Parallel Approximations of the Tukey \(g\)-and-\(h\) Likelihoods and Predictions for Non-Gaussian Geostatistics

Sagnik Mondal\(^1,2\), Sameh Abdullah\(^1,3\), Hatem Ltaief\(^1,3\), Ying Sun\(^1,2\), Marc G. Genton\(^1,2,3\), and David E. Keyes\(^1,3\)

\(^1\)Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology
Thuwal 23955-6900, Kingdom of Saudi Arabia

\(^2\)Statistics Program, King Abdullah University of Science and Technology

\(^3\)Extreme Computing Research Center, King Abdullah University of Science and Technology

Abstract—Maximum likelihood estimation is an essential tool in the procedure to impute missing data in climate/weather applications. By defining a particular statistical model, the maximum likelihood estimation can be used to understand the underlying structure of given geospatial data. The Gaussian random field has been widely used to describe geospatial data, as one of the most popular models under the hood of maximum likelihood estimation. Computation of Gaussian log-likelihood demands operations on a dense symmetric positive definite matrix, often parameterized by the Matérn correlation function. This computation of the log-likelihood requires \(O(n^2)\) storage and \(O(n^3)\) operations, which can be a huge task considering that the number of geographical locations, \(n\), now commonly reaches into the millions. However, despite its appealing theoretical properties, the assumptions of Gaussianity may be unrealistic since real data often show signs of skewness or have some extreme values. Herein, we consider the Tukey \(g\)-and-\(h\) (TGH) random field as an example of a non-Gaussian random field that shows more robustness in modeling geospatial data by including two more parameters to incorporate skewness and heavy tail features in the model. This work provides the first IPC implementation of the TGH random field’s inference on parallel hardware architectures. Using task-based programming models associated with dynamic runtime systems, our implementation leverages the high concurrency of current parallel systems. This permits to run the exact log-likelihood evaluation of the Tukey \(g\)-and-\(h\) (TGH) random fields for a decent number of geospatial locations. To tackle large-scale problems, we provide additionally an implementation of the given model using two different low-rank approximations. We compress the aforementioned positive-definite symmetric matrix for computing the log-likelihood and rely on the Tile Low-Rank (TLR) and the Hierarchical Off-Diagonal Low-Rank (HODLR) matrix approximations. We assess the performance and accuracy of the proposed implementations using synthetic datasets up to \(800K\) and a \(300K\) precipitation data of Germany to demonstrate the advantage of using non-Gaussian over Gaussian random fields. Moreover, by relying on TLR/HODLR matrix computations, we can now solve for larger matrix sizes while preserving the required accuracy for prediction. We show the performance superiority of TLR over HODLR matrix computations when calculating the TGH likelihoods and predictions. Our TLR-based approximation shows a speedup up to \(7.29X\) and \(2.96X\) on shared-memory and distributed-memory systems, respectively, compared to the exact implementation.

I. INTRODUCTION

Techniques relying on latent Gaussian models are widely used to make spatial predictions beyond the observed geographical locations. The target modeling process involves obtaining a set of statistical parameters with the aid of the likelihood function through the Maximum Likelihood Estimation (MLE) method in order to impute missing spatial data. MLE operates on a dense covariance matrix with dimension \(n \times n\) where \(n\) represents the number of geospatial locations. The challenge for high-dimensional problems lies in the computation requirements of the log-likelihood function, which necessitates \(O(n^3)\) computation and \(O(n^2)\) memory space, making its computation prohibitive for large \(n\). Techniques exist to tailor the modeling process to reduce the computing cost by order of magnitude. The low-rank approximation has been shown to be necessary for the closely related problem of the spatial statistics framework [1]–[4]. However, most of the existing studies evaluate the effectiveness of the low-rank approximation with the Gaussian process, which is limited in real-life datasets.

In typical applications, the spatial variables are non-Gaussian, where skewness and heavy tails can be captured. A common approach to deal with this non-Gaussian behavior is to apply a non-linear transformation to the non-Gaussian data such as square-root transform [5]–[7], Box–Cox transform [8] and the log-normal transform [9] which is known as the trans-Gaussian approach. Ideally, transforming non-Gaussian data using one of these techniques should be enough to apply Gaussian modeling directly to the data. However, it is impossible to find a suitable transformation technique that can give the best modeling performance for arbitrary datasets.

In [10], a highly flexible trans-Gaussian model has been proposed under the name Tukey \(g\)-and-\(h\) (TGH) random fields. This work presents a parallel implementation of the TGH random fields in the context of climate and environmental applications. We rely on a task-based programming model to provide the TGH modeling and prediction operations in the exact form where the dense linear algebra operations
have been drawn from the Chameleon library [11] and the underlying tasks schedule managed by the StarPU runtime system [12]. We also provide two low-rank implementations of the TGH model: TLR-based, where the compression and linear algebra operations run through the HiCMA library [13], and Hierarchical Off-Diagonal Low-Rank (HODLR)-based approximations [14], where the compression and linear algebra operations run through HODLRLIB [15]. The TLR-based implementation shows a speedup up to 7.29X and 2.96X on shared-memory and distributed-memory systems, respectively, compared to exact implementation.

