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ABSTRACT

Towards a Progressive E-health Application Framework

Zhirui Lu

Recent technological advances have opened many new possibilities for health appli-

cations. Next generation of networks allows real-time monitoring, collaboration, and

diagnosis. Machine Learning and Deep Learning enable modeling and understanding

complex and enormous datasets. Yet all the innovations also pose new challenges

to application designers and maintainers. To deliver high standard e-health services

while following regulations, Quality of Service requirements need to be fulfilled, high

accuracy needs to be archived, let along all the security defenses to protect sensitive

data from leaking.

In this thesis, we present a collection of works towards a progressive framework

for building secure, responsive, and intelligent e-health applications, focusing on three

major components, Analyze, Acquire, and Authenticate. The framework is progres-

sive, as it can be applied to various architectures, growing with the project and

adapting to its needs. For newer decentralized applications that perform data anal-

ysis locally on users’ devices, powerful models outperforming existing solutions can

be built using Deep Learning, while Federated Learning provides further privacy

guarantee against data leakage, as shown in the case of sleep stage prediction task

using smart watch data. For traditional centralized applications performing com-

plex computations on the cloud or on-premise clusters, to provide Quality of Service

guarantees for the data acquisition process in a sensor network, a delay estimation

model based on queueing theory is proposed and verified using simulation. We also

explore the novel idea of using molecular communication for authentication, named
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Molecular Key, enabling the incorporation of environmental information into security

policy. We envision this framework can provide stepping stones for future e-health

applications.
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Chapter 1

Introduction

The progress of the health industry has always been tightly connected to the advance

of technology. With more versatile monitoring systems, more responsive network

infrastructures, more powerful computing devices and more intelligent algorithms and

models, e-health applications capable of providing personalized and precise medical

services have been made possible.

On the monitoring stage, consumer grade wearable devices like smart bands and

smartwatches enable vital metrics and motor activities to be recorded and analyzed

continuously. Such fine granularity data is not only useful for long-term retrospective

evaluation for doctors, but also allows critical conditions including heart failures and

hard falling to be recognized and acted on appropriately as early as possible. Thanks

to their availability, convenience and versatility, devices like Apple Watch empower

the science community to gain further insight on areas that traditionally require

complex and costly monitoring setups, including seizure[1], tremor[2], Parkinson’s

Disease[3] and sleep disorders[4]. Beside making direct contact, devices that utilize

radar, lidar and depth sensors can even take measurements from a distance. These

non-invasive monitoring methods reduce the learning cost for users and improves the

data quality by minimizing the user interaction.

On the transmission stage, health applications are benefited from the ongoing

infrastructure upgrade created by the demand of Internet of Things (IoT) devices.

With the wide application of 4G and fiber network, as well as gradual rollout of

5G, low latency and high throughput transmission of health information is turning
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into reality, enabling real-time distant monitoring, collaborative diagnosis and remote

surgery. This shortens the resource gap between different areas, making medical

resources more accessible to everyone. For example, elders living in the country can

still be monitored and receive medical suggestions from their healthcare provider

as if they live in the city. In addition to long distance transmissions, local short

distance networking is also seeing development, which allows smartphone and personal

computers to act as a health information hub, aggregating readings from ambient,

wearable and implantable sensors and relay them to remote servers located in hospitals

for further analysis.

On the analysis stage, versatile data mining techniques including machine learning

and deep learning can find hidden patterns and create predictive models automati-

cally, even from the most complex and enormous datasets. They have seen remarkable

success in various medical fields, from interpreting X-ray and Computed Tomography

(CT) scan images for cancers [5] to modelling how proteins fold for drug develop-

ment [6], while new models being developed for more complex problems and existing

models being refined constantly for better accuracy. Beyond large and computation

hungry models living in the server of hospitals, small and efficient models can also be

created to run on the edge devices for lower latency and better personalization.

However, all these innovations also pose new challenges to both e-health applica-

tion designers as well as maintainers aiming to provide high standard e-health services.

On the transmission stage, even with modern network infrastructures, various factors

such as routing and network usage may still affect the latency of health information

being transmitted from users’ sensor to the backend server, resulting in the violation

of Quality of Service (QoS) requirements. On the analysis stage, building a model

that aces at a specific problem is not simple, involving various design decisions and

training details. Also, datasets the model trained on also limit its ability, yet sharing

patients’ data between hospital boundaries to create larger datasets may cause regu-
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Figure 1.1: Framework overview

latory issues. On the security perspective, due to the private and sensitive nature of

medical data, protecting the data and the analysis results derived against unautho-

rized access and adversarial attacks is also of great importance. Moreover, as more

and more systems are evolving into hybrid systems that have both online and offline

sections, it is now more important than ever to keep everyone safe, both virtually and

physically under the current COVID pandemic.

In this thesis, we presented a collection of works towards a progressive framework

for building secure, responsive and intelligent e-health applications, attempting to

solve the challenges discussed above. We focused on 3 major components: Analyze,

Acquire, and Authenticate, covering the whole lifecycle of data in e-health applica-

tions, as shown in Fig. 1.1. Unlike other frameworks that require a full-scale opt-in,

our framework is progressive, as it provides options for applications at different stages

and using different paradigms, whether the newer decentralized or traditional cen-

tralized, and is able to grow with the project, adapting to its needs. The framework

establishes the following guidelines for building e-health applications:

• Service quality guarantee using mathematical models

• Unleash data collection potential from users’ existing underutilized devices

• Data driven medical decision support using Machine Learning (ML) and Deep
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Learning (DL)

• Privacy-preserving model training with Federated Learning (FL)

For newly built decentralized applications, we recommend the usage of deep learn-

ing for more accurate models for data analysis and federated learning to provide extra

privacy guarantee, as shown in the Analyze chapter with the case of sleep stage pre-

diction task using smart watch data. For traditional centralized applications, our

framework provides the ability to estimate delay in a complex sensor network using

models based on queueing theory and supported with simulation in the Acquire chap-

ter, finding out the maximum intermediate nodes in a sensor network that satisfies

the QoS requirements. In addition to existing security components, we also explored

the possibility of using Molecular Keys based on Molecular Communication (MC) for

authentication in the Authenticate chapter, creating an alternative authentication

method that considers environmental information to be used along existing ones and

expanding security beyond digital space.
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Chapter 2

Background & Related Works

This chapter summarizes the background and related works of the topics discussed

in the thesis.

2.1 E-health

This section introduces the concept of e-health, provides a categorization of e-health

systems, and discusses the current focuses and challenges of e-health research.

2.1.1 E-health and variants

Since the introduction of the Internet, researchers have been trying to take advantage

of the whole new possibility of transmitting information across political boundaries to

improve the quality of healthcare services. In these early explorations, the word “e-

health” is created, yet it lacks a formal definition and suffers from ambiguity, and all

researches related to Internet and Healthcare are using it. The most widely accepted

definition of e-health [7] defines it as “an emerging field in the intersection of medical

informatics, public health and business”, in which “health services and information

delivered or enhanced through the Internet and related technologies”. Moreover,

in addition to related fields and technologies, the authors also elaborated on the

meaning of “e” in e-health to describe its vision and expectations, including efficiency,

empowerment, enabling, ethics and many others. In their work, they stated that e-

health is much more than just technological advancements, but also represents a new
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way of thinking and framing healthcare utilizing new information and communication

technologies.

In 1991, the second generation (2G) cellular network first introduced the ability

of transmitting data directly to mobile phones. Later the third generation (3G) and

fourth generation (4G) mobile telecommunications made further improvements on

both the bandwidth and latency of data transmission. All the developments enabled

a new era of integrating mobile phones into the e-health framework, as a client for

receiving notification and alerts, or as a gateway of relaying sensor measurements

to other components. Inspired by the new possibility, “m-health” is created as a

subfield of e-health, defined as “The use of mobile and wireless technologies to support

the achievement of health objects”. [8] M-health solutions will use not only the

core cell network communication capacities of mobile devices, but also other onboard

functionalities such as Global Positioning System (GPS) and Bluetooth. In World

Health Organization (WHO)’s 2011 survey, they found that the most common m-

health initiatives include health call centers, emergency toll-free services, emergency

and disaster management and mobile telemedicine, and showed significant progress in

improving the accessibility of healthcare services in traditionally underserved regions.

Although innovations on utilizing data capability of mobile devices are being explored,

many of the initiatives still use voice as the main communication method. With the

gradual rollout of the fifth generation (5G) telecommunication services and the further

expansion of IoT, it can be expected that the great potential of m-health on enhancing

the responsiveness and coverage of healthcare for all will be unleashed.

In the healthcare industry, customizing personalized treatment plans tailored for a

specific patient from general guidelines and therapeutic protocols has been a growing

trend. However, the limited observability to health indicators outside of hospitals

restricts the scope of personalization. Doctors struggle to understand the effect of a

specific treatment on the daily life of patients, with the patient’s self-reported eval-
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uation as the only data source. This issue is more severe in treating mental health

issues and chronic diseases, both of which may be heavily influenced by the environ-

ment the patient is in, and the patient may not be able to record every fluctuation of

their diseases. Thanks to the wide adoption of consumer-grade wearable sensors and

global coverage of communication infrastructures, it is now possible to provide med-

ical works with data collected during the interval between periodical visits. Recent

development of machine learning and deep learning and many successful applications

in the field of medicine also showed great potential of building useful models from

large datasets and refine the models for specific cases. In [9], the authors proposed

“i-health” as the next stage of e-health, in which “i” stands for both intelligent and

personalized. They identified 3 key guidelines of i-health systems, including using new

technologies for self-monitoring, extending assessment to cover patients’ environment

and relationship, and utilizing data processing and analytic technologies for making

personalized medical decisions. In their outlook, i-health will improve the effective-

ness and precision of medical related decision making, creating a more personalized

and tailored medical experience.

In summary, e-health is a broad term describing everything in the intersection

of healthcare and the Internet. m-health is a subfield and a component of e-health,

emphasizing on the usage of phones as a prominent element in e-health solutions.

i-health is anticipated as the next stage of e-health, which will utilize new moni-

toring and data processing technologies to make healthcare more personalized and

intelligent.

2.1.2 System Categorization

Based on the target user, maintainer and purpose, e-health systems can be classified

into the following categories, as shown in Table 2.1.
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Table 2.1: E-health System Categorization

Target User Maintainer / Operator Purpose Example Systems

Hospital /

Healthcare Institute

Hospital /

Healthcare Institute

Facilitate information

exchange internally

- EHR System

- Specialty Information Systems
(Imaging, Radiology, Pharmacy)

- Information Archival System

- Decision Support System
- Health Information Exchange

Patient
Hospital /

Healthcare Institute

Provide healthcare service

beyond physical boundaries

- Telehealth

(Video/Audio/Text Consultation)

- Remote Patient Monitoring
- E-Prescribing

- Chronic Care Management

General User

App Developer /

Service Provider /
Device Manufacturer

Personal health monitoring

and improvement

- Fitness App

- Personal Health Monitoring Service
(run by device manufacturer)

2.1.3 Research Focuses

Here is a simple summary of the current research focuses on the field of e-health.

