation of the body frame relative to the reference frame.

Depending on the value of A and q, we identify three different cases. First, for $A = 1$, $q = 1$, R is a column vector that contains only two independent entries (the third entry is determined by the unit-norm requirement). In this case, X_b degenerates to a scalar value

$$X_b = x_{11}. \quad (11)$$

For $A = 2$, $q = 2$, the baseline coordinates in the body frame can be defined as

$$X_b = \begin{bmatrix} x_{11} & x_{12} \\ 0 & x_{22} \end{bmatrix}. \quad (12)$$

Finally, for $A \geq 3$, $q = 3$, the baseline coordinates in the body frame take the form

$$X_b = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{A1} \\ 0 & x_{22} & x_{23} & \cdots & x_{A2} \\ 0 & 0 & x_{33} & \cdots & x_{A3} \end{bmatrix}. \quad (13)$$

The estimation of the unknown integer ambiguities and the rotation matrix can be formulated as the constrained least-squares (C-LS) optimization [35]

$$\min_{R \in \mathbb{O}^{3 \times q}, N \in \mathbb{Z}^S \times A} \|\text{vec}(Y - ARX_b - BN)\|_Q^{-1}, \quad (14)$$

where

$$Y \equiv \begin{bmatrix} \Psi \\ P \end{bmatrix}, \quad A \equiv \begin{bmatrix} H \\ E \end{bmatrix}, \quad B \equiv \begin{bmatrix} I_S \\ O \end{bmatrix}.$$}

The design matrices A and B link the observation vector to the unknown parameters, Q_Y is the variance-covariance matrix of vec(Y), and $||\cdot||_Q^{-1} = (\cdot)^TQ_Y^{-1}(\cdot)$.

The optimization in (14) is known as the constrained (mixed) integer least-squares (C-ILS) problem. The C-ILS model handles two types of constraints: the integer constraints of the carrier-phase ambiguities, and the orthogonality constraints of the rotation matrix. This is a non-convex optimization due to the integer property of the carrier-phase ambiguities and the orthogonality constraints. A renowned approach to solve (14) is the MC-LAMBD.A method, which makes use of the constrained integer least-squares theory along with a search-and-shrink or search-and-expand strategy [35]. The MC-LAMBD.A method seeks the optimal carrier-phase ambiguities in the integer domain, which may lead to high complexity in some scenarios.

III. THE PROPOSED CONSTRAINED WRAPPED LEAST-SQUARES METHOD

To avoid the complex process of resolving the carrier-phase integer ambiguities, we propose a novel optimization model to estimate the rotation matrix directly and recover the unambiguous phase as a by-product. This model leads to a very efficient approach to solve the attitude determination problem. We will start by introducing the proposed model using only carrier-phase observations. Subsequently, we extend the model to include pseudo-range measurements.

To strengthen the model (14), additional constraints (prior information) will be exploited. Given carrier-phase observations, the unknown matrices R and N can be estimated by applying the C-ILS optimization

$$\min_{R \in \mathbb{O}^{3 \times q}, N \in \mathbb{Z}^S \times A} \|\text{vec}(\xi(R, N))\|_Q^{-1}, \quad (15)$$

where
where $\xi(R, N)$ is the residual phase error defined as
\[
\xi(R, N) \triangleq \Psi - HRX_b - N. \tag{16}
\]
Let N_{ij} and $\xi_{ij}(R, N_{ij})$ be the entries in the i-th row and j-th column of N and $\xi(R, N)$, respectively. Considering the observation error distribution, we can apply an upper-bound to restrict the residual phase, i.e.,
\[
|\xi_{ij}(R, N_{ij})| \leq \delta, \quad i = 1, 2, \cdots, S; \quad j = 1, 2, \cdots, A; \tag{17}
\]
where $|$ denotes the absolute value, and δ is an upper bound that can be related to the noise level. In what follows we will state our main assumption concerning this upper bound. This assumption significantly simplifies the process of estimating the rotation matrix, as will be shown subsequently.

Assumption 1. Double-difference carrier-phase observation noise is confined to an interval bounded by minus and plus a half wavelength. That is
\[
|\eta_a| \leq \frac{1}{2}, \quad s = 1, 2, \cdots, S; \quad a = 1, 2, \cdots, A. \tag{18}
\]
This assumption is essential to the development of the proposed attitude determination method. Therefore, we examine the validity of this assumption before proceeding further. We analyze the assumption from two points of view, as follows:

- **Measurement noise level**

 To analyze the double-difference observation noise level, we apply the Gaussian model to the original carrier-phase measurement noise, that is, we assume the noise of the undifferenced phase follows a Gaussian distribution $\mathcal{N}(0, \sigma^2)$. By the rules of error propagation, the noise of the double-difference phase also follows a Gaussian distribution $\mathcal{N}(0, \sigma^2)$ with $\sigma = 2\sigma_0$. The possibility that the double-difference carrier phase exceeds half of a cycle is
\[
P_2 = 2Q\left(\frac{1}{2}\right), \tag{19}
\]
where $Q(\cdot)$ is the Q-function. As reported in [1], the carrier-phase observations can be measured to better than 0.01 wavelength. By setting $\sigma_0 = 0.01$ and $\sigma = 0.02$, we find out that $P_2 \approx 0$. Thus, it is generally reasonable to regard P_2 as small enough to be ignored.

- **Phase observation nature**

 In the context of attitude determination, only the fractional part of the double-difference phase data is meaningful. This particular property of phase measurements is due to the presence of integer ambiguities. Based on (7), for two different observed noise vectors η_a and $\eta_a + \Delta N_a$, $\Delta N_a \in \mathbb{Z}^S$, the double-difference phase observations ψ_a will have identical fractional parts. This results in the same estimations of the rotation matrix and the unambiguous double-difference phase carrier base on (14). The integer ΔN_a will be absorbed in the integer ambiguity estimation. Therefore, it is impossible to distinguish whether the phase noise is η_a or $\eta_a + \Delta N_a$. Given that achieving the optimal attitude information is the real goal, we can make an assumption about the integer part of phase noise to restrict the possible solutions in a way that is beneficial in improving the estimation of the rotation matrix. Hence, we can select the integer to minimize the absolute value of phase noise, which will lead the phase noise to fall in $[-1/2, 1/2];$ that is, we consider only the estimations corresponding to observations with the lowest possible noise. In other words, double-difference carrier-phase observation noise can be assumed to be no greater than a half wavelength.