Our main contributions are as follows: 1) We propose a parallel implementation of the TGH likelihoods and predictions to model a wide range of real spatial datasets on shared-memory and distributed-memory systems; 2) We provide parallel TLR-based and HODLR-based approximations to the exact predictive model to reduce the prohibitive complexity of the underlying algebra operations of the associated dense covariance matrix; 3) We show the effectiveness of the non-Gaussian scheme provided by our implementation compared with the traditional Gaussian modeling with both synthetic and real datasets; 4) We provide a comparison in the parameters’ estimation accuracy to produce the required accuracy for both TLR-based and HODLR-based approximation; 5) We assess the performance of exact/TLR/HODLR non-Gaussian modeling and prediction on shared-memory and distributed-memory systems; and 6) We demonstrate the quality of our implementation in a 300K precipitation dataset of Germany to show that we are able to provide a robust predictive model to work in such a non-Gaussian dataset.

The remainder of the paper is organized as follows. Section II covers related work. Section III gives an overview and background of our problem. Section IV describes in detail the algorithm and our parallel implementation. Section V analyzes accuracy and performance using synthetic and real datasets in the context of climate/weather applications. We conclude in Section VI.

II. RELATED WORK

In this section, we discuss some of the popular approaches for constructing non-Gaussian random fields. Use of various non-Gaussian distributions such as skew-Gaussian distribution (Kim and Mallick [16]; Zhang and El-Shaarawi [17]; Genton and Zhang [18], Rimstad and Omre [19]), t-distribution (Røislien and Omre [20]), skew-t distribution (Bevilacqua et al. [21]), log-skew-elliptical distribution (Marchenko and Genton [22]) can create different non-Gaussian random fields. Palacios and Steel [23] and Fonseca and Steel [24] provided non-Gaussian models for spatial data by scale mixing the Gaussian random field. Gräler [25] and Krupskii et al. [26] made non-Gaussian random fields using copula. Wallin and Bolin [27] provided a class of non-Gaussian spatial Matérn fields using stochastic partial differential equations. Another popular technique to model non-Gaussian spatial data, known as trans-Gaussian random field, is applying a non-linear transformation of the original data such that the transformed data become Gaussian. A few well-used non-linear conversions are log-normal (De Oliveira [28]), square-root (Johns et al. [29]), Box-Cox (De Oliveira et al. [30]), and power transformations (Allcroft and Glascby [31]). However, it may be challenging to find this transformation in some situations, if not impossible. Xu and Genton [10] proposed Tukey g-and-h (TGH) random fields based on the Tukey’s g-and-h transformation. It is a more flexible trans-Gaussian random field than the existing trans-Gaussian models. Due to its many appealing statistical properties and its easily interpretable parameterization, we select the TGH model for the large-scale implementation.

The computational challenges for fitting the Gaussian and TGH models are similar. The exact evaluation of the log-likelihood for both models requires dense matrix inversion. The task of this matrix inversion can be very challenging when the size of the matrix is large, i.e., when the number of geographical locations of the problem is high. A parallel computing framework can help us to speed the computation time for these models. The task of spatial prediction (or kriging) has already been implemented for the Gaussian model in a parallel computing framework. For example, the authors in [32], [33], [34] have implemented kriging for Gaussian model in parallel computing frameworks using Message Passing Interface (MPI), OpenMP, Parallel Virtual Machines (PVMs), and/or Graphics Processing Units (GPUs). Abdullah et al. [35] first provided a framework in parallel computing for the exact computation of the log-likelihood of the Gaussian model using dense linear algebra task-based algorithms and dynamic runtime systems.

Another approach to tackle the computation and storage complexity is to use some approximation techniques for the dense matrix. The authors in [36], [37] used a method named covariance tapering for approximation of the large covariance matrix. Other approximation techniques include low-rank approximations. For instance, the authors in [3] and [38] used Tile Low-Rank (TLR) and Hierarchically Off-Diagonal Low-Rank (HODLR) approximations of the covariance matrix for computation of the log-likelihood of the Gaussian model.

III. BACKGROUND AND OVERVIEW OF THE PROBLEM

In this section, we formally define the Tukey g-and-h random field and its log-likelihood function. Subsequently, we provide the kriging equation and an assessment tool for the TGH modeling.

A. Definition of Tukey g-and-h Random Fields

Tukey’s g-and-h transformation

\[\tau_{g,h}(z) = g^{-1}\{\exp(gz) - 1\} \exp(hz^2/2), \]

is a monotonic function of \(z \) for \(g \in \mathbb{R} \) and \(h \geq 0 \). Here and from now on, the values of any quantities involving \(g \) at \(g = 0 \) are defined as their limit when \(g \to 0 \).