Electronic Health Record (EHR) EHR is the collection of digitalized patients’

health records, including but not limited to diagnoses, prescriptions, radiology images

and laboratory results. The digital format allows the records to be read and written

by machines, enabling it to be constantly updated to reflect the newest situation,

transmitted and exchanged across multiple organizations when the patient moves. It

also eases the building of case datasets and helps automating workflows, improving

the efficiency and productivity overall. Though there are already existing standards,

efforts are still being made to include data from more versatile sources.

Remote Patient Monitoring (RPM) Traditionally only in hospital patients

can be constantly monitored, limiting their mobility. RPM uses a combination of

sensor, communication and data process technologies to monitor patients’ health

outside of the clinical setting, creating a continuous stream of patients vital data

to be transmitted to servers located in medical facilities. Beside data recording,

some RPM systems have the capability to identify health risks and abnormalities

automatically, then send alarms to patients and their caregiver for timely response.

Wearable sensors With the miniaturization advancements of sensor technolo-

gies, wearable consumer-grade electronic monitoring devices are now more capable,
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connected and user-friendly than ever before. Fitness trackers (e.g. Fitbit) and smart

watches (e.g. Apple Watch) can provide measurements of vital signs including heart

rate as well as exercise data such as step count and acceleration, while more speci-

fied devices such as wearable ECG monitors, blood pressure sensors and blood sugar

sensors to cover specialized monitoring requirements. Data collected can be easily

transmitted to users’ smartphones wirelessly, and can be used for standalone per-

sonal health monitoring purposes, or transmitted to servers of medical institutes for

further analysis in other e-health systems.

5G & IoT Though 5G is still being rolled out gradually, its promise of sub-

millisecond latency and gigabyte bandwidth can surely be advantageous and transfor-

mative for various e-health applications, including remote monitoring, cross-institutional

collaboration and virtual consultations. Internet of Things (IoT) allows more smart

devices to be connected to the Internet and interact with each other, and e-health

applications can benefit from inclusion of ambient sensors, enhanced connectivity by

creating mesh networks and faster response utilizing computational powers at the

edge and close to the user.

ML / DL / FL Machine learning made it possible to find patterns and build

useful models given large datasets, and has already been extensively applied to various

medical tasks. Deep learning can automatically build better features than manual

tuning and utilize complex layers to create powerful models, and has seen successful

usages in medical image segmentation and data extraction from unstructured medical

records. However, as the inner workings of Deep Learning is still being discovered,

currently the lack of interpretability and the risk of catastrophic forgetting restricts

its potential in more life-critical tasks. Federated learning was first established as a

privacy-preserving distributed learning scheme, making it a perfect fit for e-health

application due to security and privacy regulations of medical data, yet it still suffers

from possible efficiency and performance degradations compared to models trained
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in a centralized manner.

COVID related The ongoing COVID-19 pandemic has created many public

health service challenges. Examples include contact tracing, rapid case identification

and prompt notification, remote monitoring and support for people in quarantine,

raising public awareness, improving transparency and many more. Researchers have

been developing novel solutions to address them, such as location data and near

field communication based contact tracing services, symptom reporting apps, diag-

nostic devices with IoT connectivity, virtual consultation platforms and visualization-

supported data dashboards. [10]

2.1.4 Challenges of e-health Systems

Interoperability With more players including healthcare providers, application cre-

ators and sensor manufacturers entering the e-health field, ensuring data is interoper-

able between all participants is becoming increasingly challenging. Though standard

formats are established for EHRs, there is still a lack of simple and secure patient

data sharing methods. Even using the same format, the level of support still diverges

between different applications. In contrast to the complex status quo, the majority

of physicians expect for a more interoperable future, believing that improved interop-

erability can cut diagnosis time and improve patient outcomes according to Google’s

survey [11].

Network & Data Transmission Though Wi-Fi networks are getting more com-

mon and the coverage of cellular networks is almost ubiquitous and still constantly

improving, transmitting data streams across networks is still not trivial. Users may

accidentally walk into a signal blind spot and lose connection. When the network

is congested the quality of service is hardly guaranteed. Handover between access

points and interference from other devices and appliances may result in intermittent

disconnection and bad user experience for time-sensitive applications. Possible solu-



25

tions are being developed, including intelligent fallback to other available networks

when the primary network is having problems, as well as build mesh networks and

use devices that are still connected to relay data.

Sensor Sensors are literally the eyes of e-health systems, but there is still a

long way for them to be perfect. One issue is accuracy, with some sensors requiring

periodic calibration to function properly. Another issue is battery life. When a sensor

is working, it has to consume power for making measurements, performing processing

and transmitting data, resulting in the need for frequent recharging. Moreover, there

are issues for pricing and maintenance.

Complexity & Scalability For most e-health applications, flux of data is con-

tinuously generated and transmitted, which then needs to be efficiently stored and

analyzed. Although experience gained from building big data time-series applica-

tions can provide some guidance, these systems are still of great complexity, and

may struggle to scale when the user base expands, new institutes getting involved or

the uptime keeps growing. In addition, the critical nature of e-health applications

enforces a strict Service-Level Agreement (SLA) and the downtime needs to be mini-

mized, making the system design more challenging. One possible solution is to utilize

edge computing and fog computing to offload some load to the network edge, yet this

may increase the overall hardware cost and reduce accessibility.

Security, Privacy & Regulatory Compliance Due to the sensitive nature of

medical data, the security of e-health systems is always one of the top priorities, and

the design and operation needs to comply with regulations. In transmit data should

be encrypted to prevent eavesdropping. Authentication and authorization policies

are necessities to stop adversival attacks, along with an audit component to log all

the intended accesses. Beside stopping outsiders from retrieving data, encapsulation

and isolation are also necessary to avoid data belonging to one user being read by

another. When interacting with external systems, data may need to be anonymized
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or added noise to protect privacy.

2.2 Remote Patient Monitoring

Remote Patient Monitoring can monitor the patient even when the patient is out of

hospital, which has been shown to reduce readmission, length of hospital stay and

emergency presentation. [12] Current RPM system can be applied to monitoring of

various domains, including but not limited to heart disease, diabetes, mobility issues

and mental health. [13]

2.2.1 System Components

A typical RPM system has the following components:

• Sensors: A series of sensors, fixed, wearable or ambient, used to monitor the

patient’s status as well as the environment.

• Gateway: Most sensors are not directly connected to the Internet, therefore

gateway devices are needed to relay the data collected from sensors. In addi-

tion to relaying data, the gateway may also perform filtering, compression or

encryption. In many cases, the gateway devices also act as a user interface,

showing system status and notifications generated from the RPM system. Pro-

prietary gateway devices exist, yet other smart devices can also be used, such

as a user’s smartphone or smart TV.

• Backend: The backend stores all the data collected, performs analysis, using

data processing technologies to output reportes and alarms the user and care-

giver if needed. It may also present an interface for medical professionals to

explore the data and integrate with other systems.
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2.2.2 System Categorization

Based on the proximity of computation to user, RPM system can be classified into

the following categories:

• Cloud-based: The data analysis is performed in the cloud, which can leverage

a large amount of computing resources for complex models. This is the most

common model, and it minimizes the requirement to the user-side deployment,

and consolides all the data under a central chokepoint, making it easier to

secure and manage. However, the main issue is the limited bandwidth and

unpredictable latency of transmitting real-time data streams across the Internet.

• Edge / Fog-based: These systems utilize the recent edge computing and fog

computing trend, and brings the computation to nodes or facilitates much near

to the user in the sense of networking distance. This drastically reduces latency,

while also allowing relatively powerful models to be used for data analysis. Yet

the separation between edge nodes and central backend further increases the

system complexity, and the increasing number of nodes also poses new challenges

in system management.

• Local-based: Using local devices for computation minimizes the latency, the

risk of security issues and the amount of outward bandwidth required. Remote

backend still exists, but only for sending alarms for emergency personalities

and caregivers, or save data asynchronously for future analysis. However the

computation capacity of local devices also constrains the model that can be used,

therefore simple rule-based models that have strict response time requirements

are more suitable then complicated deep learning models.
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2.3 QoS in e-health

One major challenge for e-health systems is to provide Quality of Service (QoS)

guarantee. Here the QoS requirements usually considers bandwidth, latency, error

rate and priority. As an example, European Union’s MobiHealth project [14] tried

to build a mobile patient monitoring system, and experienced issues caused by delay

variation and limited outbound bandwidth when using 3G network. The complexity

of implementing QoS in these systems mainly comes from its heterogeneous nature, as

multiple services each with different bandwidth and latency requirements may coexist.

The service here may belong to different categories, such as tele-consultation (mainly

Video/Audio chat, can tolerate data loss in exchange of latency) and tele-monitoring

(mainly data collection, can not accept data loss), or belongs to the same category

yet has different resolutions, such as a remote monitoring system performing simple

1-D blood pressure monitoring and multi-head Electrocardiogram (ECG) monitoring.

Moreover, even for the same service, the QoS requirement may be specific to context,

such as emergency versus non-emergency situations.

Many researchers have proposed solutions focusing on different aspects of e-health

systems, attempting to provide better QoS support. In [15] the authors built a list of

QoS requirement of common e-health services and mapped them to The 3rd Gener-

ation Partnership Project (3GPP)’s QoS Class Identifier (QCI) standard, providing

a framework for developers and network operators to meet e-health service require-

ments. In [16], the authors presented a scheduling model that handles telemedicine

traffic with higher priority while also fulfilling QoS requirements of other traffics, and

in their simulation they are able to control the delay and loss below upper bound when

the telemedicine traffic composes 10% of all traffic. In [17], the authors take the idea

of context and propose 4 data transmission modes based on risk level and severity,

from real-time continuous transmission to on-demand triggering, with the highest risk

patients using more pressure. In [18], the author introduced “Bidirectional QoS con-
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trol”, allowing the physician to manually reprioritize the data transmission to better

suit the medical need, providing better flexibility when the network status worsens.

In a similar idea, the author of [19] incorporated a set of tolerable degradations spec-

ified by the user, so network resources can be allocated from the user’s point-of-view

to satisfy expected quality.

2.4 Sleep Stage Prediction

Using polysomnogram (PSG), the current gold standard, for sleep measurement re-

quires a sleep technician to manually analyze sensor recordings and label the sleep

stages, which is costly, time consuming and labor intensive, limiting its scalability.