Based on Assumption 1, we obtain the following constraint on the residual phase:
\[
|\xi_{ij}(R, N_{ij})| \leq \frac{1}{2}, \quad i = 1, 2, \cdots, S; \quad j = 1, 2, \cdots, A. \tag{20}
\]
Note that $|\xi_{ij}(R, N_{ij})| = 1/2$ will result in N_{ij} having multiple solutions for the same R. To facilitate obtaining an interesting form of the proposed method, we introduce a minor technical trick to modify (20) by limiting the range of $\xi_{ij}(R, N_{ij})$ to $(-1/2, 1/2]$, that is
\[
-\frac{1}{2} < \xi_{ij}(R, N_{ij}) \leq \frac{1}{2}, \quad i = 1, 2, \cdots, S; \quad j = 1, 2, \cdots, A. \tag{21}
\]
Combining (15) with (21), we obtain the following version of the minimization problem for attitude determination:
\[
\min_{R \in \mathbb{S}^{3 \times 4}, N \in \mathbb{Z}^S \times \mathcal{A}} \left\| \text{vec}[\xi(R, N)] \right\|_{Q^{-1}}, \tag{22a}
\]
subject to
\[
-\frac{1}{2} < \xi_{ij}(R, N_{ij}) \leq \frac{1}{2}, \quad i = 1, 2, \cdots, S; \quad j = 1, 2, \cdots, A. \tag{22b}
\]
We can rewrite (22a) in an alternative form as
\[
\min_{R \in \mathbb{S}^{3 \times 4}} \left\{ \min_{N \in \mathbb{Z}^S \times \mathcal{A}} \left\| \text{vec}[\xi(R, N)] \right\|_{Q^{-1}} \right\}. \tag{23}
\]
Given any value of R, the corresponding value of N is
\[
\tilde{N}(R) = \text{round}(\Psi - HRX_b), \tag{24}
\]
with $\text{round}(\cdot)$ being a special rounding function that works exactly like a standard rounding function except that for $N \in \mathbb{Z}$, $\text{round}(N + 0.5) = N$. Using (24), (23) can be rewritten as a single optimization
\[
\min_{R \in \mathbb{S}^{3 \times 4}} \left\| \text{vec}[\Psi - HRX_b - \tilde{N}(R)] \right\|_{Q^{-1}}. \tag{25}
\]
Based on (25), a more compact form of the attitude determination problem formulated by (22a) and (22b) is given in the following lemma.

Lemma 1. Based on Assumption 1, the rotation matrix R can be estimated by solving the minimization
\[
\min_{R \in \mathbb{S}^{3 \times 4}} \left\| \text{wrap}[\text{vec}(\Psi - HRX_b)] \right\|_{Q^{-1}}^2, \tag{26}
\]
where $\text{wrap}(\cdot)$ is defined as
\[
\text{wrap}(\cdot) = (\cdot) - \text{round}(\cdot).
\]

We refer to (26) as the constrained wrapped least-squares (C-WLS) problem. Here, the rotation matrix R is the only unknown. Once R is known, the corresponding integer vector N can be determined from (24).

A geometric interpretation of the WLS concept is given in Fig. 2. The absolute difference between a phase value ϕ_1,
residual phase errors corresponding to the global minimum of (15) satisfy
\[|\xi_{ij}(\hat{R}, \tilde{N}_{ij})| \leq \frac{1}{2}, \quad i=1,2,\ldots,S; \quad j=1,2,\ldots,A, \quad (29) \]
where \(\tilde{N} \) and \(\hat{N} \) are the globally optimal solutions of (15), and \(\tilde{N}_{ij} \) is the entry in the \(i \)-th row and \(j \)-th column of \(\tilde{N} \).

Proof. Suppose that \(\hat{R} \) and \(\hat{N} \) minimize (15), and they satisfy (29). We can calculate the integer matrix based on \(\hat{N} \) using
\[\tilde{N}(\hat{R}) = \text{round}(\Psi - H\hat{R}X_k). \quad (30) \]

When the residual phase errors satisfy
\[|\xi_{ij}(\hat{R}, \tilde{N}_{ij})| < \frac{1}{2}, \quad i=1,2,\ldots,S; \quad j=1,2,\ldots,A, \quad (31) \]
we obtain \(\tilde{N} = \tilde{N}(\hat{R}) \). If there is some residual error \(|\xi_{ij}(\hat{R}, \tilde{N}_{ij})| = 1/2 \), \(\tilde{N} \) will have multiple possible values, and \(\tilde{N}(\hat{R}) \) is one of the solutions. Anyway, \(\hat{R} \) and \(\tilde{N}(\hat{R}) \) will minimize (15). Hence, \(\hat{R} \) will be the global optimum of (25), which is equivalent to (26).

In contrast, we assume that \(\hat{R} \) and \(\tilde{N} \) minimize (15), and \(\tilde{R} \) minimizes (26). Given the fact that (25) and (26) are equivalent, \(\tilde{R} \) will also minimize (25). Then, we have \(\tilde{N} = \tilde{N}(\hat{R}) \) or \(\tilde{N}(\tilde{R}) \) is one of the possible values of \(\tilde{N} \). Otherwise, \(\tilde{R} \) cannot minimize (15) anymore. Therefore, \(\tilde{R} \) and \(\tilde{N} \) will satisfy (29).

The structure of the weight matrix \(Q_\Psi \) is related to whether (29) holds or not. Likewise, the relationship between (15) and (26) might differ for a various weight matrix \(Q_\Psi \). For double-difference observations, \(Q_\Psi \) is not diagonal. With common clock technology, multiple antennas can use a synchronized clock such that the single-difference model is applicable in attitude determination. In that case, \(Q_\Psi \) is a diagonal matrix. We obtain Lemma 3 as a special case to establish (29).

Lemma 3. A sufficient condition for (29) to hold, and hence for (15) and (26) to have the same global optimum for \(R \), is that \(Q_\Psi \) is a diagonal matrix.

Proof. In (15), for \(\forall R \in \mathbb{O}_{3\times q} \), we can figure out the optimal integer ambiguities by minimizing
\[F = \min_{N \in \mathbb{Z}^{S \times A}} \|\text{vec}(\xi(R, N))\|_{Q_\Psi}^{-1}. \quad (32) \]
The diagonal matrix \(Q_\Psi \) results in the following expression
\[F = \min_{N_{11}, \ldots, N_{SA}} \left(\sum_{i=1}^{S} \sum_{j=1}^{A} \frac{[\xi_{ij}(R, N_{ij})]^2}{\sigma_{\Psi,kk}} \right) \quad (33) \]
where \(\sigma_{\Psi,kk} \) is the \(k \)-th diagonal entry of \(Q_\Psi \).