The Tukey g-and-h (TGH) random field with location parameter \(\xi \in \mathbb{R} \) and scale parameter \(\omega > 0 \) is defined as

\[T(s) = \xi + \omega \tau_{g,h}(Z(s)), \]
where, \(Z(s) \), \(s \in \mathbb{R}^d \), \(d \geq 1 \) is a standard Gaussian random field, i.e. \(\mathbb{E}[Z(s)] = 0 \) and \(\forall \mathbb{V}[Z(s)] = 1 \), with some correlation function \(\text{corr}(Z(s_1), Z(s_2)) = \rho_Z(s_1, s_2) \). The two parameters \(g \) and \(h \) dictate the extent of skewness and kurtosis in the marginal distribution and the sign of \(g \) directs the sign of the skewness of the marginal distribution producing a family of random fields with very flexible marginal distribution. The TGH random field includes a large family of trans-Gaussian random fields. For example, when \(g = h = 0 \), \(T(s) \) becomes a Gaussian random field, for \(g > 0 \) and \(h = 0 \), \(T(s) \) becomes a shifted log-Gaussian random field and for \(g = 0 \) and \(h > 0 \), \(T(s) \) is a random field with a Pareto-like marginal distribution.

B. Log-likelihood of Tukey g-and-h Random Fields

Let \(\theta_1 = (\xi, \omega, g, h)^T \) and \(\theta_2 \) be the parameter vector corresponding to \(\rho_Z(s_1, s_2) \), the correlation function of \(Z(s) \) in (2), and let \(\theta = (\theta_1, \theta_2)^T \). Consider a dataset \(D = \{t(s_1), \ldots, t(s_n)\} \) collected from the TGH random field, \(T(s) \), at locations \(s_1, \ldots, s_n \). The log-likelihood function of \(\theta \) given the dataset \(D \) is

\[
L(\theta, \theta_2|D) \propto -\frac{1}{2}\{Z(\theta_1)^T(R_{\theta_1}^{-1} + hI_n)Z(\theta_1) + \log |R_{\theta_2}| \}
- \sum_{i=1}^n \log \{\exp(gz_{\theta_1, s_i}) + g^{-1}\{\exp(gz_{\theta_1, s_i}) - 1\}hzw_{\theta_1, s_i} \} - n \log \omega,
\]

where \(z_{\theta_1, s_i} = r^{-1}\{f(s_i) - \xi \}/\omega \), \(Z(\theta_1) = (z_{\theta_1, s_1}, \ldots, z_{\theta_1, s_n})^T \) and \((R_{\theta_2})_{i,j} = \rho_Z(s_i, s_j) \), \(i, j = 1, \ldots, n \). We estimate \(\theta \) by maximizing the log-likelihood in (3).

C. Kriging with Tukey g-and-h Random Fields

One of the most widely used geostatistical techniques is kriging. In kriging, the objective is to find an optimal point estimator of the process under consideration at a new location by minimizing some loss function. For TGH random fields, the best kriging predictor of \(T(s_0) \) under squared error loss function is

\[
\tilde{T}(s_0) = \xi + \frac{\tilde{\omega}}{\sqrt{1 - h\hat{\sigma}^2}} \exp \left\{ \frac{\hat{h}\hat{\mu}^2}{2(1 - h\hat{\sigma}^2)} \right\} \times \left\{ \exp \left\{ \frac{\hat{\sigma}^2\hat{\mu}^2 + 2\hat{\mu}}{2(1 - h\hat{\sigma}^2)} \right\} - 1 \right\},
\]

where \(\hat{\mu} = r_{\theta_2}^T R_{\theta_2}^{-1} Z(\theta_1) \), \(\hat{\sigma}^2 = 1 - r_{\theta_2}^T R_{\theta_2}^{-1} r_{\theta_2} \) and \(r_{\theta_2} = \{\rho_Z(s_0, s_1), \ldots, \rho_Z(s_0, s_n)\}^T \) and \(\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)^T \) is the MLE of \(\theta \).

D. Matérn Correlation Function

For constructing the correlation matrix of \(Z(s) \) in (2), we need some valid correlation function to ensure the symmetric positive-definite structure of the correlation matrix. We use the Matérn correlation function here because of its high flexibility. The Matérn correlation function is defined as

\[
\rho_Z(h) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{4\sqrt{2\nu h}}{\phi} \right) ^\nu K_{\nu} \left(\frac{4\sqrt{2\nu h}}{\phi} \right),
\]

where \(h = \|s_1 - s_2\| \) is the distance between locations \(s_1 \) and \(s_2 \), \(\nu > 0 \) is the smoothness parameter, \(\phi > 0 \) is the range parameter, \(\Gamma(\cdot) \) is the gamma function, and \(K_{\nu}(\cdot) \) is the modified Bessel function of the second kind of order \(\nu \). The smoothness parameter \(\nu \), as the name suggests, dictates the smoothness of the random field and the range parameter \(\phi \) controls how quickly the correlation of the random field decreases with distance. Many popular correlation functions come under the Matérrn correlation family. For example, when \(\nu = 0.5 \), the Matérn correlation function becomes the exponential correlation function \(\rho(h) = \exp(-4\sqrt{2\nu h}/\phi) \), when \(\nu = 1 \), it becomes the Whittle correlation function \(\rho(h) = (4\sqrt{2\nu h}/\phi) K_1(4\sqrt{2\nu h}/\phi) \), and when \(\nu = \infty \), it becomes the Gaussian correlation function \(\rho(h) = \exp\{-4\sqrt{2\nu h}/\phi} \}^2 \).