Therefore, many techniques have been developed to predict the sleep stages directly

from raw sensor outputs during the PSG session. In [20], the authors proposed a

multi-task 1D Convolutional Neural Network (CNN) network for automatic sleep

staging using PSG sensor readings, which not only predicts the sleep stage of a single

time slot but also predicts the stage of neighbouring slots, forcing the model to learn

from contextual information. Their model is validated on 2 public datasets and yield

an overall 5-class (Wake, Rapid Eye Movement (REM), N1, N2, N3) classification

accuracy of 83%. In [21], the authors generates high resolution images from PSG

signals, which then later used to train a deep and dense 2D CNN network inspired by

advances in image classification tasks. From their experiments this architecture can

extract better features, reaching an 93% accuracy for 5-class classification task.

To overcome PSG’s disadvantage of high setup complexity, researchers also tried

to use other lower cost signal recording devices. In [22], a Bidirectional Long-Short

Term Memory (LSTM) model is used for a 4-class (Wake, Light Sleep, Deep Sleep,

REM) sleep stage prediction task using only wearable ECG as input, allowing for

lower cost measurement while still being useful with an accuracy of 80%. In [23],

the authors were able to perform real-time sleep stage classification using a wearable
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ECG as data source and a time-distrbuted 1D CNN model running on a smartphone

with 30-second epoch and 83.5% overall accuracy for the 5-class task.

2.5 Federated Learning

Federated Learning (FL) is a learning paradigm that trains on decentralized datasets

for privacy preservation [24]. With Google’s successful application of Federated Learn-

ing in next word prediction for mobile keywords [25] in 2018, it gradually gained

popularity, stimulating discussions in system design [26], service abstraction [27],

personalized experience [28], simulation [29] and many other aspects. The ability of

learning from distributed datasets makes Federated Learning a good candidate not

only for individual users’ privacy protection, but also for bridging data silos. Another

advantage of Federated Learning is its generalizability, allowing existing models to

be used directly without significant structural changes. However, like any new tech-

nology, Federated Learning also introduced a new set of challenges [26], such as syn-

chronizing training progress, steering training pace, managing participant population,

dealing with data and device heterogeneity, and reducing communication cost.

Due to the sensitive nature of medical data, Federated Learning is especially suit-

able for medical applications. In [30], the author gave a comprehensive review of the

usage of Federated Learning in Healthcare, including patient similarity learning, in-

hospital mortality predicting and future re-hospitalization predicting. Additionally,

other privacy-preserving technologies such as Differential Privacy can be used along

with Federated Learning [31] to comply with stricter regulatory requirements.

2.6 Authentication

Authentication advancements can be classified into 2 categories: the introduction

of new authentication factors, and exploration of combining multiple authentication

factors. Out-of-band authentication is a subcategory of multi-factor authentication,
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which utilizes a separate communication channel for a secondary authentication factor

different from the primary factor. Several out-of-band authentication methods are

proposed in the literature including One-Time Password (OTP) based, mobile-based,

and ID-based methods [32]. Novel factors such as acoustic signals[33], brainwave[34]

and heartbeats (based on ECG) [35] are also being studied.

2.7 Molecular Communication

Though the concept of Molecular Communication (MC) in biological settings has

been well studied for long, it is a relatively new idea in the networking and com-

munication field. MC was first used as an engineering term in 2005 by T.Nakano,

et.al [36], with the author proposing a signaling network for nanomachines working

in an aqueous environment. Later there begins research on simulation, modulation

analysis and error correction. The first “proof-of-concept” macro-scale experiment of

molecular communication happened in 2013 [37], in which N. Farsad, et. al showed a

modified spray filled with isopropyl alcohol used as a transmitter and alcohol sensors

connected to an Arduino used as receiver, while fans were used to create artificial

airflow in order to facilitate propagation. In 2017, N. Farsad, et.al further refined

their decoding method using deep learning [38], with multiple architectures including

Multi-Layer Perceptron (MLP), CNN and LSTM, and showed the effectiveness of

their method in an aqueous setting experiment. In 2018, N. Farsad et.al proposed

a new network architecture named Sliding Bidirectional Recurrent Neural Network

(RNN) for continuous long sequence detection in an aqueous setting [39].
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Chapter 3

Analyze: Application of Deep Learning and Federated

Learning to Sleep Stage Prediction Task Using Data From

Wearable Device

With the awakeness of privacy and data ownership, users trust less in centralized

clusters and demand data collected to be kept on device. This creates new challenges

for e-health application developers, who need to build distributed architectures to ful-

fill these expectations, without loss of performance. Deep Learning has been shown

to be a powerful tool given large and diverse datasets, while Federated Learning

showed great potential in decentralized training and privacy perversion, making both

great candidates. In this chapter, we try to apply these two technologies to the sleep

stage prediction task, using data collected using Apple Watch. We found that more

advanced Deep Learning models can indeed outperform existing Machine Learning

models, improving both prediction accuracy and stability. We also found that Feder-

ated Learning is able to achieve similar performance, though at the expanse of more

data exchange and prolonged training time.

3.1 Introduction

Sleep is an essential activity that keeps the human body and minds functioning,

yet it is often overlooked and neglected. Nowadays, many people suffer from sleep

disorders, leading to an inadequate level of sleep in duration or quality. Nearly half of

all Americans feel sleepy during the day between 3 and 7 days a week [40], and 35%
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of all adults report sleeping on average less than 7 hours per night [41]. On one hand,

research has been conducted to diagnose possible causes resulting in sleep disorders,

including excessive consumption of stimulants such as caffeine, overexposure to blue

light coming from smartphones and other devices, and high stress levels. On the other

hand, sleep disorders have a profound negative effect, often associated with reduced

productivity, inability to focus and even deterioration of health, both physically and

mentally.

In order to improve one’s sleep, the sleep disorders must first be observed and

measured. Currently the gold standard for sleep measurement is polysomnogram

(PSG). The patient comes to a dedicated sleep lab, with sensors monitoring multi-

ple physiological parameters, such as brain wave, oxygen level, heart rate and eye

movements. Later the recorded data is interpreted by a sleep technician to mark the

stages of sleep during the sleep session and finally a sleep report is generated. PSG

has been verified to be an effective and accurate technique, yet the costly and com-

plicated process stopped it from reaching a broader audience. PSG is also restricted

to hospital usage only, as it’s not practical to install the full device in one’s home,

and the results from one PSG measurement can only represent the situation of one

time point, instead of showing the whole trend. New methods need to be developed

to obtain a long-term, continuous sleep measurement while keeping a low cost and

complexity.

Thanks to the recent advance of consumer grade wearable devices, such as smart-

watches and smart bands, they provide a new and ideal data source for sleep mea-

surement. On the functionality aspect, most wearable devices already have an ac-

celerometer on board for step counting purposes, while more devices start to include

a heart rate sensor. On the user habit standpoint, users have been educated to accept

wearing their wearable devices during sleep. Compared to PSG, sleep measurement

using wearable devices is easier to use, more widely available while cost less, making
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it a tempting alternative. Many manufacturers have already exploited this idea, in-

troducing proprietary sleep scoring systems, such as the Fitbit sleep score. However

such systems are opaque, with their inner mechanisms either unknown or unvalidated

to medical standards, restricting their usefulness.

In [4], the authors first developed their own application to acquire raw sensor

data from Apple Watch, then conducted experiments having participants wearing

Apple Watch during PSG sessions to obtain a dataset with sleep stage labels. Later

the authors applied various Machine Learning algorithms to this dataset, trying to

build a model that takes in raw sensor measurements and predicts the sleep stage.

Finally they validated the model they obtained with other sleep datasets, which is

indeed effective for a larger dataset containing more diverse samples called MESA

[42]. Unlike proprietary scoring from device manufacturers, their work creates new

possibilities for open and accurate sleep measurement using consumer grade wearable

devices. However, the models in [4] are rather limited and simple, which process each

sample point individually, ignoring the contextual information hidden in the time axis

that could be extracted when considering neighbouring samples. Besides, the training

approach used requires a centralized dataset, which may lead to privacy concerns on

personal level and compliance issues on hospital level. Medical data are extremely

sensitive, and even with anonymity procedures taken, hospitals may still be unable to

combine their datasets to build a centralized dataset due to regulatory requirements.

In this section, based on the work in [4], we tried to tackle both the model problem

and the privacy problem. Specially, we attempted to answer the following research

questions:

• RS1. (Performance) Can Deep Learning and more advanced network structures

work better for the sleep stage prediction problem?

• RS2. (Privacy & Data Security) Can the federated learning concept be applied

to the stage prediction problem to achieve better privacy and data security
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guarantees?

On the performance side, to improve the accuracy of the sleep stage prediction

task, the task is reframed as a dense-label time prediction problem and more advanced

and complicated deep learning models are utilized. On the privacy side, we try to

apply the federlated learning paradigm for this task, which enables training useful

models from decentralized datasets. From experiment results, the accuracy and con-

sistency of the sleep stage prediction both increased when more suitable models are

used, and federated learning produced models that’s comparable to models trained

using a centralized dataset.

3.2 Problem Description

3.2.1 Dataset

The dataset used in this thesis is the same dataset used in [4].1 To create the dataset,

39 health subjects were given an Apple Watch and wore it for a week, recording their

activity pattern to learn about their circadian clock. At the end of the week, they

took a PSG measurement while wearing an Apple Watch. A custom application is

developed to read raw acceleration and heart rate data from Apple Watch’s sensor

and send it to a server wirelessly. To be compatible with other existing ECG dataset

such as MESA, 3-axis acceleration readings are converted into activity counts. After

the PSG session, technicians label the sleep stage for each time point (epoch), and

data from Apple Watch are aligned to the labels. In the final inspection, data from

8 subjects are excluded due to medical conditions or data logging issues.

The final dataset contains 31 sleep episodes, one-to-one associated to 31 subjects,

with an average episode length of 821. Each episode contains multiple samples. Each

sample represents a 30 second window, including 1 label and 4 features. The label

1Motion and heart rate from a wrist-worn wearable and labeled sleep from polysomnography
v1.0.0. Available at https://physionet.org/content/sleep-accel/1.0.0/

https://physionet.org/content/sleep-accel/1.0.0/
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Table 3.1: Classification Task Simplification

Sleep Stage Wake REM N1 N2 N3
2 Class Wake Sleep
3 Class Wake REM NREM

is annotated by the technician from PSG recordings, and falls into one of 5 possible

sleep stages: Wake, REM, N1, N2 and N3. Each feature is a single value, and they

are generated as follows:

• Activity count, converted from accelerator readings

• Heart rate feature, smoothed using Gaussian filters and aggregated by comput-

ing the standard deviation

• Proxy of circadian clock, using a fixed cosine wave calculated from time for easy

computation

• Proxy of circadian clock, built from a well-validated mathematical model uti-

lizing activity patterns recorded before

3.2.2 Task

Although the label for each sample (window) has 5 possible classes, the data from

wearable devices is not sufficient enough to give a good accuracy on the 5-class clas-

sification task. Therefore, in [4], the authors lowers the difficulty of the sleep stage

prediction task by aggregating some classes into one big class. Specifically, all the

classes beside Wake can be aggregated into a single class called Sleep, and all the

classes beside Wake and REM can be aggregated into a single class called NREM,

as shown in Table 3.1.