Since the sum entries are uncorrelated, we obtain the optimal by minimizing each entry independently. It is apparent that \(N_{ij} \in \mathbb{Z} \) satisfying \(|\xi_{ij}(R, N_{ij})| \leq 1/2 \) will minimize \([\xi_{ij}(R, N_{ij})]^2 \). Therefore, \(\hat{R} \) and \(\hat{N} \), the global optimums of (15), always satisfy (29) when \(Q_\Psi \) is a diagonal matrix.
According to Lemma 2, we conclude that (15) and (26) have the same global optimum for \mathbf{R}.

To precisely explain the effect of the residual constraint, the results based on the unambiguous phase can be used as a benchmark to appreciate the difference between (15) and (26). Assuming Φ is the unambiguous double-different phase, we define S, S_1 and S_2 as

$$S = \mathbb{O}^{3 \times q},$$

$$S_1 = \{ R \mid R \in \mathbb{O}^{3 \times q}, \xi = \Phi - H \hat{R} \mathbf{x}_b, [\xi]_j \in \mathbb{Z}, i = 1, \ldots, S; j = 1, \ldots, A \},$$

$$S_2 = S - S_1.$$

An oracle estimator (that has access to the correct integer ambiguities) can be formulated as

$$R_o = \arg \min_{R \in S_1} \| \text{vec}(\Phi - H \mathbf{x}_b) \|^2_{Q_{\psi}^{-1}}.$$ \hspace{1cm} (34)

Contrast this with the C-WLS estimator

$$R_{\text{CILS}} = \arg \min_{R \in S} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}}$$

and the C-ILS estimator

$$R_{\text{CILS}} N_{\text{CILS}} = \arg \min_{R \in S, N \in \mathbb{Z}^q \times A} \| \text{vec}(\Psi - H \mathbf{x}_b - N) \|^2_{Q_{\psi}^{-1}}.$$ \hspace{1cm} (35)

Corollary 1, Corollary 2, and Corollary 3 summarize the relationships between these three estimators.

Corollary 1. If the C-ILS estimator (36) and the oracle estimator (34) have the same global optimum for \mathbf{R}, the C-WLS estimator (35) will also have the identical global optimum as the oracle estimator (34), i.e.,

$$R_{\text{CILS}} = R_o \Rightarrow R_{\text{CILS}} = R_o.$$ \hspace{1cm} (36)

Proof. We can readily see that

$$\min_{R \in S_1} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}} = \min_{R \in S_1} \| \text{vec}(\Phi - H \mathbf{x}_b) \|^2_{Q_{\psi}^{-1}},$$ \hspace{1cm} (37)

and

$$\min_{R \in S_2} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}} \geq \min_{R \in S_2} \| \text{vec}(\Psi - H \mathbf{x}_b - N) \|^2_{Q_{\psi}^{-1}}.$$ \hspace{1cm} (38)

If (36) converges to the oracle estimator, i.e., $R_{\text{CILS}} \in S_1$ and $R_{\text{CILS}} = R_o$, we obtain

$$\min_{R \in S_1, N \in \mathbb{Z}^q \times A} \| \text{vec}(\Psi - H \mathbf{x}_b - N) \|^2_{Q_{\psi}^{-1}} < \min_{R \in S_2, N \in \mathbb{Z}^q \times A} \| \text{vec}(\Psi - H \mathbf{x}_b - N) \|^2_{Q_{\psi}^{-1}},$$ \hspace{1cm} (39)

and

$$\min_{R \in S_1, N \in \mathbb{Z}^q \times A} \| \text{vec}(\Psi - H \mathbf{x}_b - N) \|^2_{Q_{\psi}^{-1}} = \min_{R \in S_1} \| \text{vec}(\Phi - H \mathbf{x}_b) \|^2_{Q_{\psi}^{-1}}.$$ \hspace{1cm} (40)

From (37)-(40), it follows that

$$\min_{R \in S_1} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}} < \min_{R \in S_2} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}}.$$ \hspace{1cm} (41)

Note that

$$\arg \min_{R \in S_1} \| \text{vec}(\Phi - H \mathbf{x}_b) \|^2_{Q_{\psi}^{-1}} = \arg \min_{R \in S_1} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}};$$ \hspace{1cm} (42)

then (35) will also have the same global optimum as (34), i.e.,

$$R_{\text{CILS}} \neq R_o \Rightarrow R_{\text{CILS}} \neq R_o.$$ \hspace{1cm} (43)

Corollary 2. If the C-WLS estimator (35) and the oracle estimator (34) have different global optimums, the global optimum (with respect to R) of the C-ILS estimator (36) will also differ from that of the oracle estimator (34). That is

$$R_{\text{CILS}} \neq R_o \Rightarrow R_{\text{CILS}} \neq R_o.$$ \hspace{1cm} (44)

Proof. If $R_{\text{CILS}} \neq R_o$, then $R_{\text{CILS}} \in S_2$, and

$$\min_{R \in S_2} \| \text{wrap}[\text{vec}(\Psi - H \mathbf{x}_b)] \|^2_{Q_{\psi}^{-1}} < \min_{R \in S_2} \| \text{vec}(\Psi - H \mathbf{x}_b) \|^2_{Q_{\psi}^{-1}}.$$ \hspace{1cm} (45)

$$\text{then (35) will also have the same global optimum as (34), i.e.,}$$

$$R_{\text{CILS}} = R_o.$$ \hspace{1cm} (46)

$$\text{As a result,}$$

$$R_{\text{CILS}} \neq R_o \Rightarrow R_{\text{CILS}} \neq R_o.$$ \hspace{1cm} (47)

Using the results of Corollary 1 and Corollary 2, the following corollary holds.

Corollary 3. Compared with the C-ILS estimator (36), the C-WLS estimator (35) is more likely to have the equivalent global optimum for \mathbf{R} as the oracle estimator (34), i.e.,

$$P(R_{\text{CILS}} = R_o) \geq P(R_{\text{CILS}} = R_o),$$

where $P(\cdot)$ denotes the probability.