E. Assessment of Fitted TGH Model Using PIT

The probability integral transformation (PIT) can be a useful tool to assess whether the data are originally emulating a TGH random field or not. Suppose we fit a TGH model to a dataset \(D = \{t(s_1), \ldots, t(s_n)\} \), assuming it is collected from a TGH random field \(T(s) \), defined in (2), at locations \(s_1, \ldots, s_n \). Then, thanks to Theorem 4 in [10], the estimated conditional distribution function of \(T(s_0) \) given \(D \) is

\[
\hat{F}_{s_0}(t|D) = \Phi \left(\frac{z - \hat{\mu}}{\hat{\sigma}} \right),
\]

where \(z = \tau^{-1}_h \{ (t - \tilde{\xi})/\tilde{\omega} \} \), \(\Phi(\cdot) \) is the distribution function of a standard Gaussian distribution, and \(\hat{\mu} \) and \(\hat{\sigma}^2 \) are defined in (4). If the dataset is derived from a TGH random field, the probability integral transform of \(T(s_0) \), i.e., \(F_{s_0}\{T(s_0)\} \) will be an observation from a uniform distribution over \((0,1)\). The validation procedure can be done by dividing the data into training and testing. If the data are really coming from a TGH random field, the probability integral transforms of the testing data, transformed by the estimated distribution function with the training data, should have an approximate uniform distribution over \((0,1)\).

F. Task-based parallelism and Runtime systems

Matrix operations are the core of the log-likelihood function, where matrix inversion is the most time-consuming operation with cubic complexity. The literature reveals two types of matrix algorithms, i.e., block-based and tile-based, to perform the inversion operation in parallel. The block-based algorithms decompose the target matrix into a successive panel and update computational phases. Updating the matrix has two steps: panel factorization step and update step. LAPACK is an example of a block-based linear algebra library. The matrix is split into a set of tiles with a predetermined tile size in the tile-based algorithms. These algorithms weaken the synchronization points that existed before with block-based algorithms between the panel and update computational phases and allow translating the numerical algorithm into a Directed Acyclic Graph (DAG), where the nodes represent tasks, and the edges define data dependencies. PLASMA [39]
and Chameleon [40] are two examples of tile-based linear algebra libraries.

Representing the numerical operation as a set of tasks allows exploiting the task-based parallelism technique to execute the numeric function in parallel and over a heterogeneous group of distributed resources. In this case, a dynamic runtime system such as OmpSs [41], OpenMP [42], and PaRSEC [43], StarPU [12] can be employed to run the tasks across different hardware resources while ensuring the integrity of data dependencies. In this work, we rely on StarPU, which is preferred for its wide hardware architecture support. StarPU also supports many scheduling techniques that can help in porting it with adequate performance [44].

G. Hierarchical Matrices

Hierarchical matrices have been widely studied in the literature to tackle the challenges related to a large class of applications (e.g., Gaussian processes, electromagnetic integral equations [45], and Bayesian inversion). These applications are related to generating dense matrices with a data sparsity structure. In this paper, we focus on HODLR and TLR for computing MLE. A detailed overview of these methods are given in the following subsections.

1) Hierarchically Off-Diagonal Low-Rank Approximations: Hierarchically Off-Diagonal Low-Rank (HODLR) matrices provide a hierarchical representation of low-rank off-diagonal blocks with recursive definition 2×2 blocks of a given matrix C,

$$A = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},$$

where C_{12} and C_{21} are in low-rank representation, and C_{11} and C_{22} recursively represent the HODLR matrix. Once the diagonal blocks reach a given leaf size, the recursion stops after t steps, where t is the level of the HODLR matrix. HODLR matrices require representing all off-diagonal blocks in low-rank. Fig. 1 illustrates how to construct a HODLR matrix of level 3. Dense blocks are represented in red, and the low-rank blocks are represented in green. The final structure of the matrix is shown on the right side of the figure.

In this work, we employ HODLRLIB, a parallel HODLR-based library, to perform the required matrix operations in the MLE algorithm. HODLRLIB relies on OpenMP multithreaded BLAS for parallel performance.

2) Tile Low-Rank Approximations: Tile Low-Rank (TLR) approximation [46], [47] is a flat approach that consists in splitting the dense matrix into tiles of similar sizes. Fig. 2 shows an example of compressing an off-diagonal tile T_{12} to two matrices U_{12} and V_{12}, where the Singular Value Decomposition (SVD) is used to compress the dense matrix. The most significant k singular values are captured with their associated vectors, which correspond to the rank of the tile. Once each tile is compressed, the tile-based algorithm is expressed in terms of tasks interconnected by their data dependencies. The original algorithm can then be translated into a Directed Acyclic Graph (DAG), where nodes are fine-grained computational tasks, and edges express their data dependencies. As implemented in the HiCMA library [13], the StarPU [12] dynamic runtime system is used to orchestrate the scheduling of tasks with their data dependencies onto processing units. The task-based programming model creates opportunities for look-ahead, which enables to maintain high hardware occupancy.

IV. PARALLEL TGH MODELING AND PREDICTION

This section explains our proposed parallel implementation of the TGH likelihoods and predictions in exact, tile low-rank (TLR) approximation and hierarchical off-diagonal low-rank (HODLR) approximation format. We show the distribution of the ranks in both TLR and HODLR matrices associated with TGH random fields compared to the dense matrix.

