Synergy between Confined Cobalt Centers and Oxygen Defects on α-Fe₂O₃ Platelets for Efficient Photocatalytic CO₂ Reduction

Gaoliang Yang, Yunxiang Li, Qi Wang, Xusheng Wang,* Shouwei Zuo, Huabin Zhang, Xiaohui Ren, Yu He, Fumihiko Ichihara and Jinhua Ye*

Dr. G. Yang, Q. Wang, X. Ren, Prof. J. Ye

Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814, Japan

E-mail: Jinhua.YE@nims.go.jp

Dr. G. Yang, Dr. Y. Li, Q. Wang, Dr. X. Wang, X. Ren, Dr. Y. He, Dr. F. Ichihara, Prof. J. Ye

International Center for Materials Nanoarchitectonics (WPI-MANA), National Institutes for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Prof. J. Ye

TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China

Dr. X. Wang

Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

E-mail: xswang@zstu.edu.cn

Dr. S. Zuo

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/solr.202100833.

This article is protected by copyright. All rights reserved
Abstract: Cocatalysts loading is one of the most effective strategies for boosting CO₂ photoreduction. Thus, constructing robust active sites with a specific chemical environment on the cocatalyst to selectively convert CO₂ to chemical fuels is highly desirable, but remains challenging. Herein, α-Fe₂O₃ platelets modulated with confined Co centers and oxygen defects are designed as efficient cocatalysts for photocatalytic CO₂ reduction with superior activity and CO selectivity. The highly dispersed Co centers can proceed the catalytic processes efficiently as the reaction sites, while the oxygen vacancies enable to enhance the CO₂ adsorption/activation. After integrating together, the oxygen defects provide vigorous assistances to promote the catalytic activity of confined Co sites, leading to facilitated charge transfer and reduced energy barriers for CO₂ photoreduction. As a result, the optimized catalyst achieves a CO generation rate of 37.8 μmol h⁻¹ with an impressive selectivity of 80.2%, as well as remarkable durability for photocatalytic CO₂ reduction. This work demonstrates new insights of developing robust catalysts by controlling confined active sites together with defects engineering for efficient photocatalytic CO₂ conversion.

1. Introduction

Solar-driven CO₂ conversion into valuable chemical products has attracted tremendous attentions due to the great potential in managing the global carbon balance and addressing the energy crisis.¹⁻³ Due to the chemical stability of CO₂ molecules, the sluggish kinetics of charge transfer processes and the fierce competition with water splitting reactions, considerable barriers still exist in both thermodynamics and kinetics to achieve highly efficient CO₂ activation and conversion.⁴⁻⁶ Therefore, constructing advanced
photocatalytic systems for CO$_2$ reduction with superior conversion efficiency and selectivity for desirable products still remain a great challenge.\cite{7-9}

Notable, photocatalytic CO$_2$ reduction can be significantly ignited by cocatalysts via reducing the energy barriers to the targeted products and facilitating the charge transfer processes.\cite{10-12} Recently, transition-metal based cocatalysts, such as the oxide, sulfide and phosphide, have been intensively explored as alternatives for noble-metal catalysts for CO$_2$ photoreduction due to the excellent intrinsic catalytic activity and low cost.\cite{13-16} However, because of the limited active sites that are accessible to the reactants, these kinds of cocatalysts usually exhibit rather low atom utilization efficiency.\cite{17-19} Thus, developing robust active sites on cocatalysts with high accessibility is crucial for efficient CO$_2$ conversion.\cite{2, 20} As a nascent research field, downsizing the cocatalysts to clusters or even atomic sites provides an effective approach to boost the photocatalytic activity with maximized utilization for active sites and extraordinary catalytic properties.\cite{21-23} Generally, the atomic metal sites are immobilized on appropriate support materials to realize unique electronic structures and maximum reactive centers.\cite{24, 25} Therefore, modulation over the support materials to promote the catalytic activity of active sites on the cocatalysts is significantly important for CO$_2$ photoreduction and needs to be systematically investigated.