Proof. Since

$$R_{\text{CILS}} = R_o \Rightarrow R_{\text{CILS}} = R_o,$$

$$R_{\text{CILS}} \neq R_o \Rightarrow R_{\text{CILS}} \neq R_o,$$

it can be readily seen that

$$P(R_{\text{CILS}} = R_o) \geq P(R_{\text{CILS}} = R_o).$$ \hspace{1cm} (48)

When only carrier-phase measurements are utilized to jointly estimate the ambiguities and attitude, there are more unknowns than the number of equations. Corollary 3 illuminates the advantage of the C-WLS approach compared to the C-ILS method. However, the pseudo-range observations are still required to improve the solutions.
relationships

For the estimators in (51), (52) and (53), the same terms (

\[\min_{R \in \mathbb{S}, N \in \mathbb{Z}^S \times A} \| \begin{bmatrix} \text{vec}(\Psi - HRX_b) \\ \text{vec}(P - HRX_b) \end{bmatrix} \|_Q^{-1}. \]

It is readily seen that (46) will achieve the same global minimum and optimal solution of \(R \) as

\[\min_{R \in \mathbb{S}, N \in \mathbb{Z}^S \times A} \| \begin{bmatrix} \text{vec}(Y - ARX_b - BN) \end{bmatrix} \|_Q^{-1}. \]

To compare (46) with (14), we assume that

\[\tilde{R}_\text{wls} = \arg \min_{R \in \mathbb{S}} \| \begin{bmatrix} \text{vec}(\Psi - HRX_b) \end{bmatrix} \|_Q^{-1}, \]

\[\tilde{R}_\text{cils} = \arg \min_{R \in \mathbb{S}, N \in \mathbb{Z}^S \times A} \| \begin{bmatrix} \text{vec}(Y - ARX_b - BN) \end{bmatrix} \|_Q^{-1}. \]

Given the structure of \(Q \), we have

\[\tilde{R}_\text{wls} = \arg \min_{R \in \mathbb{S}} \| \begin{bmatrix} \text{vec}(\Phi - HRX_b) \end{bmatrix} \|_Q^{-1}, \]

\[\tilde{R}_\text{cils} = \arg \min_{R \in \mathbb{S}, N \in \mathbb{Z}^S \times A} \| \begin{bmatrix} \text{vec}(Y - ARX_b - BN) \end{bmatrix} \|_Q^{-1}. \]

Incorporating pseudo-range observations will yield the same terms (\(\| \text{vec}(P - HRX_b) \|_Q^{-1} \)) to (51)-(53). So all the results in Corollary 1, Corollary 2, and Corollary 3 are still true. As a consequence, we establish the following corollary.

Corollary 4. For the estimators in (51), (52) and (53), the global optimums with respect to \(R \) satisfy the following relationships

\[\tilde{R}_\text{cils} = \tilde{R}_\text{wls} \Rightarrow \tilde{R}_\text{cils} = \tilde{R}_\text{wls}, \]

\[\tilde{R}_\text{cils} \neq \tilde{R}_\text{wls} \Rightarrow \tilde{R}_\text{cils} \neq \tilde{R}_\text{wls}, \]

\[P(\tilde{R}_\text{cils} = \tilde{R}_\text{wls}) \geq P(\tilde{R}_\text{cils} = \tilde{R}_\text{wls}). \]

Corollary 4 demonstrates the advantage of the C-WLS model. The proposed method imposes a constraint on the residual errors, which shrinks the solution space and remove spurious solutions. This results in an improvement over the C-ILS method. To give insight into all the results discussed in this section, we summarize the significance of various lemmas and corollaries in Remark 1.

Remark 1. The significance of various lemmas and corollaries is as follows.

- Lemma 1 based on only carrier phase data.
- Lemma 4 based on pseudo-range and carrier phase data.
- Lemma 2 – 3 discuss the conditions for the C-WLS and the C-ILS optimization to have equivalent global optimum for \(R \) when using only carrier phase observations.
- Lemma 2 provides a sufficient and necessary condition.
- Lemma 3 proves a diagonal \(Q_\Phi \) as a sufficient condition.
- Corollary 1 – 4 indicate the advantage of the C-WLS model compared with the C-ILS model; namely, the C-WLS estimator is more likely to have the same global optimum for \(R \) as the oracle estimator.
- Corollary 1 – 3 based on only carrier phase data.
- Corollary 4 based on pseudo-range and carrier phase data.

IV. IMPLEMENTATION OF THE PROPOSED C-WLS METHOD

In the C-WLS problem (46), the rotation matrix \(R \) is the only unknown. For \(q = 3 \), \(R \) includes 9 elements that are uniquely determined by 3 independent variables. The Euler angles are usually used to define \(R \) and represent the orientation of the rigid body with respect to the three axes in reference coordinate system. The rotation matrix \(R \) can be expressed in the following form:

\[R = \begin{bmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma \end{bmatrix}, \]

where \(\alpha, \beta \) and \(\gamma \) are the yaw, pitch, and roll angles, respectively. An optimal of (46) can be found by searching over the range of the Euler angles. However, such a 3-D search leads to a high computational complexity. Given the prior knowledge of the antenna-array configuration and the integer characteristics of phase ambiguities, we can efficiently reduce the search space to a few possible estimates of \(R \) (instead of searching through the whole range of the Euler angles). In the following subsections, we will develop the search strategies for the single-baseline and multi-baseline cases separately.

A. Single-baseline Attitude Determination

In a single-baseline set-up, \(R \in \mathbb{R}^3 \) is a unit column vector, uniquely determined by yaw and pitch angles. To facilitate the discussion of the multi-baseline case (presented later), we replace \(R \) with \(r_a \), which will later be used to indicate the \(a \)-th (single) baseline in a multi-baseline configuration. The vector \(r_a \) represents the unit direction vector of a single baseline. Based on (46), we can write

\[\min_{r_a \in \mathbb{R}^3, \| r_a \|_2 = 1} \| \text{vec}(\Psi_a - d_a H r_a) \|_Q^{-1}, \]

where \(d_a \) is the baseline length, and \(Q_a \) is the covariance matrix. The baseline vector in the reference frame is given by

\[x_a = d_a r_a. \]
In the noise-free case, there is one combination of the integers (r_0, \ldots, r_{N-1}) whose corresponding circles have a joint intersection point, that is, (60) satisfies

\[\begin{align*}
\psi_0^{(0)} - N_0^{(0)} &= d_0 \tilde{h}_0 \mathbf{r}_a, \\
\psi_{a0}^{(0)} - N_{a0}^{(0)} &= d_a \tilde{h}_a \mathbf{r}_a, \\
\psi_{a0}^{(0)} - N_{a0}^{(0)} &= d_a \tilde{h}_a \mathbf{r}_a, \\
\psi_{s0}^{(0)} - N_{s0}^{(0)} &= d_s \tilde{h}_s \mathbf{r}_a.
\end{align*}\]

(61)

Due to the measurement noise, we may have only pairwise circle intersect, that is, a solution of (61) may not exist. However, we can calculate the intersection points for all the circle pairs of different observations. The baseline vector can be determined by evaluating (54) (only) at these intersections.