Reducing the number of possible classes makes the model more likely to give

out a correct prediction while remaining useful for long-term continuous monitoring

purposes.
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Following the task definition in [4], the sleep stage prediction task can be divided

into 2 subtasks:

• (SW) Classify each sample into 2 classes, Sleep or Wake

• (Three) Classify each sample into 3 classes, Wake, REM or NREM

3.2.3 Formulation

A formal formulation of the task can be represented as follows. Dataset D contains

n episodes, and E represents an episode, i.e D = {E1, E2, . . . En}. Each episode E

contains t samples, which are placed according to time, from earliest to latest, i.e Ei =

S0, S1, S2, . . . St−1, with subscript indicating the time step. Each sample S further

contains a feature vector X of d dimension and a class label Y , i.e Sj = (Xj, Yj). The

goal is to train a model that takes in an episode Ein, and output a predicted label

for each sample (each time step) in this episode, resulting in a predicted class vector

Yout having the same length as Ein.

3.3 Models

Many deep learning models have been developed to solve classification problems. For

this specific problem, applicable models can be classified into 3 categories, each having

different input and output shapes, as illustrated in Fig 3.1 and detailed below:

• One-to-one: Models in this category take 1 sample as input, and return 1 pre-

dicted class label as output. Each sample is considered individually, without

any contextual information from neighbouring samples. Since each sample rep-

resents a 30 second window, the model can only use the information contained

in this small window. This is the Neural Network model used in [4], also known

as Multi-Level Perceptron (MLP) in Deep Learning contexts. However, in this

thesis, the MLP structure used is different, as shown in Table 3.3.
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Table 3.2: Model Categories

w stands for window size, s stands for step size.

Model Category Input & Output Parameter Model Names
One-to-one 1× d →1 None MLP

Many-to-one w × d →1 w
CNN, LSTM, BiLSTM,

CNN-LSTM, CNN-BiLSTM
Many-to-many w × d → w w, s LSTM, UNet

• Many-to-one: Models in this category take a window of w samples as input,

and return 1 predicted class label, which represents the label for the sample in

the middle of the sliding window. Every sample in the input episode has its

own window. For the samples on the boundary of an episode, the boundary

sample is repeated to pad the window. Introducing sliding windows allows the

model to utilize contextual information, but also results in additional compu-

tational costs, since the network is more complex and has a larger input. CNN,

LSTM, BiLSTM and CNN-LSTM are models used in this thesis that fall in this

category.

• Many-to-many: Models in this category take a window of w samples as input,

and return w predicted class labels, representing the label of each sample in the

input window. For next prediction, the window move forward in time with a

step (stride) size of s. Boundary samples are again padded using itself. Finally,

after the window reaches the end of the sequence and the whole episode has been

processed, each sample may have multiple labels (as windows are overlapped),

and these labels are aggregated by average to get the final label for that sample.

LSTM and UNet [43] are models used in this thesis that fall in this category.

Also, thanks to the generalizability of federated learning, all the models have 2

variants, one trained using a centralized dataset, the other one trained using decen-

tralized dataset, in which each client contains an episode.
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Figure 3.1: Visualization of Model Categories

Table 3.3: Model Structure

Model Category Model Name Structure

One-to-one
mlp dense(128), dense(32), dropout(0.3), dense(16)

(baseline) dense(15), dense(15), dense(15)

Many-to-one

cnn
conv1d(3), conv1d(3), dropout(0.3), maxpool1d(2),
flattern(), dense(64)

lstm one lstm(64), dropout(0.3), dense(64)
lstm one bi bilstm(64), dropout(0.3), dense(64)

cnn with lstm
cnn: conv1d(3), conv1d(3), maxpool1d(2), flattern()
lstm: lstm(32), lstm(32), flattern()
backend: concat(cnn, lstm), dropout(0.3), dense(64)

cnn with lstm bi
cnn: conv1d(3), conv1d(3), maxpool1d(2), flattern()
bilstm: bilstm(32), bilstm(32), flattern()
backend: concat(cnn, bilstm), dropout(0.3), dense(64)

Many-to-many
lstm lstm(64), dropout(0.3), dense(64)
unet unet1d(depth=3, width=32, kernel=3, channel=4)
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3.4 Experiment

Dataset Split Following the experiment design in [4], in all experiments, 70% of the

episodes are assigned as training set and the remaining 30% are assigned as test set.

For federated learning, to simulate a possible scenario of participants keeping their

own data locally, the training set is split into multiple clients, with each client only

having 1 episode. The testing set in federated learning is implemented as centralized,

but it would be equivalent to having each test client containing their own episode

locally.

Parameters Compared to federated learning, centralized learning is both faster

and easier to implement, therefore most parameter tuning decisions are made on cen-

tralized training experiments, and later applied to the federated learning experiment.

The detailed parameter ranges are listed as below:

• For many-to-one models trained with a centralized dataset, window sizes are

chosen from 11 to 101 (stepping 6).

• For many-to-many models trained with a centralized dataset, window sizes are

chosen form 11 to 101, (stepping 6); step sizes are chosen from 5 to 25 (stepping

5).

• For federated learning, after analyzing the results of centralized training, win-

dow size is set to 32 for many-to-one models and additionally step size is set to

8 for many-to-many models.

Training For centralized training, 20% of the training set is chosen as validation

set. Adaptive Moment Estimation (Adam) optimizer with 1e-3 learning rate is used,

along with a learning rate reduction strategy monitoring the loss on the validation

set, reducing learning rate to a tenth when reaching plateau. Models are allowed to

train as much as 100 epochs, but an early stopping mechanism stops the training



41

if the loss on validation set begins to increase for 5 epochs. For federated learning,

following the advice on [44], FedAvg is used for aggregation, with both server and

client using Stochastic Gradient Descent (SGD) optimizer, but server using a learning

rate of 1.0 and client using a learning rate of 0.02 to prevent overfitting. Models are

all trained for 20 rounds, where 1 round is approximately equivalent to 5 epochs (set

by the client data fetching strategy) in centralized training.

Evaluation All models are evaluated using the same mechanism as in [4] to enable

direct comparison. To minimize the perturbation caused by randomness, Monte Carlo

cross-validation is used. All centralized models are trained 10 times, each time with

a different training and testing split. Unless stated otherwise, all metrics values

reported are average values aggregated along all these repeated experiments. The

important metrics are explained as follows, with more reasoning can be find in [4]:

• (SW) Area Under Curve (AUC): The area under the Precision-Recall curve,

with recall (x-axis) is the fraction of wake predicted correctly and precision (y-

axis) is the fraction of predicated wake being labelled wake in ground truth.

AUC is chosen here due to the class imbalance.

• (Three) Best Accuracy: The best classification accuracy found when searching

through the threshold space composing 2 thresholds. The first threshold is used

to predict whether the label is wake or not, and the second threshold decides

whether the label is REM or NREM.

• (Three) Kappa: Cohen’s kappa coefficient between the predicted labels and

ground truth. Kappa measures the inter-rater reliability of categorical pre-

dictions, and takes the possibility of reaching agreement by chance. It is more

robust than simple agreement percentage calculation and is widely used in med-

ical researches to measure the agreement of diagnoses using different methods.
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Table 3.4: Top 10 Models

Ordered using the summation of improvement on (SW) AUC and (Three) Best Accuracy.
Category Model Name Window Size Step Size (SW) AUC (Three) Best Accuracy (Three) Kappa

Many-to-many lstm 12 5 0.899 0.744 0.369
Many-to-many lstm 24 5 0.896 0.745 0.386

Many-to-one cnn with lstm 11 0.893 0.736 0.315

Many-to-one cnn 23 0.886 0.751 0.401
Many-to-one lstm one bi 35 0.883 0.741 0.407

Many-to-many unet 24 5 0.883 0.745 0.395

Many-to-many lstm 54 5 0.883 0.759 0.422
One-to-one mlp 0.881 0.724 0.273

Many-to-one cnn with lstm 23 0.878 0.744 0.386

Many-to-one cnn 47 0.878 0.757 0.418

Baseline [4] baseline 0.878 0.723 0.277

Figure 3.2: Model Performance of Centralized Training and Federated Training

3.5 Discussion

Usefulness of Deep Learning Models The best results in [4], obtained using a

Neural Network, are used as a baseline, displayed as a red dash in related figures. For

the sleep/wake classification task, the introduction of deep learning doesn’t provide

much benefit, with only 7% of all deep learning models experimented can exceed the

baseline accuracy. One possible explanation is that the distance between sleep and

Table 3.5: Data Transmission and Time Cost of Federated Learning

Model Category Model Name
Data Transmited Per Round

(One Way, MB)
Time Per Round

(Federated, Second)
Time Per Round

(Centralized, Second)
Time Ratio

(Federated/Centralized)
One-to-one mlp 3.4 28.7 0.2 143.6
Many-to-one cnn 20.8 41.8 0.5 83.6
Many-to-one lstm one 14.1 403.2 1.2 336.0
Many-to-one lstm one bi 28.0 743.0 1.3 571.6
Many-to-one cnn with lstm 30.4 809.8 3.5 231.4
Many-to-one cnn with lstm bi 45.4 1610.4 4.2 383.4

Many-to-many lstm 14.1 93.7 3.1 30.2
Many-to-many unet 432.6 120.9 6.1 19.8



43

Figure 3.3: Effect of different window size on many-to-one CNN model

Figure 3.4: Effect of different window size and step size on many-to-many LSTM
model

Baseline is marked as 0. Red indicates improvement and blue indicates deterioration.
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wake is obvious and can be recognized easily, and using a complex model for such

a simple problem will lead to overfitting. The best model improved 2.1% on the 2-

class classification accuracy, which is a many-to-many model using a classic LSTM

structure, known for its ability to capture contextual information. For the sleep/N-

REM/REM classification task, deep learning models consistently perform better than

the baseline, with 79% of the models experimented achieving a better best accuracy

and 92% having a higher kappa value. As the difficulty of the task increases, the value

of using a more capable model begins to be recognized, which allows the model to find

out the subtle differences between different sleep stages. The best model improved

4.5% on the 3-class classification accuracy, showing again the power of LSTM and

the importance of context.