To completely exploit the potential of single-atom based cocatalysts for photocatalytic reactions, two critical issues should be fulfilled: i) efficient transfer of photogenerated charge carriers to the atomical reaction sites; ii) sufficient CO$_2$ adsorption onto the catalysts. Due to the strong interaction between the atomical active sites and the support, photogenerated electrons can be facilitated to transfer from photosensitizer to the highly dispersed catalytic sites.\cite{26, 27} Therefore, the adsorption/activation of CO$_2$ molecules on the catalysts are critical for efficient photocatalytic reaction. In recent years, oxygen defects engineering has been reported as an effective strategy to promote the CO$_2$ conversion with enhanced CO$_2$ adsorption/activation.\cite{28-30} The oxygen vacancies can anchor the CO$_2$ molecules with stable configurations and activate the C=O bonds more easily due to the modified coordination environment and delocalized charge distribution.\cite{31, 32} However, the performance of defects-engineered catalyst is moderate due to the lack of robust active sites. Therefore, it is anticipated to utilize the defects engineering as assistances to further boost the catalytic activity of the cocatalysts, which are expected to achieve favorable CO$_2$ adsorption/activation and reduced energy barriers for CO$_2$ photoreduction.

Owing to the intrinsic properties of α-Fe$_2$O$_3$, it is highly feasible to implant metal dopants and introduce oxygen defects onto the α-Fe$_2$O$_3$, which can be utilized as a prototype to investigate the synergetic effect of atomic metal sites and oxygen vacancies for photocatalytic CO$_2$ reduction. Thus, in this study, well dispersed Co sites are confined on the α-Fe$_2$O$_3$ platelets and abundant oxygen defects can be generated simultaneously with the Co decoration. Notably, the existence of oxygen defects can assist to improve the

This article is protected by copyright. All rights reserved
catalytic activity of confined Co centers for CO\textsubscript{2} photoreduction due to the enhanced CO\textsubscript{2} adsorption and facilitated charge transfer. Benefiting from the synergy of confined Co centers and oxygen defects, the optimized 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 delivers outstanding photocatalytic performance for CO\textsubscript{2} conversion, with a CO\textsubscript{2} generation rate of 37.8 μmol h-1 and an impressive CO\textsubscript{2} selectivity of 80.2\%.

2. Results and Discussion

Figure 1a presents the scanning electron microscope (SEM) image of as-prepared 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3, which displays similar morphology as the bare \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 in Figure S1. Both of the \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 and 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 exhibit platelet-like shapes with a homogenous planar size of ~150 nm (Figure S2), signifying that the Co decoration would not change the morphology of \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3, which is further verified by the SEM images with different amounts of Co on \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 (Figure S4). To clarify the detailed structure of 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3, transmission electron microscopy (TEM) was conducted. Similarly, the TEM image in Figure 1b validates the platelet-like morphology of 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3. The high-resolution TEM (HRTEM) image demonstrates the well-crystallized properties of 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3. No obvious nanoparticles or clusters are observed on 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 from the HRTEM image (Figure 1c), which is further confirmed by the typical selected area electron diffraction (SAED) pattern of monocrystalline \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 (inset in Figure 1c). In addition, no distinct difference can be detected from the bright spots (in Figure 1d) corresponding to metal sites in 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3, probably due to the relatively low contrast between Fe and Co atoms.[33, 34] The measured interplanar distance of 0.25 nm in Figure 1d is corresponding to the (110) crystal plane of \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3, which is consistent with the SAED pattern in Figure 1c, indicating that no additional phases would be formed on \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 after Co decoration. However, the elemental mapping by TEM-EDS (energy-dispersive X-ray spectroscopy) (Figure 1e) evidences the existence of Co species across the entire architecture of \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3, indicating the high dispersion of confined Co centers on the surface of \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 platelets. The loading amount of Co is determined to be ~0.42 wt\% for the 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 (Figure S5) by inductively coupled plasma atomic emission spectrometry (ICP-AES). The X-ray diffraction (XRD) pattern of 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 is similar with the pure \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 (Figure S3), signifying that the decorated Co in 1\%Co-\textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 would not alter the crystal structure of the \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3. By tuning the Co amounts in the precursors, a series of \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 platelets with different mass loading of Co can be obtained. With the increasing of Co amount, nanoparticles can be gradually formed and deposited on the surface of \textalpha-\textsubscript{Fe}_2\textsubscript{O}_3 platelets (Figure S4). In order to verify the structure and composition of the nanoparticles with high mass loading of Co (taking 4\% as the example), TEM images and SAED patterns were presented in Figure S6 and Figure S7b. Plenty of nanoparticles with different sizes (ranging from several nanometers to several tens nanometers), which are identified as CoO\textsubscript{2}, according to the measurements of interplanar distances and SAED patterns,[35, 36] can be observed on 4\%Co-
α-Fe$_2$O$_3$. Based on the above results and analysis in Figure S7, it is reasonable to deduced that the Co atoms would be confined in the lattice of the α-Fe$_2$O$_3$ when the loading amount is low (1%). However, when further increasing the Co amount, the Co atoms are inclined to aggregate and finally form the CoO$_x$ nanoparticles on the surface of α-Fe$_2$O$_3$ (2%~4%).