Instead of solving the system of equations (59), we can achieve the intersections by applying the geometry relationships between two circles on the sphere. To calculate the intersection points, we need to define some intermediate vectors, such as the normal vector \mathbf{v}, the normal vector \mathbf{v}_1 of the plane on which \mathbf{v}_1 and \mathbf{v}_2 lie. \mathbf{v}_1 and \mathbf{v}_2 are given by

\[\mathbf{v}_1 = \frac{\tilde{h}_s \times \tilde{h}_m}{\|\tilde{h}_s \times \tilde{h}_m\|}, \quad \mathbf{v}_2 = \frac{\mathbf{v}_1 \times \tilde{h}_m}{\|\mathbf{v}_1 \times \tilde{h}_m\|}.\]

(62)

In Fig. 5, the centers of the circle s and circle m are

\[\mathbf{c}_s = \frac{\cos \theta_s \tilde{h}_s}{\|\tilde{h}_s\|}, \quad \mathbf{c}_m = \frac{\cos \theta_m \tilde{h}_m}{\|\tilde{h}_m\|},\]

(63)

where the cosines can be computed based on (57).

To check whether the two circles intersect, we define the peak points (the closest or farthest points from the other circle) of circle m with respect to circle s as follows

\[\mathbf{p}_1 = \mathbf{c}_m - \sin \theta_m \mathbf{v}_2, \quad \mathbf{p}_2 = \mathbf{c}_m + \sin \theta_m \mathbf{v}_2.\]

(64)

The directed distances (positive or negative) between the peak points and circle s plane are given by

\[\Delta_1 = (\mathbf{p}_1 - \mathbf{c}_s)^T \frac{\tilde{h}_s}{\|\tilde{h}_s\|}, \quad \Delta_2 = (\mathbf{p}_2 - \mathbf{c}_s)^T \frac{\tilde{h}_s}{\|\tilde{h}_s\|}.\]

(65)

If $\Delta_1\Delta_2 \leq 0$, circle s will intersect with circle m. Otherwise, there is no intersection. When $\Delta_1 = 0$, the two circles intersect at \mathbf{p}_1. Similarly, if $\Delta_2 = 0$, \mathbf{p}_2 is the intersection point. When $\Delta_1 \Delta_2 < 0$, there are two intersection points between circle s and circle m. A procedure to calculate these intersection points is as follows. The directed distance between \mathbf{c}_m and circle s plane is

\[\Delta_3 = (\mathbf{c}_m - \mathbf{c}_s)^T \frac{\tilde{h}_s}{\|\tilde{h}_s\|}.\]

(66)

The projected point of \mathbf{c}_m on circle s plane is expressed as

\[\mathbf{p}_{cm} = \frac{\Delta_3 \tilde{h}_s}{\|\tilde{h}_s\|}.\]

(67)

As shown in Fig. 5, \tilde{h}_s intersects with the circle m plane at

\[\mathbf{p}_{cm} = \frac{\cos \theta_m \tilde{h}_s}{\cos \theta_m \|\tilde{h}_s\|},\]

(68)
solve the nonlinear system in (74). We can directly utilize the
Many strategies, generally iterative schemes, can be utilized to
The two intersection points can be represented as
\[\delta \]
where \(\theta_{sm} \) is the angle between \(\hat{h}_s \) and \(\hat{h}_m \). The directed distance between \(p_c \) and circle \(s \) plane is given by
\[\Delta_4 = (p_c - c_s)^T \frac{\hat{h}_s}{\|\hat{h}_s\|^2}. \] (69)
Based on the basic proportionality theorem of similar triangles, we have
\[\frac{p_c - c_s}{p_c - p_{cm}} = \frac{\Delta_4}{\Delta_3}, \] (70)
where \(p_c \) is the center point on the intersection line. Therefore, we have
\[p_c = \frac{\Delta_3 c_s - \Delta_4 p_{cm}}{\Delta_3 - \Delta_4}. \] (71)
The two intersection points can be represented as
\[q_1 = p_c - \sqrt{1 - \|p_c\|^2} v_1, \quad q_2 = p_c + \sqrt{1 - \|p_c\|^2} v_1. \] (72)
We consider all the intersection points as candidates for being an estimate of \(r_a \). When there is no intersection, if \(\Delta_1 \) or \(\Delta_2 \) is close to zero, some points around the corresponding peak point should also be selected as the potential candidates as the lack of intersection might be due to noise. We define a threshold \(\delta_\Delta \) for \(\Delta_1 \) and \(\Delta_2 \). If \(|\Delta_1| < \delta_\Delta \), we can select \(p_1 \) as a candidate; if \(|\Delta_2| < \delta_\Delta \), we can choose \(p_2 \) as a candidate. We can create a pool \(S_{ra} \) of all candidate points from the intersections of all possible circle pair combinations. Algorithm 1 summarizes the procedure to determine \(S_{ra} \). We keep the best \(K \) estimations of \(r_a \) (coarse solutions) using
\[\min_{r_a \in S_{ra}} \left\| \begin{bmatrix} \text{round}(\psi_a - d_a H r_a) \end{bmatrix} \right\|_{Q_a^{-1}}^2. \] (73)
To achieve a high-quality solution, a refinement of the coarse results is necessary. When the unambiguous phase \(\phi_a \) is available, we consider the following optimization
\[\min_{r_a \in \mathbb{R}^3, \|r_a\|_2 = 1} \left\| \begin{bmatrix} \phi_a - d_a H r_a \end{bmatrix} \right\|_{Q_a^{-1}}^2, \] (74)
which leads to a general constraint least-squares solution. Many strategies, generally iterative schemes, can be utilized to solve the nonlinear system in (74). We can directly utilize the ambiguous carrier phase as long as we substitute the following term in (74):
\[\phi_a = \psi_a + \text{round}(d_a H r_a - \psi_a). \] (75)
We use the coarse results as the initial solutions and achieve the final estimation based on (74)–(75). The entire procedures are summarized in Algorithm 2.

\section*{B. Multi-baseline Attitude Determination}

For multi-baseline configurations, we can estimate the rotation matrix by refining single-baseline solutions to avoid high complexity, rather than searching the solution directly. Single-baseline attitude determination applies only the baseline length constraint. To fully integrate the geometry constraints, we need to consider the relative direction of different baselines. This can be realized by checking the angle between estimations of baseline vectors.

For each baseline, we keep the best \(K \) estimations of \(r_a \) (direction vector based on the intersection points and potential candidates. For the \(\alpha \)-th and \(k \)-th baseline, we choose the estimations that satisfy
\[|\arccos(r_\alpha^T r_k) - \Theta_{ak}| < \delta_\Theta, \] (76)
where \(\Theta_{ak} \) is the angle between two baselines, and \(\delta_\Theta \) is the threshold of angle difference. The selected baseline vectors constitute the possible baseline matrix in the reference coordinate, that is
\[\hat{X} = \begin{bmatrix} d_1 r_1 & \cdots & d_A r_A \end{bmatrix}. \] (77)
For \(A = 2 \), we can add a column to \(\hat{X} \) and \(X_b \), that is
\[\tilde{X} = \begin{bmatrix} d_1 r_1 \times d_2 r_2 \|r_1 \times r_2\|_2 \end{bmatrix}, \quad X_b = \begin{bmatrix} x_1 \times x_2 \|x_1 \times x_2\|_2 \|x_1 \times x_2\|_2 \|x_1 \times x_2\|_2 \end{bmatrix}. \] (78)
According to the relationship between the baseline matrix in the body frame and reference frame, the coarse solution of the rotation matrix can be calculated using
\[\hat{R} = \tilde{X} X_b^T (X_b X_b^T)^{-1}. \] (79)
Algorithm C-WLS Multi-baseline Attitude Determination.