Effect of Window Size and Step Size The sliding window technique provides

a simple and effective way for models to take in contextual information, at the cost

of additional computation. In Fig. 3.3, the changes of key metrics with the window

size is shown, using many-to-one CNN models as example. For the sleep/wake clas-

sification task, a small window already allows the model to perform well, and the

accuracy suffers when the window keeps increasing. However, for the harder sleep/N-

REM/REM classification task, a larger window indeed provides a boost to the model,

improving both in the best accuracy and also the prediction consistency. Turning to

many-to-many models, allowing the model to jump forward reduces the amount of

computation, yet a sample can still benefit from multiple predictions by taking aver-

age of all the predicted probability values. In the case of LSTM models, a smaller step

size seems to be beneficial, allowing one sample to have more overlapping predicted

labels, while larger step size hurts performance, as shown in Fig. 3.4.

Exploration of Federated Learning Compared to their centralized counter-

parts, the models trained using federated learning generally perform slightly worse,

generally around 2%. That is understandable, since in federated learning setting mod-
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els do not have full access to all the data. However, in most cases, the degradation of

performance is not very significant. More surprisingly, in the sleep/wake classification

task, some many-to-one models even saw better accuracy using federated learning in-

stead of centralized learning. A possible explanation is that the difficulty caused by

the limitation of local data only may have a regularization effect, forcing the model to

squeeze out more from the data it has access to. Beside performance issues, federated

learning also introduced additional communication cost, since it has to constantly

exchange parameters to enable the training to progress. Waiting for all clients to

synchronize also introduces extra time cost in each round, and more time is needed

with the number of clients increasing. In centralized training, a round may only take

2s, but in distributed training the time is usually amplified by 10 to 500 times, as

shown in Table 3.5. But after all, if the time and network cost is acceptable (for

example, when the training happens during night, and the model is not immediately

required), Federated Learning is a viable solution once an efficient model is chosen,

and possibly the only solution when data security and privacy is taken into account.

This chapter is built on the works done in [4], and tries to improve on both the

model performance and privacy protection. On the performance side, our experiments

demonstrated that deep learning models show diminishing returns for the simple 2-

class classification problem, with at most 2% improvement on accuracy. However the

additional memory and contextual capabilities of deep models indeed paid off in the 3-

class classification problem, achieving 4% improvement on accuracy and huge increase

in consistency. On the privacy and data security side, federated learning provides a

viable solution to the sleep stage prediction problem, protecting privacy at the cost

of additional time, communication and slightly worsened performance. Still, there

are many problems waiting to be explored. Models can be further refined, adding

more layers and exploiting the recent progress of time series data research. Train-

ing can be more thoroughly tuned, with different optimizers and training strategies.
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Non-iid data also presents new challenges to federated learning, which may happen

if the participants have special and uncommon conditions. This work is only a pre-

liminary step, and with further investigation there will arise better solutions to not

only this sleep stage prediction task, but also other important and seemingly unsolved

problems.
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Chapter 4

Acquire: Delay Estimation in E-health Sensor Networks

Still, not all e-health applications can utilize a distributed architecture, and for some

use cases, such as Remote Patient Monitoring systems, a central backend is almost

a necessity. In such cases, the e-health system can still be improved by providing a

better model for estimating the delay of data collection, defined as the time between

the data generation and its arrival at the backend server. Limiting the delay to a

certain range can help the system satisfy specific Quality of Service (QoS) require-

ments, which has long been a problem. In this section we analyzed a Wireless Sensor

Network (WSN) under medical setting using both queueing theory and simulation,

first obtained an analytical solution for the waiting time of first node, then examined

the “catch up” phenomenon in latter nodes, and finally proposed a delay estimation

using a small number of nodes to predict the estimation for large number of nodes.

Experiments under different conditions show our estimation works reasonably well.

4.1 Introduction

Wireless Sensor Network (WSN) has seen wide applications in various fields, includ-

ing manufacturing, automation, and medical monitoring, due to its ability to gather

information from a vast distributed array of sensor nodes, sometimes even across

geographical boundaries. Beside measuring the environment and obtaining read-

ings, these sensor nodes can also perform computation, such as run distilled machine

learning models to intelligently filter out unimportant readings, in order to reduce
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Table 4.1: QoS Requirement of Common e-Health Applications

Service Example Use Case Delay Loss
Text chat[45] Tele-consultation 2-5 s 0
Audio chat[15] Tele-consultation, Collaborative diagnosis <150ms <1%
Video chat[15] Tele-consultation, Collaborative diagnosis <250ms <1%

Robotic service[46] Remote surgery <40ms 0
Sensor logging[15] Tele-monitoring <300ms 0
Automated alert[15] Elderly care <10s 0

communication cost. The network topology for WSNs are often star-like, with one

centralized server acting as the sink in the center, and all the sensor nodes placed in

the network edge as the source.

In all the applications of WSNs, some require the network to be compliant to

Quality of Service (QoS) requirements, especially in the medical field, such as remote

monitoring for elderly care. QoS requirements commonly consist of 2 aspects: delay

and packet loss, the former limits the maximum time for a packet to be transmitted

to the sink from a source, and the latter specifies that the tolerable possibility of a

packet being lost in transit, which may be caused by interference or buffer overflow.

Table 4.1 shows some common e-health applications and their corresponding QoS

requirements.

However, calculating the delay of a packet experienced in a WSN is not straight-

forward. It is possible to model WSN as a queuing system, and try to approach

the problem using queuing theory, modeling the delay as the sum of response time

across all nodes in the path from sink to source. However, as in many cases packet

arrival is not strictly a Poisson process and the service time distribution is also not

exponential, resulting in a G/G/1 queue at one intermediate node, which is known

to have no analytical solution and can be only approximated. Even worse, beyond

a single node, the interactions between different kinds of packets in a series of nodes

are more complicated, adding more complexity.

In this thesis, we try to analyze a WSN spanning multiple hops intended for e-
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health monitoring applications via a simulation-based approach. We first show that

although the behavior of packets in the first intermediate node can be analytically

determined, in succeeding nodes the waiting time for low priority data packets gradu-

ally increases, invalidating the naive method of estimating the end-to-end delay using

only the first node. Next, we discuss the “catchup” phenomenon, which partially

explains the increase of waiting time for low priority packets, and provides a slightly

better lower bound estimation for the end-to-end delay. Finally, we try to predict the

delay over a long series of nodes, using only the simulation results of a short series of

nodes, attempting to reduce the simulation time while keeping the results relatively

close to the true values.

4.2 Problem Description

4.2.1 Application

The e-health application for this thesis focuses on elderly care, in which various sensors

are installed throughout the home of elders, such as movement sensors for falling

detection, gas sensors for preventing gas leak and relay nodes to forward the readings

of vital signs obtained from smart bands. Fig 4.1 illustrates such a system. All the

sensors send their data to the monitoring center, in which the data is archived and

analyzed. Beside sensors, elders can also manually send messages to the monitoring

center using a control panel, such as in the case of requesting help. There are 2

types of packets in the system, data and control, between which control has higher

priority. Normally, the packets generated by the sensor nodes are data packets, and

the messages sent by the user manually are control packets. However, sensors can

mark a data packet as an emergency packet when there is an emergency situation, and

emergency packets will have the same high priority as control packets. Priority in the

system is non-preemptive, meaning a high priority packet can not interrupt an ongoing

low priority packet that is already in service. The QoS requirement of the whole
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Figure 4.1: Use case in elderly care

system is on the data packets, whose end-to-end delay can not exceed a predefined

threshold. The goal here is to determine the maximum number of intermediate nodes

(hops) given the constraint.

4.2.2 Queueing System Formulation

The network model discussed consists of multiple sensor nodes at one end, and a sink

at the other end, linked by a series of intermediate nodes. There are Nsensor sensors,

and each sensor node generates data packets following a Poisson process of arrival

rate λdata. Then the data packet containing readings are analyzed in the node using

some onboard models, to decide the urgency of the data. This sensor analysis process

has an exponential service time distribution with a service rate of µdata sensor. Every

data packet has a probability of PH to be marked as an emergency packet. After

the sensor finishes analysis, the packet is sent to the first intermediate node, which

aggregates all the packets from all the sensors, as well as control packets from the

control panel. Control packets are generated following a Poisson process of arrival

rate λcontrol, which directly goes to the first intermediate node. In all intermediate

nodes, service time follows exponential distribution, and data packets are serviced

with a service rate of µdata node while control packets are serviced with a service rate

of µcontrol node. After Nnode intermediate nodes, packets arrive at the sink and are
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Figure 4.2: Abstracted System Model

Table 4.2: Model Parameters

Notation Meaning Default Value
Nsensor Number of sensors 4
Nnode Number of intermediate nodes 10
λdata Arrival rate of data packets at each sensor 2
λcontrol Arrival rate of control packets at the first intermediate node 1

µdata sensor Service rate of data packets at each sensor 5
µdata node Service rate of data packets at each intermediate node 40
µcontrol node Service rate of control packets at each intermediate node 10

PH Probability of a data packet being marked as emergency 0.2

removed from the system. The end-to-end delay of a data packet is modelled as the

sum of response time of the data packet across all nodes, including the origin sensor

and intermediate nodes. An illustration of the network is shown in Fig. 4.2. The

notations, along with the default parameters used in the simulations, are listed in

Table 4.2.

For simplicity, certain assumptions are made. First, there is no packet loss, and all

the buffers are assumed to be infinite. Second, the propagation delay τ are outlined

in certain formulas, but they are assumed to be negligible.

4.2.3 Response Time of Data Packet

We can derive the formula that expresses the response time of a data packet when

there is Nnode intermediate nodes,
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TNnode
resp data = Tresp data sensor +

Nnode∑
i=1

(Twait data i + Tsrv data i) (4.1)

For the sensors, as there is only data packets, it can be easily formulated as an

M/M/1 queue, which has the following analytic results:

Tresp data sensor =
1

µdata sensor − λdata

(4.2)

Also, for data packets, the service time at intermediate nodes is trivial to solve,

just use the definition of service rate

Tsrv data i =
1

µdata node

(4.3)

Yet the waiting time of packets in intermediate nodes is problematic and could not

be easily formulated, which will be detailed in later sections. Once the waiting time

is obtained, the maximum hop count N∗
node satisfying QoS limit for data packet TQoS

can be trivially calculated by finding the integer that satisfies the following inequality:

T
N∗

node
resp data + τ ≤ TQoS ≤ T

N∗
node+1

resp data + τ (4.4)

4.3 Key Observations from Simulations

To get some intuition of the network’s behavior, we performed various simulations,

each with different parameter configurations. Here, we mainly focus on the waiting

time of data packets at a certain intermediate node, indicated by the node index,

which starts from 0 for the first intermediate node. Representative results are shown in

Fig. 4.3 and Fig. 4.4. From those simulation results, the following 2 key observations

were made.