![Image](image.png)

Figure 1. Morphology characterizations of 1%Co-α-Fe$_2$O$_3$. a) SEM image; b) TEM image; c-d) HRTEM images (inset is the SAED pattern); e) EDS elemental mapping images refer to the signals of Fe, O and Co, respectively.

In order to confirm the distribution of Co sites on the surface of α-Fe$_2$O$_3$, the local structure of Co species was investigated by the X-ray absorption fine structure (XAFS) measurement. Unfortunately, due to the adjacent atomic numbers of Co and Fe elements, it is considerably difficult to distinguish the Co element.
from α-Fe₂O₃ support via the XAFS investigation, especially when the loading content of Co is quite low comparing with the Fe species. The quality of the XAFS spectrum for 1%Co-α-Fe₂O₃ is not good enough for quantitative analysis. As such, in order to obtain a valid spectrum for the Co sites, XAFS measurement was conducted on the 4%Co-α-Fe₂O₃ with high Co loading amount. As shown in Figure 2a, the Co K-edge X-ray absorption near-edge structure (XANES) spectrum of 4%Co-α-Fe₂O₃ exhibits a similar shape as the three referenced cobalt oxides (CoO, Co₃O₄ and Co₂O₃), indicating that the composition of the Co species in 4%Co-α-Fe₂O₃ is CoOₓ, which is consistent with the TEM and SEAD results. Interestingly, an obvious negative shift of the peaks in 4%Co-α-Fe₂O₃ can be observed compared with all the referenced cobalt oxides, signifying the electron transfer from α-Fe₂O₃ support to the Co sites.\(^{[37]}\) Therefore, the XAFS results confirm the formation of CoOₓ with the high loading amount of Co. More importantly, it also verifies the facilitated charge transfer between the Co sites and α-Fe₂O₃ support, which is crucial to achieve efficient photocatalytic CO₂ reduction.