1: Find the best \(K \) estimations for each baseline using step 1–2 of Algorithm 2.
2: Keep the estimations that satisfy the angle criteria (76) for every baseline pair.
3: Combine pointing vectors to create the baseline matrix using (77).
4: Convert the baseline matrix to a rotation matrix using (79).
5: Initialize the orthogonal rotation matrix using Wahba’s problem as in (80).
6: Final results after refinement via (83)–(84).

To satisfy the antenna array constraints, we have to transform the rotation matrix to an orthogonal matrix, that is, to solve the following optimization problem:

\[
\tilde{\mathbf{R}} = \arg \min_{\mathbf{R} \in SO(3)} \| \mathbf{R} - \tilde{\mathbf{R}} \|_2.
\] (80)

This is the Wahba’s problem for which an analytical solution exists [47], [48]. The solution goes as follows. First, apply singular-value decomposition to the coarse rotation matrix

\[
\tilde{\mathbf{R}} = \tilde{\mathbf{U}} \tilde{\mathbf{S}} \tilde{\mathbf{V}}^T,
\] (81)

where \(\tilde{\mathbf{S}} \) is a diagonal matrix in which the diagonal entries are the singular values of \(\tilde{\mathbf{R}} \), and the columns of \(\tilde{\mathbf{U}} \) and \(\tilde{\mathbf{V}} \) are the left and right singular vectors of \(\tilde{\mathbf{R}} \), respectively. Then a solution to (80) can be obtained as

\[
\mathbf{R} = \tilde{\mathbf{U}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \text{det}(\tilde{\mathbf{U}}) \text{det}(\tilde{\mathbf{V}}) \end{bmatrix} \tilde{\mathbf{V}}^T.
\] (82)

It can be readily seen that \(\tilde{\mathbf{R}} \) is an orthogonal matrix, i.e., it satisfies all the required constraints. However, this is only a sub-optimal estimate of the rotation matrix; hence, a refinement is required.

Similar to the single-baseline set-up, if the unambiguous phase \(\Phi \) is known, we can consider the following optimization

\[
\min_{\mathbf{R} \in SO(3)} \left\| \begin{bmatrix} \text{vec}(\Phi - \mathbf{H} \mathbf{R} \mathbf{X}_b) \\ \text{vec}(\mathbf{P} - \mathbf{H} \mathbf{R} \mathbf{X}_b) \end{bmatrix} \right\|_{\mathbf{Q}^{-1}}^2.
\] (83)

Again, we directly take advantage of the ambiguous phase by using \(\tilde{\mathbf{R}} \) as the initial solution and applying the substitution

\[
\Phi = \Psi + \text{round}(\mathbf{H} \mathbf{R} \mathbf{X}_b - \Psi).
\] (84)

The entire process to estimate the rotation matrix and resolve the carrier-phase ambiguity is summarized in Algorithm 3.

V. PERFORMANCE EVALUATION

In this section, we first present simulation results. Next, we evaluate the performance of the proposed method experimentally. Our tests focus on the most challenging single-frequency and single-epoch scenarios, with only GPS constellation utilized. To demonstrate the performance of the proposed approach, we benchmark against the AFM-based [22] and LAMBDA-based search algorithms (the C-LAMBDA method [35] for single-baseline set-ups and the MC-LAMBDA method [40] in multi-baseline scenarios). A 10-degree cut-off elevation mask is used in all cases, as is usually recommended to protect against severe multi-path effects.

A. Simulation Results

Simulations are implemented based on the Visual software [49] using the assumed antenna position and real GPS constellation information on November 7, 2021. We evaluate the performance of the proposed approach under different noise levels by adding Gaussian noise with different standard deviations to both the pseudo-range and carrier-phase measurements. We also examine the feasibility of the proposed method under adverse satellite geometry conditions, namely scenarios with a poor position dilution of precision (PDOP) due to limited satellite visibility. A pseudo-range to carrier-phase variance ratio \(\sigma_{\rho}^2/\sigma_v^2 = 10^4 \) is adopted [15]. We consider setups involving one, two, and three baselines with a 1-meter baseline length. In the multi-baseline cases, the baselines are perpendicular to each other, so the baseline matrices in the body frame are

\[
\mathbf{X}_b^1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X}_b^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\] (85)

For each simulated scenario, the tests are repeated \(10^4 \) times. Each time the attitude angles are generated randomly. To search the candidates of the baseline vectors based on Algorithm 1, the threshold \(\delta_3 \) is set to be 0.05.

TABLE I reports the success rates of ambiguity resolution for the proposed method and the benchmark methods. These results are obtained for a number of different scenarios involving different numbers of baselines, different numbers of satellites, and various noise levels. The success rate is calculated as the percentage of trials in which all the integer ambiguities are retrieved correctly. Note that success cases can provide accurate attitude estimation, whereas failure cases tend to produce outliers or estimates that are meaningless. This underscores the pertinence of success rate as a performance indicator.

Based on the search-and-shrink or search-and-expand algorithm, the C-LAMBDA and MC-LAMBDA methods can adaptively adjust the search space in the integer domain. Theoretically, they could find the global optimum of the optimization (14). However, the performance of the C-LAMBDA and MC-LAMBDA methods dramatically depends on the accuracy of the float solutions. In challenging scenarios, the inadequacy of the float solutions results in an extensive set of potential integer vectors to be evaluated by these two approaches. The set can grow even larger as the number of baselines increases and the dimensionality of the ambiguity vectors/matrices grows. To avoid computational issues due to prohibitively large search spaces, we force the adaptive adjustment strategies of the C-LAMBDA and MC-LAMBDA methods to stop after a search limit of \(10^5 \) integer searches.

As shown in TABLE I, the proposed approach and the C-LAMBDA method have almost the same success rates in
TABLE I
SUCCESS RATE (%) Versus Phase Noise σ_ψ (mm), Number of Satellites (#Sat), and Number of Baselines.