Key Observation 1. As a data packet progresses into the network and arrives

at deeper nodes (which have higher node index), the waiting time of the data packet
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Figure 4.3: Average waiting time of data packet at intermediate node of given index,
with Nnode of 10, 50 and 100

Figure 4.4: Average waiting time of data packet at intermediate node of given index,
with µcontrol node from 6 to 36
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at the node increases.

Key Observation 2. If the waiting time at deeper nodes is able to reach an

equilibrium, adding more nodes to the network will not cause further increase of

waiting time at intermediate nodes.

4.4 Modeling the First Intermediate Node

We first try to characterize the behavior of packets at the first intermediate node,

which is the aggregation node of all data, emergency data and control packets. As

the service rate of data and control packets are different at intermediate nodes, it can

not be simply modeled as an M/M/1 queue, but an M/G/1 queue.

However, we can still combine the control packets and emergency data packets

together to form a “high priority” type of packets, and assign the (normal) data

packers as a “low priority” type of packets. This trick allows the first node to be

modeled as a special case of M/G/1 queue, namely M/M/1 queue with non-primitive

priority. The formulation is as follows.

First we calculate the first and second order moment of service time of both

priorities. As the Poisson process can be combined, the total arrival rate of data

packets can be seen as the sum of the arrival rate of all the sensors. For an exponential

distribution with mean 1/µ, the second order moment is 2/µ2.

E[S] =
Nsensorλdata

Nsensorλdata + λcontrol

1

µdata node

+
λcontrol

Nsensorλdata + λcontrol

1

µcontrol node

(4.5)

E[S2] =
Nsensorλdata

Nsensorλdata + λcontrol

2

µdata node
2
+

λcontrol

Nsensorλdata + λcontrol

2

µcontrol node
2

(4.6)

Then we can calculate the excess E[Se], which is the remaining service time of the
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packet in service as seen by an arrival packet.

E[Se] =
E[S2]

2E[S]
(4.7)

Next, we calculate the utilization of high priority queue ρH , low priority queue

ρL and the whole queue ρ, using the definition of utilization ρ = λ/µ. Note here

the emergency data packets are having high priority, therefore it is counted in the

utilization of ρH .

ρH =
λcontrol

µcontrol node

+
λdataPH

µdata node

(4.8)

ρL =
λdata(1− PH)

µdata node

(4.9)

ρ = ρH + ρL (4.10)

Finally, we can apply the formulas of M/M/1 with non-preemptive priority [47]

to obtain the waiting time of high priority queue and low priority queue.

E[TH
Q ] =

ρE[Se]

1− ρH
(4.11)

E[TL
Q ] =

ρE[Se]

(1− ρH)(1− ρH − ρL)
(4.12)

And the analytic results of the first node indeed agree with the simulation results,

as shown in Fig. 4.5.



56

Figure 4.5: Average waiting time of data packets in the first intermediate node, with
µcontrol node from 4 to 40, obtained using analytic solution and simulation

4.5 Catchup Phenomenon in Subsequent Nodes

One possible explanation of the increase of data packets’ waiting time at deeper nodes

is the “Catchup” phenomenon, which says that overall, more and more high priority

packets will be queued before data packets when they arrive at deeper nodes.

The intuition is as follows: Although physically for each intermediate node, there

is only one queue and all the packets get into that queue, mentally we can separate

the single queue into 2 queues, queue high (QH) that only contains high priority

packets (i.e control and emergency data) and queue low (QL) that only contains low

priority packets (i.e data). For a low priority data packet D, when it arrives at an

intermediate node Ni and waits to be serviced, some high priority packets will arrive

later but serviced earlier during the waiting. After the data packet D has passed the

node Ni and arrives at the next intermediate node Ni+1, the high priority packets

that suppressed the data packet in the previous node will be already present in the

queue high of current node Ni+1, therefore introducing additional waiting for that

data packet at current node. In other words, some high priority packets catch up

from behind and suppress the low priority packets, as shown in Fig. 4.6.

To formalize the effect of catchup phenomenon in intermediate nodes subsequent

to the first node, we tag a data packet D at node Ni. Assuming this packet’s waiting
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Figure 4.6: The catchup phenomenon

At time 1, our tagged data packet D (in blue) arrives at node Ni’s QL. At that
time, there is some data packet ahead in QL, and some high priority packet in QH

(in yellow). At time 2, when our tagged data packet is still waiting to be serviced,
some new high priority packets (in green) arrive at QH , and will be served before D.
At time 3, D has just been served at node Ni and arrives at the next node Ni+1, here
it sees the high priority packets that catched up already in QH .

time at node Ni is ti and the waiting time at node Ni+1 is ti+1. Here to simplify the

formulas, we let µd = µdata sensor, µc = λmu sensor, λd = λdataNsensor, λc = λcontrol.

For the data packet D, during its waiting at Ni, there will be Nc control packets

and Ne emergency data packets catch up.

Nc = λcti (4.13)

Ne = λdPHti (4.14)

And these packets will result in an overhead (time) of tc for control packets and

te for emergency data packets, which will be t in total.

tc =
Nc

µc

= ti
λc

µc

(4.15)



58

te =
Ne

µd

= tiPH
λd

µd

(4.16)

t = tc + te = tiρ1 (4.17)

That means that at the next node Ni+1, the data packet D need to wait for

additional time t beside the packets that’s originally in node Ni+1 when D arrives at

node Ni. Assuming that when the system becomes stable, the number of high priority

packets in high queue should remain relatively the same across all intermediate nodes,

meaning that the waiting time for high priority packets will be E[TH
Q ] before any

catchup happened. Therefore, the waiting time at next node ti+1 can be formulated

as

ti+1(1− ρ) = ρE[S] + ρ1(E[TH
Q ] + ti) (4.18)

Which after some solving, gives

ti+1 =
ρE[S] + ρ1(E[TH

Q ] + ti)

(1− ρ)
(4.19)

Now we try to apply this formulation to obtain an updated approximation of the

waiting time, setting E[TH
Q ] as t0 and solve recursively. From Fig. 4.7, it can be seen

that this approximation is slightly better than the naive approximation only using

the first node, yet it is still far from perfect. The problem of this approach is that it

converges too fast, much faster than the waiting time curve derived from simulation

results.
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Figure 4.7: Comparing catchup and naive estimation of average waiting time of data
packets at node with given index against simulation, with µcontrol node from 4 to 36
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4.6 Curve Fitting Approximation Using Partial Simulation

This section introduces a curve fitting approximation method, which uses polynomial

functions to approximate the waiting time of data packets at intermediate nodes.

On one hand, polynomial functions allow a faster convergence compared to catchup

formulation. 1 On the other hand, it might be beneficial to enable performance

estimation of long sequence networks using simulation of short sequences, consider-

ing that simulating networks with a long sequence of intermediate node may take a

long time, or even be infeasible, while simulating networks with a short sequence of

intermediate nodes is easier and more practical.

The procedure of approximate Nlong nodes using simulation of Nshort nodes is as

follows:

1 Run simulations using Nshort intermediate nodes

2 Try to fit the curve of data packet waiting time with respect to node index

(starting from 1 for the first node 2) to the polynomial function: (a, b, c are

parameters)

a

b+ x
+ c (4.20)

3a If the fit is success, and the resulting function is monotonic increasing, input

the sequence from 1 to Nlong to obtain the waiting time of intermediate nodes

from the first node to the Nlong-th node

3b If the fit failed, or the resulting function is not monotonic increasing, the network

might already reached equilibrium, thus the waiting time of all the nodes is

approximately the average waiting time of first Nshort nodes

1Other families of functions have been tried, but they don’t perform as good as polynomial
functions. Exponential functions converge too fast, while logarithmic functions converge too slow.

2The index starts from 1 instead of 0 to prevent divide by 0 issues when perform fitting
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Table 4.3: Errors of different estimation methods with µcontrol node from 4 to 40

Error is calculated as the sum of estimated waiting time at every node divided by the sum of

simulated waiting time at every node.

µcontrol node Curve Fit Catchup Näıve
4 -4.502% 19.366% 61.452%
8 -8.823% 64.055% 72.753%
12 -4.033% 66.211% 71.968%
16 -13.926% 61.345% 66.664%
20 6.400% 52.228% 57.903%
24 6.237% 37.458% 44.126%
28 8.535% 22.405% 30.015%
32 -0.085% 8.999% 17.349%
36 1.916% 0.151% 8.827%
40 -0.360% -4.826% 3.878%

Average -0.864% 32.739% 43.494%

The results of this simulation are shown in Fig. 4.8 and Fig. 4.9, using the first 20

nodes to estimate the waiting time at 100 nodes, using curve fit from scipy library.

[48] On average, the curve fit approximation has 7% over-estimation compared to the

simulated results, based on the experiment of Fig. 4.9. A table summarizing the

errors of different estimation methods with µcontrol node can be found in Table 4.3. It

can be seen that in most cases the curve fit approximation gives a reasonably well

estimation.

This chapter analyzed the behavior of a Wireless Sensor Network using queueing

theory, analytically solved the waiting time at the first node and proposed a curve

fitting approximation to estimate the waiting time at subsequent nodes. However,

even the curve fitting approximation performs better than the naive approximation

using only the first node, it is far from perfect. For future research, more advanced

approximation algorithms, such as deep learning may be applicable to this problem.

Besides, some assumptions are too simple for real world usage, and it should be

possible to model the performance of a system that is more practical.
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Figure 4.8: Comparing curve fit, catchup, naive estimation of average waiting time
of data packets at node with given index against simulation, with µcontrol node from 4
to 36
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Figure 4.9: Comparing curve fit estimation against simulation, with µdata sensor from
1 to 11 and λdata from 1 to 11.

Blue is the simulation and yellow is the curve fitting results. Error is calculated as
the sum of estimated waiting time at every node divided by the sum of simulated
waiting time at every node.
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Chapter 5

Authenticate: Molecular Key, A Molecular-based

Authentication System

After the discussion of data analysis and data acquisition, now we turn our attention

to the security aspect. Multiple authentication methods already exist, and multi-

factor authentication that combines them has shown great success in keeping infor-

mation systems secured. However, when considering e-health applications, especially

under the current COVID pandemic, it might be beneficial to incorporate health and

environmental information into the security policy, extending security from virtual

world to physical world. As an example, consider a hospital that denies COVID-

contacted healthcare works accessing inpatient wards. Following this idea, this chap-

ter proposes a novel molecular keys-based authentication system as an preliminary

extension to existing ones, using molecules as data carriers while considering their

types, concentration, and the arrival time by the receiver. A prototype is built to

examine its validity, achieving a decoding accuracy of 86% for 3-bit sequences within

a distance of 1m.