The oxygen defects on α-Fe₂O₃ platelets were illustrated by the X-ray photoelectron spectroscopy (XPS) measurement. As displayed in the O 1s XPS spectra (Figure 2b), two different peaks can be observed at ~529.6 eV and ~531.8 eV, which are corresponding to the lattice oxygen (O₁) and the O atoms in the vicinity of oxygen vacancies (Oᵥ), respectively.\(^{[38, 39]}\) As clearly obtained from the calculated integral-area ratios, the area ratio of the Oᵥ peak for 1%Co-α-Fe₂O₃ (45.9%) is much larger than that of the bare α-Fe₂O₃ (30.3%), indicating the formation of oxygen defects after Co decoration on α-Fe₂O₃.\(^{[33]}\) The oxygen vacancies were also identified by the electron paramagnetic resonance (EPR) spectra. As shown in Figure S8, similar axial signals can be found both in α-Fe₂O₃ and 1%Co-α-Fe₂O₃, which are attributed to the surface electron trapped on oxygen vacancies (g=2.0005).\(^{[40]}\) The much higher intensity of EPR signal at g=2.0005 for 1%Co-α-Fe₂O₃ indicates that the concentration of oxygen vacancies is greatly enhanced after decorating Co on α-Fe₂O₃.\(^{[41]}\) Furthermore, as obtained from the UV-vis diffuse reflectance spectra in Figure S9a, new decaying absorption tails are presented between 600 and 750 nm due to the existence of abundant defects on Co decorated α-Fe₂O₃.\(^{[29]}\) In addition, the intensities of the absorption tails exhibit a gradual enhancement with the increased Co amounts, which can be ascribed to the progressive formation of oxygen vacancies.\(^{[42]}\) Based on the above results, it is clearly demonstrated that the concentration of oxygen vacancies in α-Fe₂O₃ platelets can be significantly improved by Co decoration.
α and 1%Co C\textsubscript{57x466}$[\text{Ru(bpy)}_3]\textsubscript{Cl}_2$ (abbreviated as Ru) was utilized as the photosensitizer, triethanolamine (TEOA) was chose as (Figure S11), all of which display much lower photocatalytic performance for CO\textsubscript{2} reduction compared with during the photocatalytic CO\textsubscript{2} reduction. Therefore, the above results signify the extraordinary properties α\textsubscript{57x536} XPS spectra of \textit{Figure 2.} Structure characterizations. a) Co K-edge XANES spectra of 4%Co-\text{Fe}_2\text{O}_3 and references. b) O 1s XPS spectra of α-Fe\textsubscript{2}O\textsubscript{3} and 1%Co-α-Fe\textsubscript{2}O\textsubscript{3}. To investigate the effects of confined Co sites and oxygen defects for α-Fe\textsubscript{2}O\textsubscript{3} platelets, the photocatalytic performance for CO\textsubscript{2} reduction was measured with a tandem system, in which the [Ru(bpy)$_\text{3}$]Cl\textsubscript{2} (abbreviated as Ru) was utilized as the photosensitizer, triethanolamine (TEOA) was chose as the sacrificial agent (electron donor) and the as-prepared samples were served as the cocatalysts to capture the energetic electrons from photosensitizer. As presented in Figure 3a, although the photocatalytic performance of pure α-Fe\textsubscript{2}O\textsubscript{3} is not so good (Figure 3a), it displays a much higher CO selectivity than the commercial α-Fe\textsubscript{2}O\textsubscript{3} or FeOOH, indicating the unique feature of α-Fe\textsubscript{2}O\textsubscript{3} platelets as support materials for photocatalytic CO\textsubscript{2} reduction. Remarkably, the introduction of confined Co centers on α-Fe\textsubscript{2}O\textsubscript{3} platelets (1%Co-α-Fe\textsubscript{2}O\textsubscript{3}) drastically boosts the activity for CO\textsubscript{2} reduction, exhibiting a high CO generation rate of 37.8 μmol h-1 with an impressive selectivity of 80.2%, which is superior or comparable to the reported results with the similar photocatalytic systems (Table S2). This result clearly verifies that the decorated Co centers can proceed the catalytic processes efficiently as the reaction sites. It is notable that CO can be continuously generated in the initial 2.5 h, but its yield rate is gradually decreased with reaction prolonging (Figure S10). This phenomenon is commonly observed in the similar photocatalytic systems and should be ascribed to the degradation of the Ru photosensitizer.$^{[8, 35]}$ To further confirm the effect of confined Co centers, different metal sites were decorated on the α-Fe\textsubscript{2}O\textsubscript{3} platelets to replace the Co sites (Figure S11), all of which display much lower photocatalytic performance for CO\textsubscript{2} reduction compared with the 1%Co-α-Fe\textsubscript{2}O\textsubscript{3} (Figure 3b). In addition, the Co\textsubscript{ion}-α-Fe\textsubscript{2}O\textsubscript{3} prepared by direct absorption of Co$^{2+}$ ions on α-Fe\textsubscript{2}O\textsubscript{3} platelets displays poor performance compared with 1%Co-α-Fe\textsubscript{2}O\textsubscript{3} (Figure S12). It is notable that the CO selectivity of the Co\textsubscript{ion}-α-Fe\textsubscript{2}O\textsubscript{3} (39.6%) is much lower than the 1%Co-α-Fe\textsubscript{2}O\textsubscript{3} (80.2%), indicating that the confined Co centers in 1%Co-α-Fe\textsubscript{2}O\textsubscript{3} is effective to inhibit the competing reaction of H\textsubscript{2} evolution during the photocatalytic CO\textsubscript{2} reduction. Therefore, the above results signify the extraordinary properties
of confined Co sites anchored on the α-Fe₂O₃ platelets for selective CO₂ photoreduction. Also, the 1%Co-α-Fe₂O₃ exhibits good recyclability for the photocatalytic reaction, with a stable selectivity and ~85% remained CO generation of its original value after five cycles (Figure S13). In addition, the structure and morphology are maintained and no content loss for the confined Co sites after the cycling (Figure S14), further verifying the durability of 1%Co-α-Fe₂O₃ for photocatalytic CO₂ reduction. However, as displayed in Figure 3a and Figure 3c, when further increasing the Co amount (more than 1%) on α-Fe₂O₃, although the photocatalytic activity would be slightly enhanced (with the similar CO selectivity), the turnover numbers (TON) display a huge decrease from 106.1 (1%Co-α-Fe₂O₃, 1 h) to 26.6 (4%Co-α-Fe₂O₃, 1 h). The low TON can be attributed to the agglomerated CoO nanoparticles with high loading amount, which is disclosed by the morphology and structure characterizations. Therefore, it can be confirmed that the utilization efficiency of Co atoms would be seriously suppressed if excessive Co species aggregate on the α-Fe₂O₃ support, further highlighting the importance of high dispersion for the active sites.