A. Non-Gaussian Log-Likelihood Estimation

Recalling the TGH random field log-likelihood function in (3), the log-likelihood estimation process involves generating a covariance matrix R_{θ_2}, where θ_2 is the parameters of a given correlation function. Given a set of n geospatial locations, a selected covariance function can be used to build an $n \times n$ covariance matrix. In this work, we use the parametrizable Matérn correlation function with two parameters: ϕ, the spatial range parameter, and ν, the random field smoothness parameter. The other input parameter vector $\theta_1 = (\xi, \omega, g, h)^T$
Algorithm 1 TGH Log-Likelihood Estimation

1: Input: a set of locations \(S = \{s_1, \ldots, s_n\} \), associated measurements \(t(s_1), \ldots, t(s_n) \), and current parameter vector \(\theta_1 = (\xi, \omega, g, h)^T \).
2: Output: the log-likelihood estimation for the current parameter vector \(\theta_1 \).
3: TGH transformation for \(z_{\theta_1, s_1} \) \(z_{\theta_1, s_1} \leftarrow \frac{t(s_1) - \xi}{\omega} \rightarrow eq(1) \), and \(Z_{\theta_1} = (z_{\theta_1, s_1}, \ldots, z_{\theta_1, s_n})^T \).
4: Generate covariance matrix \(\mathbf{R}_{\theta_2} \) \(\rightarrow eq(5) \).
5: POTRF(\(\mathbf{R}_{\theta_2} \)) \(\rightarrow \) Cholesky factorization.
6: determinant = Det(\(\mathbf{R}_{\theta_2} \)).
7: \(S = \sum_{i=1}^{n} \log[\exp(gz_{\theta_1, s_1}) + g^{-1}(\exp(gz_{\theta_1, s_1}) - 1)hz_{\theta_1, s_1}] + hz_{\theta_1, s_1} + n \log(\omega) \).
8: TRSM(\(\mathbf{R}_{\theta_2}, Z_{\theta_1} \)) \(\rightarrow \) Triangular solve.
9: dotproduct = \((Z_{\theta_1} \times Z_{\theta_1}) \).
10: \(\ell h = -\frac{1}{2} \{\text{dotproduct} \times \log(\text{determinant})\} - S. \)

Algorithm 1 presents the TGH log-likelihood estimation algorithm. The \(Z_{\theta_1} \) vector transformation step is performed first (line 1) with a given \(\theta_1 \) parameter vector. Since the \(\tau_{g,h}^{-1}(\cdot) \) has no closed form, we use the Newton-Raphson method to approximate the function \(Z_{\theta_1} \) as follows:

\[
\tau_{g,h}^{-1}(z_{\theta_1, s_1}) = \frac{t(s_1) - \xi}{\omega}.
\]

The most time-consuming step in Algorithm 1 is the Cholesky factorization of the covariance matrix \(\mathbf{R}_{\theta_2} \) in line 3. Therefore, we rely on the state-of-the-art dense task-based library, i.e., Chameleon [40], to perform the linear algebra operations that appear in Algorithm 1, including the Cholesky factorization of the covariance matrix. Furthermore, we exploit the data sparsity structure of the covariance matrix and apply low-rank approximation methods to reduce the overall complexity of the underlying linear algebra operations. In particular, we use TLR and HODLR matrix approximations to speed up the computation of the Cholesky factorization heavyweight operation while preserving the accuracy requirement of the application.

1) TLR Approximation of \(\mathbf{R}_{\theta_2} \): The TLR approximation in the HiCMA library compresses the individual tile using the SVD algorithm, where the ranks of the tiles represent the most significant singular values and vectors in each off-diagonal tile [46]. Therefore, the effectiveness of the TLR mechanism depends on the ranks of the off-diagonal tiles after compression, which in turn depends on the application’s accuracy requirements. Thus, we initially validate the potency of the TLR approximation with the TGL modeling by estimating the ranks corresponding to different accuracy levels, namely, TLR-5 \((10^{-5})\), TLR-7 \((10^{-7})\), and TLR-9 \((10^{-9})\). The required accuracy level of our application and the corresponding performance assessment is shown in detail in the performance section. Herein, we just validate the effectiveness of using TLR with our model.

Fig. 3 depicts the rank distribution of a \(8,100 \times 8,100 \) covariance matrix generated by the Matérn covariance function shown in (5). As can be seen, the ranks of the off-diagonal tiles grow as the tiles get closer to the diagonal with different TLR accuracy levels with a monotonic increase of the ranks with tighter tolerance. However, even with TLR-9, the ranks are still smaller than the full dense tiles in the diagonal. The given example is drawn from a synthetic set of Matérn parameters \(\theta_2 = (0.96, 0.5)^T \), representing a medium correlation dependence between the given spatial locations. We also examine other spatial correlation strengths, and all of them show almost the same ranks with different accuracy levels. We only observe a change in the ranks with different smoothness values.

For instance, in Fig. 4, we report the decay of the ranks when using TLR approximation with different datasets with two data sizes, i.e., \(8,100 \) and \(32,400 \) using different TLR accuracy levels and a synthetic set of parameters \(\theta_2 = (0.96, \nu)^T \), where \(\nu \) represents a rough field \((\nu = 0.5)\) and a smooth field \((\nu = 1)\). As shown, the ranks associated with rough fields have higher ranks than smooth fields across all accuracy levels and the two data sizes. The decaying figure also shows an increase in ranks when tile size is larger but preserving the same decaying rate.