5.1 Introduction

Authentication is the process or action of verifying the identity of a user, process, or

entity. To perform authentication, the user needs to supply evidence to support its

identity claim, with every piece of the evidence called a factor. The most traditional

yet commonly used authentication factor is the password, which is a string that only
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the user knows. Based on the source, authentication factors can be classified into

three categories: knowledge (something the user knows, such as password, Personal

Identification Number (PIN), and Short Message Service (SMS) code), ownership

(something the user has, such as USB security token and Radio Frequency IDenti-

fication (RFID) smart card), and inherent characteristics (user’s features, such as

fingerprint, iris, and typing pattern). Besides using only one factor for authentica-

tion, multiple factors can also be used together to improve security. In multi-factor

authentication, any missing or incorrect factor will cause the authentication process

to fail; thus, the identity is only verified when all factors are correctly applied [32].

Although multiple authentication factors have been created to accommodate dif-

ferent use cases, they struggle to incorporate environmental and human health infor-

mation. For example, in industrial biochemistry, current authentication methods are

used to limit entering specific labs or areas to avoid contamination. However, indi-

viduals may be subjected to undesirable substances due to leakage or contamination,

for example. Thus, we need a compatible authentication factor to detect such cases,

which cannot be achieved using Electromagnetic (EM) based communication systems

such as RFID, smart cards, and others.

While EM-based communication systems are having difficulties interacting with

the physical world, MC uses molecules to carry information [36]; thus, it can work

efficiently with several physical and biological environments [49]. Authentication via

molecular keys allows utilizing environmental/health information to design a bio-

compatible security system and launch enhanced services. Indeed, motivated by the

dynamic changes of authorization across time and places, emerging marketing appli-

cations, and evolving human activities, it is beneficial to consider another level of

authentication across a molecular network. Molecular keys can be naturally chosen

from a specific environmental molecular structure or a Volatile Organic Compound

(VOC) associated with a human health and activity [50]. Moreover, the molecular
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keys can be artificially generated to support several everyday applications.

This section designs and builds a molecular key generator and detection system

to be implemented as a side authentication factor. We build the prototype using a

programmable VOC sprayer to generate molecular sequences that can be detected

using a Photoionization Detector (PID). Then, we extensively evaluate multiple Ma-

chine Learning (ML) and Deep Learning (DL) classification models with different

data normalization and feature engineering combinations to decode the transmitted

molecular keys.

5.2 System Overview

This section gives an overview of the proposed prototype and associated system ar-

chitecture used to generate and detect the molecular keys. As shown in Fig. 5.1, we

show the system components, including the transmitter, receiver, modulation, as well

as system testing to identify range limits.

Figure 5.1: The molecular keys generation and detection prototype.

5.2.1 Transmitter and Receiver

We build the transmitter as a programmed VOC sprayer consisting of a mechanical

sprayer connected to a small motor through gears. A molecular key is transmitted by
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the sprayer using a custom script on a connected Raspberry Pi that controls a motor

via relays. Commodity air freshener cans can be used as VOC source, where Ethanol

is the main component of the ingredients list. The motor rotates and presses the can

for a certain amount of time to release some VOC molecules, then rotates reversely to

stop releasing. The Raspberry Pi connectivity and flexibility is the key to manipulate

the molecular keys generator via a remote connection. We use a photoionization VOC

detector at the receiver side to measure the VOC concentration. This detector can

detect a large spectrum of VOCs in a relatively short time (as fast as 1 sample per

second) with a wide range of detection from 0.1 ppm to 5000 ppm. As a continuous

stream of readings, the VOC concentration data can then be stored and retrieved

from the detector for processing.

We built the whole system in a room with minimal human activity during the

experiment, without any natural or artificial airflows. The distance and the alignment

between the sprayer’s sprinkler and the detector’s nozzle can be adjusted.

5.2.2 Molecular Key Modulation

The molecular keys consist of a repeated sequence of ones and zeros modulated using

the on-off keying scheme, where the sprayer is turned on only during the transmission

of bit “1” duration. In the rest of the thesis, we design the system to generate 8

keys using 3 bits; however, an extended version while using more bits is also possible.

To overcome the high system memory and slow propagation, as well as reducing

the need for external synchronization between the transmitter and receiver, a simple

communication protocol is used, as shown in Fig. 5.2. A pilot bit of “1” is prepended

to the bit sequence to indicate the start of transmission. The bit duration tbit is

assumed to be known at both ends. The transmitted symbol consists of the pilot bit

and three key bits, which are periodically repeated after waiting idle period tidle to

minimize the inter-symbol interference.
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Figure 5.2: Modulation of the key 101

At the receiver side, the receiver operates under three states: idle, waiting, and

receiving, as illustrated in Fig. 5.3. The receiving procedure starts at the idle state,

monitoring the VOC concentration and looking for a drastic change to detect the

pilot bit, which comes after some silence time that is greater than or equal to tidle by

comparing the difference of current reading and the average reading of last 5 seconds

to a predefined threshold. Then, it transits into a waiting state for a bit interval

(tbit) till the end of the pilot bit duration. After that, the receiver transits into a

receiving state, in which it records the received VOC concentration for a symbol

interval (tsymbol) to detect the transmitted key. After the transmission finishes, the

receiver goes back to the idle state, and the VOC concentration segments are sent

into a classification model to recover the transmitted bits.

5.2.3 System Testing

To assess the molecular key generation and detection system under the limited aerosol

transmission channel, we conduct several experiments to define the system operating

conditions and identify the limitations. The limitations mainly come from 2 aspects,

signal strength and interference, as can be observed from the following experiments.

Observed VOC Concentration. We start by studying the VOC concentration

observed at the receiver side after sending the key “101” as shown in Fig. 5.4. Despite

the short VOC release press time, the received pulse width is wider than the press time
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Figure 5.3: Receiver state transition.

due to the dispersion nature of the aerosol channel. The transmitted bits appear some

spikes that can be identified and recognized as depicted in Fig. 5.4. Other fluctuations

are due to environmental noises and channel turbulence. The previously mentioned

reasons motivate us to reserve enough time between bit pressing time slots and also

between the symbols, i.e., tidle, to reduce the interference between adjacent bits and

symbols.

Figure 5.4: Received VOC concentration of key 101.

Impact of Distance. We send the key “111” with the sprayer and the detec-

tor aligned and measure the received signal strength in terms of the average VOC
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concentration versus different transmission range as shown in Fig. 5.5. We observe

relatively high concentration measurements for small distances, allowing the keys to

be detected efficiently. As the receiver moves further away, the measured VOC con-

centration decreases significantly due to the diffusion nature of the aerosol channel

and the corresponding signal loss with the distance. According to the depicted results

in Fig. 5.5 and the noise levels in Fig. 5.4, the adopted setup can operate satisfac-

torily for distances up to 1.5 m. However, at longer distances, the slow diffusion of

the aerosol channel results in low values of received concentration compared to the

environmental noise; thus, individual spikes may not be observed while the decoding

is hardly possible.

Figure 5.5: Effect of distance on VOC concentration.

Impact of Alignment. To understand the impact of alignment, we consider

different angles between the spraying direction and the receiver at a distance of 0.7 m,

using the same key “111”. The value of angle quantifies the deviation of alignment.

Since the released VOC mostly exists along the nozzle axis, the amount of VOC

arrived at the detector decreases as the angle increases. Based on the results in

Fig. 5.6 and the noise level shown in Fig. 5.4, the system can maintain a relatively

good signal level within 20◦ angles range.



71

Figure 5.6: Effect of alignment on VOC concentration.

5.3 Problem Description

After generating different molecular keys and recording the VOC concentration at

different time instants, the main problem becomes recovering these keys from the

detected VOC concentration readings, similar to the depicted one in Fig. 5.4. The

recovery process is done via two steps: First, segmenting the readings then, decoding

the data.

Segmentation. After getting the VOC concentration readings for a time span

of T timesteps, y1, y2, . . . , yT , we isolate the reading segment, Y, related to the key.

The elements of Y are Yk[j], which represents the readings on j-th timestep of the

k-th bit in the sequence.

Decoding. To decode Y data into the estimated key bits, we consider it a classi-

fication problem under variable channel and noise conditions. We perform the classi-

fication using learning algorithms that need extensive experimental training phases.

Multiple classification models in ML can be applied to this problem, but some of them

require larger dataset for better generalization. To address this problem efficiently,

we first model the received bit concentration function based on several experimen-

tal measurements in the following section. Then, we use the model to generate a

simulated dataset and train different classification learning models in Section 5.
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5.4 VOC Concentration Modeling

In this section, we model the received VOC concentration by fitting theoretical models

to our experimental data. We use the model proposed in [39] that has shown to be

suitable for molecular channel characteristics.

Modeling Single Release. The received VOC concentration of a single trans-

mitted pulse is modeled [39] as a function in the time t as,

λ(t) =

 κ
√

c
2πt3

exp
[
− c(t−µ)2

2µ2t

]
t > 0

0 t ≤ 0
(5.1)

where κ is a proportionality constant, c and µ are channel parameter, which can be

found by fitting the curve to experimental data.

Fitting Single Release. To find κ, c and µ, we conducted 30 single-release

experiments for aligned sprayer and detector while allow an idle time of 120 seconds

between consecutive presses to avoid signal interference. Then, we use a simulated

annealing algorithm (implemented in [51]) to fit the parameters, by minimizing Root-

mean-square Error (RMSE) between values predicted by the model and the exper-

iment, over the time length 45 seconds at a sampling rate of 1 sample/sec. The

parameters are found to be: κ = 408, c = 71.2 and µ = 11.9. Fig. 5.7 shows the 30

received signal of single press versus time overlayed on the fitted model, which verifies

the good approximation.

Modeling Sequence Release. Following the fitted model for the single re-

lease, we model the stream of molecular bits and develop an appropriate model. The

summation of delayed versions of λ(t) follows a Poisson distribution [39]; thus, the

distribution of the received VOC concentration is expressed as,

Yk[j] ∼ P

(
k∑

i=0

xk−iλi[j] + η

)
(5.2)
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Figure 5.7: Comparison between several measurements of the received single release
pulse and the adopted model.

where η represents an independent additive Poisson noise coming from background

or the receiver, P(ξ) = ξye−ξ

y!
is the Poisson distribution function with a parameter

ξ and y is the measured value. By interpreting the parameter ξ as the amount of

VOC molecules in the air near the detector, sampling from the Poisson distribution

simulates the measuring of VOC concentration since Poisson distribution describes

the probability of random events happening in a given time, and molecule being

captured by the detector is such an event. λi[j] is the response at the j-th timestep

of the current bit due to the i-th bit in the transmission and is expressed as

λi[j] = λ(
i · ω · tbit + j

ω
) (5.3)

with ω denoting the sampling rate.