<table>
<thead>
<tr>
<th>#Sat</th>
<th>Single Baseline</th>
<th>Two Baselines</th>
<th>Three Baselines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-LAMBDA/MA-LAMBDA Proposed</td>
<td>AFM</td>
<td>C-LAMBDA/MA-LAMBDA Proposed</td>
</tr>
<tr>
<td></td>
<td>σ_ψ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.43</td>
<td>9.11</td>
<td>14.54</td>
</tr>
<tr>
<td></td>
<td>3.33</td>
<td>4.01</td>
<td>6.23</td>
</tr>
<tr>
<td>5</td>
<td>6.48</td>
<td>9.11</td>
<td>14.54</td>
</tr>
<tr>
<td>6</td>
<td>13.47</td>
<td>21.46</td>
<td>37.51</td>
</tr>
<tr>
<td></td>
<td>7.24</td>
<td>11.21</td>
<td>19.45</td>
</tr>
<tr>
<td>7</td>
<td>13.47</td>
<td>21.46</td>
<td>37.51</td>
</tr>
<tr>
<td>6</td>
<td>26.97</td>
<td>43.88</td>
<td>70.40</td>
</tr>
<tr>
<td>7</td>
<td>37.53</td>
<td>57.11</td>
<td>79.58</td>
</tr>
<tr>
<td>8</td>
<td>58.02</td>
<td>78.06</td>
<td>92.68</td>
</tr>
</tbody>
</table>

TABLE II
AVERAGE NUMBER OF INTEGERS IN THE SEARCH SPACE OF THE C-LAMBDA OR MC-LAMBDA METHOD VERSUS PHASE NOISE σ_ψ (mm), NUMBER OF SATELLITES (#Sat), AND NUMBER OF BASILINES.

<table>
<thead>
<tr>
<th>#Sat</th>
<th>Single Baseline</th>
<th>Two Baselines</th>
<th>Three Baselines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-LAMBDA/MA-LAMBDA Proposed</td>
<td>AFM</td>
<td>C-LAMBDA/MA-LAMBDA Proposed</td>
</tr>
<tr>
<td>4</td>
<td>14203.3</td>
<td>6619.9</td>
<td>2536.8</td>
</tr>
<tr>
<td>5</td>
<td>3656.1</td>
<td>1483.7</td>
<td>492.3</td>
</tr>
<tr>
<td>6</td>
<td>1239.4</td>
<td>463.4</td>
<td>127.1</td>
</tr>
<tr>
<td>7</td>
<td>533.4</td>
<td>166.8</td>
<td>34.5</td>
</tr>
<tr>
<td>8</td>
<td>206.4</td>
<td>64.8</td>
<td>8.6</td>
</tr>
</tbody>
</table>

TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-LAMBDA/MA-LAMBDA Proposed</td>
<td>$O(A^2S^2K_w^2)$</td>
</tr>
<tr>
<td>AFM</td>
<td>$O(A^2)$</td>
</tr>
</tbody>
</table>

single-baseline configurations, both outperforming the AFM method. In the multiple baseline case, the proposed method utilizes the angle constraint to evaluate and improve the single-baseline estimates; hence, its performance improves as more baselines are used. This should be the case, more or less, with the MC-LAMBDA method if a search limit is not imposed. However, without the search limit, an unacceptable computational complexity results in the case of the MC-LAMBDA algorithm. As shown in TABLE II, the C-LAMBDA and MC-LAMBDA methods need to evaluate just a few integer candidates in ideal scenarios. However, an enormous number of integers need to be evaluated in many challenging setups. The application of a search limit to the C-LAMBDA and MC-LAMBDA methods explains their low success rate in TABLE I, but it makes the two algorithms computationally feasible.

Fig. 6 demonstrates how the angle constraint affects the success rate for a dual-baseline set-up. TABLE I and Fig. 6 demonstrate that the proposed approach provides the highest success rate in almost all scenarios, which illustrates that this method is remarkably effective. In contrast with the AFM-based methods, the C-WLS approach jointly utilizes pseudo-range and carrier-phase measurements instead of only carrier-phase observation. Besides, we strengthen the proposed C-WLS model by incorporating the high correlations of double-difference observations. On the other hand, the proposed approach outperforms the C-LAMBDA and MC-LAMBDA.
methods, which is attributed to the additional constraint on the carrier-phase residual errors and the proposed search strategy. The superiority of the proposed method is more pronounced in scenarios with fewer satellites and higher noise levels.

TABLE III summarizes the computational complexity of different algorithms. We characterize the computational complexity based on the required number of operations. For simplicity, we count each addition, subtraction, multiplication, division, and square root calculation as one arithmetic operation. The complexity of each method depends on the two parameters \(A \) and \(S \) in addition to a third algorithm-specific parameter \(K \). The computational complexity of the proposed method depends on the parameter \(\frac{2K_w}{S} \), which represents the average number of possible integer ambiguities for each element of \(\Psi \). For the AFM method, we assume that an identical search step is applied for each Euler angle. The parameter \(\frac{K_a}{2} \) represents the number of potential attitude angles, which is practically much greater than \(\frac{2K_w}{S} \). The symbol \(n \) denotes the number of Euler angles, i.e., \(n = 2 \) for a single baseline or \(n = 3 \) for multiple baselines. Since \(A, S, \frac{2K_w}{S} \ll K_a \), the complexity of the proposed method is much lower than that of the AFM method, especially in multi-baseline scenarios. Note that \(\frac{2K_w}{S} \) and \(\frac{K_a}{2} \) are proportionate to the baseline length. Hence, the proposed approach and the AFM method are more adequate for short-baseline set-ups (meter level). The C-LAMBDA and MC-LAMBDA methods include three steps: shrink the search space, enumerate the integer vectors/matrices, and minimize the objective function [50]. The first step dominates the complexity of these methods as it accounts for at least 60% of the total arithmetic operations [50]. The parameters \(K_s \) and \(A^2 S^2 K_t \) denote the number of iterations in the shrinking process and the required operations in each iteration, respectively. \(K_s \), as shown in TABLE II, is extremely sensitive to various parameters, such as \(A \), \(S \), \(\mathbf{H} \), \(\Xi \), and \(\Pi \); nevertheless, \(K_t \) depends on the value of \(K_s \). In ideal environments, the product \(K_s K_t \) can be smaller than \(A^2 S^2 (S-1)/2 K_w^2 \) such that the C-LAMBDA and MC-LAMBDA algorithms are more computationally efficient than the proposed approach. However, in challenging scenarios such as those with poor PDOP, high noise levels, and severe multi-path, \(K_s K_t \) can be much greater than \(A^2 S^2 (S-1)/2 K_w^2 \) (\(K_s K_t \) could reach 10, \(A^2 S^2 (S-1)/2 K_w^2 \) even more), making the computational complexity of the C-LAMBDA and MC-LAMBDA methods being far worse than that of the proposed method. For instance, consider the antenna geometry described by \(X^1_b \) in (85), i.e., \(A = 2 \), with \(\sigma_\psi = 3 \text{ mm} \) and \(\sigma_\sigma = 30 \text{ cm} \). For \(S = 6 \), we have \(K_w = 10.19 \), \(K_a = 180 \), \(K_t = 16.60 \), and \(K_1 = 35.03 \), then \(A^2 S^2 K_s K_t \) \(< \) \(A^2 S^2 (S-1)/2 K_w^2 \) \(< \) \(ASK^3_s \). For \(S = 4 \), we have \(K_w = 8.33 \), \(K_a = 180 \), \(K_s = 25015.6 \), and \(K_1 = 14.01 \), then we obtain \(A^3 S^2 (S-1)/2 K_w^2 \) \(< \) \(A^3 S^2 K_s K_t \) \(< \) \(ASK^3_s \).