Furthermore, we examined the ranks with different data sizes and the same tile sizes. We did not observe any dramatic changes in ranks or ranks decaying. All the above observations show the advantage of using the TLR approximation in TGH modeling from the performance perspective.

2) HODLR Approximation of \(\mathbf{R}_{\theta_2} \): Herein, we used also three accuracy levels, namely, HODLR-5 \((10^{-5})\), HODLR-7 \((10^{-7})\), and HODLR-9 \((10^{-9})\). Fig. 5 depicts the rank
Fig. 5: Rank distributions of a $8,100 \times 8,100$ covariance HODLR matrix using leaf = 100 with Matérn parameters $\theta_2 = (0.96, 0.5)^T$ under different accuracy levels.

Fig. 6: Decay of the ranks of different blocks with HODLR approximation when using Matérn kernel with range $\phi = 0.96$ and smoothness $\nu = 0.5$ (Exponential kernel), and $\nu = 1$ (Whittle kernel) and two matrix sizes.

distribution of a $8,100 \times 8,100$ covariance matrix. Herein, we also use the medium correlation case to show the rank distribution. As shown by the figure, the matrix is divided into blocks in a hierarchical structure where the leaf represents the size of matrices at leaf level. It is clearly shown that the smaller blocks have lower ranks, and at the higher structure levels of the matrix, the ranks increase. In red, the diagonal leaf blocks are kept. Furthermore, we do not observe any noticeable growth in ranks with larger N when using the HODLR structure. Fig. 6 shows the decay of the ranks in the case of HODLR matrices. The ranks drop faster than the TLR approximation because HODLR has smaller blocks at lower levels. We choose the size of leaf blocks: 100 and 400 with two matrix sizes. With larger leaf block sizes, the ranks increase. As the TLR approximation, increasing the matrix size does not affect the ranks but compresses more blocks. The figure also shows the impact of the smoothness parameter ν, which produces higher ranks in the rough field.

B. TGH Prediction

The optimization process of the likelihood function aims at tuning the TGH parameter vectors, i.e., θ_1 and θ_2. These parameters are used to predict missing measurements at a set of locations using Equation (4). Algorithm 2 shows in detail the numerical steps to predict missing values using the two tuned parameter vectors. Line 4 accounts for most of the algorithmic complexity as it involves the Cholesky-based solver of the covariance matrix. This algorithm performs prediction of the missing data on the location s_k.

Algorithm 2 TGH Prediction

1: Input: a set of locations $S = \{s_1, \ldots, s_n\}$ and associated measurements $t(s_1), \ldots, t(s_n)$, and estimated parameter vector $\hat{\theta}$.
2: Output: the predicted values $\hat{T}(s_01), \ldots, \hat{T}(s_{0n_{new}})$ at new locations $s_01, \ldots, s_{0n_{new}}$.
3: TGH transformation for $z_{\hat{\theta}_1, s_k} \leftarrow \tau^{-1} \{ t(s_k) - \hat{\xi} \}$ and $Z_{\hat{\theta}_1}$ = $(z_{\hat{\theta}_1, s_1}, \ldots, z_{\hat{\theta}_1, s_k})^T$
4: Generate covariance matrix $R_{\hat{\theta}_2} \rightarrow eq(5)$
5: Generate covariance vector $r_{\hat{\theta}_2} \rightarrow eq(4)$
6: POSV $(R_{\hat{\theta}_2}, Z_{\hat{\theta}_1}) \rightarrow$ System of linear equations solver.
7: CPY $(r_{\hat{\theta}_2}, r_{\hat{\theta}_1}) \rightarrow$ Triangular solve
8: TRSM $(R_{\hat{\theta}_2}, r_{\hat{\theta}_1}) \rightarrow$ Triangular solve
9: TRSM $(R_{\hat{\theta}_2}, r_{\hat{\theta}_1}) \rightarrow$ Triangular solve
10: tmp$_1 = GEMV(r_{\hat{\theta}_1}, Z_{\hat{\theta}_1}) \rightarrow$ Matrix-vector multiplication
11: tmp$_2 = GEMM(r_{\hat{\theta}_1}, r_{\hat{\theta}_1}) \rightarrow$ Matrix-multiplication
12: for $k = 1$ to n_{new} do
13: $\hat{\mu} = tmp1/k$
14: $\hat{\sigma}^2 = 1 - tmp2/k$
15: $\hat{T}(s_{0k}) = \hat{\xi} + (\hat{\mu}^2 \hat{\sigma}^2) / (\hat{\mu}^2) \times \exp\left\{ \hat{\sigma}^2 (1 - \hat{\mu}^2) / (2(1 - \hat{\mu}^2)) \right\} - 1$
16: end for

Using low-rank approximation in the form of TLR or HODLR for both $R_{\hat{\theta}_2}$ and $r_{\hat{\theta}_2}$ in Algorithm 2 can help in reducing the complexity of the TGH prediction algorithm similar to the likelihood estimation operation. In the following section, we give a detailed performance assessment of different proposed TGH implementations.