5.5 Retrieving Molecular Keys

Throughout this section, we detail the implementation of the keys decoding pro-

cess from the received VOC concentrations with the help of the previously discussed

channel characterization simulation model. Covering all possible fluctuations by ex-

periments would be impossible; thus, the simulated dataset can help the decoding
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models access plenty of generalized results. By viewing the decoding problem as a

time series classification problem, various model configurations can be built using

different models, normalization, and feature engineering techniques.

Building Simulation Dataset. We developed a customized script to simu-

late the transmission of different keys sequences considering randomization of time

alignment, concentration amplitude, and environmental noises to simulate the VOC

diffusion more realistically. To this end, we created a simulated dataset of size 10000

and adopted the segmentation procedure to capture the key sequence information.

Normalization and Feature Engineering. Before processing the received

data, it is necessary to normalize them to improve the predictability and model ro-

bustness. We use two normalization methods: the Z-normalization, which normalizes

the data to have zero-mean and unity standard deviation values, and the min-max

normalization, which normalizes the data between 0 and 1. Regarding feature engi-

neering, we use two techniques: slope, which calculates the difference between each

time step, and summary, which computes different statistics such as the maximum,

minimum, variance, median, and mean.

Methods. As a univariate time series classification problem, several ML classi-

fication methods are applicable. All these methods can be categorized considering

two perspectives, as shown in Table 5.1. Firstly, the methods can be classified as

to whether DL can be involved or just classic ML. Secondly, they can be classified

according to whether the time semantic is preserved or not, i.e., whether the input is

seen as a pure vector or a time series.

Here are some additional explanations to Table 5.1:

• CNN is classified as ”Keep Time Semantic” as it performs convolution along

the time axis, thus retaining the sequence nature of a time series.

1Time Series KNN with Dynamic Time Warping (DTW), implemented in [58].
2Time Series Forest, [59] implemented in [58].
3Random Interval Spectral Ensemble, [60] implemented in [58].
4Fully Convolutional Neural Network and a relatively deep Residual Network [61].
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Table 5.1: Methods Summary

Preserve Time Semantic Discard Time Semantic

Classic ML
TS-KNN1

TS-Forest2

RISE3

KNN[52]*
SVM[53]*
Naive Bayes*
Decision Tree*
Random Forest*

Deep Learning
CNN (FCN/ResNet 4)*
RNN (LSTM[54]/GRU[55] )*
BiRNN[56] (LSTM/GRU)*

MLP[57] *

• For Bidirectional RNNs, a variant using 3 Bidirectional layers (denoted by

“3Bi”) is also tried.

• For MLP and CNN Methods, the implementation is based on a review paper

by H. Fawaz etal [62]. CNN methods are chosen as the top 3 ranked methods

according to their pairwise ranking on univariate time series classification.

For the methods with an asterisk, besides directly taking the time series as in-

put, a variant which takes both the input sequence and its summary (as described in

Feature Engineering) is also tried. For Classic ML methods, the summary is simply

concatenated along with the input sequence. For DL methods, the summary is in-

putted as another branch, which first passes 2 fully connected layers, then a dropout

layer, finally concatenated with the output from the sequence branch, before the final

fully connected layer and the output layer, as shown in Fig. 5.8.

Training. To make a fair comparison, most models are trained in the same

fashion:

• Classic ML methods: First run a grid search with 5-fold cross validation on the

simulated dataset to find the best parameters, then the model is trained using

the whole simulated dataset and tested on the real dataset.

• DL methods: All models use an Adam optimizer with a learning rate of 1e-3.

Models can be trained at most 200 epochs on the simulated dataset, but an
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Figure 5.8: Architecture of classification models with and without summary.

early stop callback is registered on the validation loss (validation set taken from

simulated dataset), so the training will stop if the loss does not decrease in 10

epochs.

Some specific measures are used when the general training methods do not work

well, as stated below.

• For Time Series ML methods, running grid search with 5-fold CV takes a long

time, so only 10% of the simulated dataset for this stage. Later the model is

still trained using the whole simulated dataset and the best parameters found.

• For FCN in CNN, AdaDelta optimizer is used instead of Adam [62].

5.6 System Performance Evaluation

In this section, we evaluate the decoding performance of different classification learn-

ing methods using experimentally measured data to find the best methods. We use

two metrics known as accuracy and class-weighted F1, which are suitable for our

multi-class classification problem. The accuracy is defined as the percentage of cor-

rect predictions on all predictions. While the class-weighted F1 is defined as the sum
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of F1 scores in each class weighted by the class size, which is expressed as,

Class Weighted F1 =
C∑
i=0

Ni

N
F1i, (5.4)

where C denotes the number of classes, N denotes the records number, Ni denotes

the records number in the class i, and F1i denotes the F1 value of the class i, which

is found from

F1 = 2× Precision× Recall

Precision + Recall
(5.5)

where the precision and recall are computed using True Positive (TP), False Positive

(FP) and False Negative (FN) as,

Precision =
TP

TP + FP
Recall =

TP

TP + FN
. (5.6)

Table 5.2: Top 5 Methods

Rank ML/DL Method Normalization
Feature Engineering Simulated Dataset Sequence Release Dataset
Slope Summary Accuracy Weighted F1 Accuracy Weighted F1

1 DL BiLSTM none ✓ 0.974 0.975 0.864 0.868

2 DL 3BiGRU znorm ✓ ✓ 0.978 0.978 0.818 0.818

3 ML NaiveBayes none ✓ 0.658 0.661 0.818 0.816
4 ML kNN none 0.980 0.980 0.818 0.814

5 DL GRU minmax ✓ ✓ 0.973 0.973 0.795 0.790

We use the sprayer to transmit all possible 3-bit digital sequences, i.e., from 000

to 111, following the modulation and protocol defined previously. After receiving

the data at the detector side, the corresponding segments are isolated for each bit

sequence, and then different ML classification methods are tested on 44 segments. Fig.

5.9 shows that the simulated data (in blue) is able to capture the characteristics of real

data (in red) well. To quantify the performance of different ML classification methods,

we computed the accuracy and weighted F1 metric for all methods using different

normalization and feature engineering. Table 5.2 lists the best 4 methods while
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showing the adopted normalization and feature engineering. Among all methods, the

Single Layer Bidirectional LSTM achieves the highest accuracy of 0.864.

Figure 5.9: Comparison between the simulated datasets and the measurements of
received key sequences.

5.7 Discussion

This section discusses possible applications motivated by the unique features and

advantages of the proposed molecular key-based systems. Then, we highlight some

challenges that should be addressed in future system implementations.

5.7.1 Potential Use Cases

Biochemical Applications. Although it is possible to implement the existing au-

thentication methods to grant or deny access based on visited locations, it is not

possible to use the contact of a specific substance to trigger these radio-frequency-

based systems. However, by integrating appropriate MC detectors, such as PID, into

handheld devices, the system can monitor the nearby biochemical compounds and use

the predefined molecular keys (type and concentration) to check the authentication

and grant permission.

In several industrial locations, it is either unsafe to use radio-frequency-based sys-

tems to avoid hazards (e.g., fire) or inadequate to use them in some environments
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such as tubes. Therefore, generating artificial compatible molecular keys with appro-

priate fluid flows can safely authenticate industrial processes and deal with different

chemical substances.

Human-centric Applications. Human health and dietary habits can be easily

monitored by the exhaled VOC [50]; thus, we can use the proposed molecular-keys-

based systems for authentication and monitoring daily human activities. For example,

the system can limit some human activities if the alcohol level in the breath exceeds

a specific threshold. Moreover, the exhaled VOC profile can be studied, trained, and

used to identify viral infection particles and possibly use such information to develop

pandemic mitigation authentication policies. Also, the system can allow practicing

sports or using gym equipment if the health condition is suitable based on the exhaled

VOC measurements.

Marketing Applications. It is possible to use molecular keys for marketing

purposes to register rewards, which can be used to get benefits such as accessing

high-speed networks and special VIP zones. Specifically, since all marketing malls

use air fresheners, we propose using artificial molecular keys impeded in them. Then,

the customers can collect the keys by visiting the stores or specific supermarket lanes,

which requires spending more time thanks to the slow propagation features of MC

channels. Thus, the merchants can have more chances to show their goods and attract

customers.

5.7.2 Implementation Challenges

To implement the molecular-keys-based systems in our everyday life applications, we

should build a robust system that can operate under different conditions and mitigate

several challenges. In the following, we summarize the main issues that can impede

the implementation of the proposed system.

Dynamic Environments. The system can be affected by ambient environmen-
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tal circumstances such as ventilation, interfered VOCs, and pedestrian flows, which

should be considered in system modeling. Also, appropriate system implementation

and detection algorithms need to be investigated to mitigate these side effects.

Regulatory Compliance. The systems that use artificial molecular keys should

consider carefully any conditions regarding the environment. The adopted VOCs

in the industrial environment should meet safety constraints and do not affect the

production quality. Regarding the usage in public areas, the circulated air should be

suitable for humans without causing any health problems.

Scalability. Implementing the system on a large-scale requires considering the

design of long molecular keys, which needs using appropriate system components,

protocol design, and detection algorithms. Also, accommodating multiple receiver

and enabling the broadcasting feature are important feature that requires careful

consideration such as different range and directions.

This chapter considered an authentication factor utilizing MC, named Molecu-

lar Key. Compared to traditional authentication factors, using molecules as carrier

enables authentication process to interact with physical world easier, creating new

possibilities and providing more flexibility to designing security systems. A prototype

was built to show the feasibility of purposed system, using a sprayer the transmitter

and a VOC detector as the receiver. Different ML and DL techniques were considered

for recovering the bits transmitted from the VOC concentration reading stream. Ad-

vantages and current limitations are discussed, with potential applications in multiple

domains.
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Chapter 6

Conclusion

In this thesis, we thoroughly investigated the 3 major parts in building e-health ap-

plications: analyze, acquire, and authenticate, covering the recommended guidelines

along with concrete examples. We showed that applying deep learning to sleep stage

prediction problems can be beneficial, and introducing federated learning for privacy

preservation did not significantly impact the model’s performance. We observed that

it is possible to estimate the delay in sensor networks despite its internal complexity

and randomness. We found that using VOC-based molecular keys for authentication

is not only possible, but may provide additional security guarantees in certain use

cases. We believe that these work can help build a more concrete foundation for

e-health applications.

With that said, many limitations still need to be addressed in future works. The

latency model needs better mathematical functions beyond simple curve fitting. The

time series labelling model used for sleep stage prediction tasks may be further refined

and applied to other similarly structured problems. The amount of information that

can be carried by the Molecular Keys are severely limited. We hope future research

will solve these problems, as well as open new possibilities for the framework we

proposed.
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