B. Experimental Results
In this section, we provide performance evaluation based on experimental data obtained from three ANAVS multi-sensor modules [51]. Each multi-sensor module includes a GNSS receiver and an inertial measurement unit (IMU). Two static experiments were performed on the campus of King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

We estimate the ground truth using GNSS and IMU measurements over a long period to ensure high accuracy. As shown in Fig. 7, the receivers were firmly attached to a fixed platform and remained stationary throughout the experiments. The baseline matrix in the body frame used in both tests is described by

\[
X^3_b = \begin{bmatrix}
0.63 & 0.315 \\
0 & 0.545
\end{bmatrix}.
\]

Two datasets were collected with 5 Hz sampling on 6 April 2021 (between 18:05 and 18:35, UTC time) and 25 May 2021 (from 20:34 to 21:50, UTC time), respectively. The first experiment collected around 9000 epochs of data within 30 minutes, and the other test collected 25500 epochs of observations. We apply the elevation-dependent model to characterize the GNSS observation variance components [52] and consider the correlation introduced by differencing operations. Note that in our comparison of various methods, we utilize only GPS observations, with the number of tracked satellites and the corresponding PDOP values shown in Fig. 8.

In contrast, the ground truth is estimated by leveraging observations from two GNSS constellations (GPS and GLONASS), IMU measurements, and barometer data integrated over the whole observation time.

TABLE IV and TABLE V summarize the experimental results by listing the success rate and the root-mean-square error (RMSE) of attitude angles, respectively. Only success
cases are considered in calculating the RMSE to eliminate the contribution of outliers. As stated earlier, the constrained search space (at most 10^5 integers) in the integer domain explains the low ambiguity resolution success rate of the MC-LAMBDA method in the first experiment. Data 1 was measured in a particular area with trees, buildings, and other obstructions, which results in signal blockage and multipath errors. Data 2 was collected with good satellite visibility. Hence, the results of data 2 are remarkably better than those obtained from Data 1. From TABLE IV, we see that the proposed method has the best success-rate performance, and the advantage is more significant in challenging environments, which indicates its notable reliability.

Fig. 9 and Fig. 10 shows the distribution of attitude angle estimation error for two experiments. From the plots, it can be readily seen that the proposed method obtains the largest fraction of Euler angle estimates with an error smaller than a given value. This is more visible with data 1. These figures indicate that the proposed approach can provide better attitude angle estimates compared with the AFM-based and the MC-LAMBDA methods.

VI. CONCLUSION

A constrained wrapped least-squares (C-WLS) method for attitude determination using multiple GNSS antennas is presented. Unlike existing attitude determination methods, the proposed approach allows the attitude determination problem to be tackled directly—without initially estimating the integer ambiguities—while respecting the antenna array constraints and the integer property of the carrier-phase ambiguities. Given a stated assumption on the double-difference carrier-phase noise, the proposed approach includes an additional constraint on the residual phase to strengthen the optimization model. We solve the C-WLS problem by searching the potential candidates on the unit sphere and obtaining an improved solution through a refinement process. The proposed method targets the estimation of the attitude parameters but inherently returns the integer ambiguities. Simulation and experimental results demonstrate the effectiveness of the proposed approach.

REFERENCES

Xing Liu received the B.S. degree in electronic and information engineering from the China University of Petroleum (East China), Qingdao, China, in 2014, and the M.S. degree in signal and information processing from the University of Chinese Academy of Sciences, Beijing, China, in 2017. He is currently working toward the Ph.D. degree in electrical and computer engineering with the King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. His research focuses on GNSS positioning and attitude determination.

Tarig Ballal (Member, IEEE) received the B.Sc. (Hons.) degree in electrical engineering from University of Khartoum, Khartoum, Sudan, in 2001, and the M.Sc. degree in telecommunications from the Blekinge Institute of Technology, Karlskrona, Sweden, in 2005, and the Ph.D. degree from the School of Computer Science and Informatics, University College Dublin, Dublin, Ireland, in 2011. From April 2011 to July 2012, he worked as a Research Engineer with BiancaMed Ltd. and University College Dublin. Since September 2012, he has been with the Electrical and Computer Engineering Department, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, as a Postdoctoral Fellow and currently as a Research Scientist. His current research focuses on regularization and robust estimation methods, image and signal processing, machine learning, acoustic sensing, and tracking and localization.

Hui Chen (Member, IEEE) received the B.S. degree in electrical engineering from Beijing Forestry University, Beijing, China, in 2013, the M.S. degree in computer application technology from the University of Chinese Academy of Sciences (UCAS), Beijing, China, in 2016, and the Ph.D. degree in electrical and computer engineering from the King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, in 2021. He is currently a Postdoctoral Researcher with the Chalmers University of Technology, Sweden. His research interests include 5G/6G (mmWave/THz) Localization, Stochastic Optimization, and Machine Learning for Signal Processing.

Tareq Y. Al-Naffouri (Senior Member, IEEE) received the B.S. (with first hons.) degree in mathematics from King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, the M.S. degree in electrical engineering from the Georgia Institute of Technology, Atlanta, GA, USA, in 1998, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, USA, in 2004. He was a Visiting Scholar with the California Institute of Technology, Pasadena, CA, USA, in 2005 and summer 2006. He was a Fulbright Scholar with the University of Southern California in 2008. He is currently a Professor with the Department of Electrical Engineering, King Abdullah University of Science and Technology. He has more than 300 publications in journal and conference proceedings and 20 issued/pending patents. His research interests include the areas of sparse, adaptive, and statistical signal processing and their applications to wireless communications and localization, machine learning, and network information theory.

Dr. Al-Naffouri is the recipient of the IEEE Education Society Chapter Achievement Award in 2008 and Al-Marai Award for innovative research in communication in 2009. He was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING 2013–2018.