V. PERFORMANCE RESULTS

This section assesses the accuracy and performance of different proposed TGH implementations using synthetic and real precipitation datasets with different sizes and characteristics.

A. Testbed and Methodology

The assessment of the exact and approximate implementations of TGH modeling and prediction has been conducted on Intel and AMD chips to highlight our software portability: a 28-core dual-socket Intel Xeon IceLake Gold 6330 CPU running at 2.00 GHz, and a 64-core dual-socket AMD EPyC Milan 7713 CPU running at 2.00 GHz. For the distributed-memory experiments, we use KAUST Shaheen-II, a Cray XC-40 system with 6, 174 dual-socket compute nodes based on 16-core Intel Haswell processors running at 2.3 GHz. Each node has 128 GB of DDR4 memory. The system has a total of 197, 568 processor cores and 790 TB of aggregate memory.

Our implementation enables performance portability as long as an optimized BLAS/LAPACK library is available on the target system. We rely on Intel MKL v2020.0.166 as the optimized BLAS/LAPACK library to link against the necessary optimized numerical routines for our implementations on our testbed systems. We compile our exact and TLR code using Chameleon and HiCMA linear algebra libraries with GCC V11.1, HWLOC v2.5.0, StarPU v1.3.8, GSL v2.7, and NLopt v2.6.2 optimization libraries. For HODLR-based implementation, we use HODLRlib, compiled it with GCC
maximizing the likelihood function given in (3). We compute the log-likelihood with TLR and HODLR with different accuracies and maximize them to obtain the MLE. We repeat the procedure 100 times for both TLR and HODLR and their different accuracies. Moreover, we do the same with the exact log-likelihood. We present the boxplots of the estimated parameter values for different setups and different computation techniques in Fig. 8. We used three accuracy levels for both HODLR (i.e., HODLR-5, HODLR-7, and HODLR-9) and TLR (i.e., TLR-5, TLR-7, and TLR-9) compared to the exact estimation (i.e., Exact). The boxplots suggest that the estimation accuracy does not vary much with the different parameter setups. It is also worth noting that the estimation accuracy increases if we increase the accuracy of TLR or HODLR. Our result also shows that TLR works better for TGH model estimation than HODLR over different accuracies. The difference between TLR, HODLR, and exact is negligible for higher accuracy.

C. Evaluation of Prediction with TGH Random Fields

We check the validity of our PIT assessment tool of the TGH model. In this simulation study, we generate observations with a parameter of setup (a) from the previous section and fit both Gaussian and TGH models. We create the PIT histogram using the method discussed in Section V-C. Fig. 9 suggests that the PIT histogram obtained by fitting the Gaussian model is not at all a representation of a uniform distribution. To create a single measure of model adequacy, we introduce the mean divergence distance (MDD) from the PIT histograms. The MDD is defined as the average squared divergence of the length of the histogram bars from the value 1 (uniform density): the smaller the MDD, the better fitted the model. The MDD of both models is reported in Fig. 9. As expected, the TGH model performs better than the Gaussian model for this synthetic data.

D. Precipitation Data Assessment

We fit both Gaussian and TGH models to a subsample of size 300K locations. The estimated parameter values are given in Table I. The estimates of the parameters g and h from the TGH model indicate that the data is far from a Gaussian random field. This claim has been justified by our PIT assessment tool. We predict the values for 30K locations based on these estimates, separate from the training subsample. We produce the PIT histogram for both the fitted model based on the testing data. The PIT histograms are given in Fig. 10. We can see from Fig. 10 that the PIT histogram obtained from the Gaussian model does not correspond to a uniform distribution. The PIT from the TGH model shows a uniform distribution. The PIT histogram obtained by fitting the Gaussian model is not at all a representation of a uniform distribution. To create a single measure of model adequacy, we introduce the mean divergence distance (MDD) from the PIT histograms. The MDD is defined as the average squared divergence of the length of the histogram bars from the value 1 (uniform density): the smaller the MDD, the better fitted the model. The MDD of both models is reported in Fig. 9. As expected, the TGH model performs better than the Gaussian model for this synthetic data.

E. TLR/HODLR Matrices Performance Assessment

We provide the TGH modeling and prediction operations in low-rank structures using TLR and HODLR approximations.
The baseline TLR software is the HiCMA library, which runs on both shared-memory and distributed memory architectures, while the HODLR underlying software is HODLRLIB, which only has a shared-memory implementation through OpenMP multithreaded BLAS. We compare the TGH model using TLR against HODLR approximations on two different shared-memory architectures from two vendors, i.e., Intel and AMD. We assess the performance of both implementations of the TGH likelihood function.

Fig. 11 shows the breakdown of execution times to calculate a single TGH likelihood function using both TLR and HODLR matrices. We report the result of three accuracy levels for each approximation method using five dataset sizes. The execution time is broken down into matrix assembly time (i.e., the time taken to compute the covariance matrix in low-rank structure), matrix factorization time (POTRF), and others (i.e., matrix determinant computing, measurements vector transformation, matrix-vector triangular solve (TRSV)). The figure highlights that the HiCMA-based implementation of the TLR approximation is faster than the HODLRLIB implementation of the HODLR approximation. Moreover, it can be seen that with different accuracy levels, the total execution time difference

Table I: Parameter estimates for Gaussian and TGH models with the real dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>ξ</th>
<th>ω</th>
<th>g</th>
<th>h</th>
<th>ϕ</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.26</td>
<td>1.04</td>
<td>-</td>
<td>-</td>
<td>10.36</td>
<td>0.57</td>
</tr>
<tr>
<td>TGH</td>
<td>-0.37</td>
<td>0.85</td>
<td>-1.69</td>
<td>0.65</td>
<td>10.78</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Fig. 8: Boxplots of parameter estimates (ξ, ω, g, h, ϕ, ν) under the HODLR (H), TLR (T), and exact (E) log-likelihood computation. The true parameters are indicated by the red lines.
increases between TLR and HODLR. For instance, on Intel
IceLake, TLR outperforms HODLRLIB by 2.29X, 4.66X, and
6.46X with accuracy levels 10^{-5}, 10^{-7}, and 10^{-9}, re-
spectively. We also observed that the number of cores strongly
influences the speedup; for instance, on AMD Milan, TLR
outperforms HODLRLIB by 6.82X with an accuracy level of
10^{-9} since HODLRLIB cannot as efficiently utilize the system
resources. This performance difference between HiCMA and
HODLRLIB comes mostly from the programming models:
task-based with asynchronous executions (i.e., HiCMA) versus
bulk-synchronous fork-join paradigm (i.e., HODLRLIB). The
figure also shows that assembling the covariance matrix with
TLR format accounts for most of the likelihood function
estimation. The matrix assembly takes up to 70% and 85%
of the time on Intel IceLake and AMD Milan, respectively.
In contrast, due to a slower HODLRLIB, the matrix assembly
takes about 65% of the total execution time on both machines.

F. TLR Matrices Performance Assessment

In this section, we compare the performance of TLR against
exact when computing the non-Gaussian modeling and the
prediction operations on shared and distributed-memory ar-
chitectures.

Performance on Shared-Memory Systems. Fig. 12 shows
the performance of the TLR approximation compared to the
effect implementation of the TGH likelihood function on our
target two shared-memory systems and using different data
sizes. With different accuracy, TLR outperforms the exact
version of the likelihood estimation with a different number
of locations. TLR shows better performance than the exact
implementation, reaching up to 7.29X and 5.74X on Intel
IceLake and AMD Milan, respectively. Furthermore, Figure 13
shows the performance of the prediction operation using
exact and TLR. The figure shows the TLR approximation of
accuracy 10^{-9} outperforms the exact computation with up to
4.29X and 4.88X on the given machines.

Performance on Distributed-Memory Systems. We assess
the exact and TLR-based approximation performance on the
Shaheen-II Cray XC40 system. Fig. 14 shows the scalability of the exact non-Gaussian MLE on 64, 128, 256, and 512 nodes. The figure shows that the exact MLE implementation scales very well with the same matrix size and a different number of nodes. For instance, with 562, 500 spatial locations, the total execution time for single MLE iteration is 629, 44, 380.78, 255.97 seconds using 128, 256, and 512 nodes. We also assess the performance of the TLR-based implementation using 512 nodes on Shaheen-II compared to the exact computation. Fig. 15 shows the execution time of the exact and TLR approximation for MLE with different accuracy levels. As shown, the TLR approximation shows better performance compared to exact computation with a different number of locations up to 800K locations using 512 nodes. The figure shows that the TLR-approximation outperforms the exact computation with up to 2.96X. We believe the performance of TLR MLE can be further improved by using a runtime system that provides rank-aware data distribution to mitigate the load imbalance [49].

Fig. 14: Scalability of a single non-Gaussian MLE iteration on Shaheen-II with up to 512 nodes using exact matrices.

VI. CONCLUSION

This paper introduces parallel non-Gaussian modeling and prediction implementation based on the Tukey g-and-h (TGH) random fields in the context of climate/weather applications. We propose a task-based exact computation for both operations with the aid of existing dense linear algebra libraries to tackle the underlying matrix operation with large problem sizes. We also assess low-rank approximations using tile low-rank (TLR) and hierarchically off-diagonal low-rank (HODLR). We rely on HiCMA and HODLRLIB to perform the required matrix operations for MLE. The TLR approximation was performed for modeling, and the prediction operations outperformed its HODLR counterpart. Using up to 800K geospatial locations, it also shows a speedup up to 7.29X and 2.96X compared to the exact implementation on shared and distributed-memory systems, respectively. For future work, we would like to consider mixed-precision arithmetics with GPU hardware accelerators to boost the performance of dense linear algebra kernels. We would also like to investigate randomized algorithms to directly generate the compressed matrix and improve the matrix assembly phase.

ACKNOWLEDGEMENT

This work is funded and supported by King Abdullah University of Science and Technology (KAUST) through the Office of Sponsored Research (OSR). We would also like to acknowledge Intel for support in the form of an Intel Parallel Computing Center award Cray for the support provided during the Center of Excellence award to the Extreme Computing Research Center at KAUST. This research used the resources of the Extreme Computing Research Center (ECRC) and the KAUST Supercomputing Laboratory, including Cray XC40, Shaheen II supercomputer.

REFERENCES