A series of control experiments were conducted under various conditions to identify the key factors for the CO₂ photoreduction system. As illustrated in Figure 3d, no product can be detected without the addition of Ru photosensitizer (the second column), indicating that independent 1%Co-α-Fe₂O₃ is inactive for the CO₂ photoreduction. Almost no CO is generated with the absence of catalysts (the first column), verifying that the bare Ru photosensitizer is hardly to trigger the CO₂ reduction. When the CO₂ reactant is replaced by Ar (the third column), no generated CO is detected, manifesting that the CO product is indeed originated from the CO₂ feedstock. To verify this point, isotopic experiments labeled with ¹³CO₂ were conducted with the same photocatalytic conditions. As identified by the measurements of gas chromatography mass spectrometry (Figure S15), the obtained product is assigned to the produced ¹³CO, which can be the direct proof that the carbon source in the generated CO is originated from the CO₂ over the photocatalytic system.
Figure 3. Measurements of CO₂ photoreduction performance. a) Comparison of CO₂ photoreduction activity with different cocatalysts. b) Activity comparison of α-Fe₂O₃ decorated with different metal centers. c) Turnover numbers of catalysts decorated with different loading amounts of Co species. d) Activity comparison of the catalytic system under different reaction conditions.

The crucial effects of the confined Co centers were verified by the measurements of photocatalytic performance in Figure 3. Then the role of the oxygen defects for photocatalytic CO₂ reduction was explored. Firstly, oxygen vacancies are intentionally introduced into the bare α-Fe₂O₃ via annealing in the N₂ (α-Fe₂O₃-N₂, Figure S17), which can be validated by the results in Figure S8, Figure S9b and Figure S16. Although the performance is much lower than that of the 1%Co-α-Fe₂O₃, the α-Fe₂O₃-N₂ still displays enhanced photocatalytic activity and selectivity compared with the pristine α-Fe₂O₃ (Figure 3a).

Interestingly, the photocatalytic performance of the pristine α-Fe₂O₃ displays a distinct decrease after annealing in the air (Figure 4a), which is attributed to the diminished concentration of surface oxygen defects as determined by the XPS measurements (Figure 4b, Figure S18). Thus, it can be confirmed that the existence of oxygen defects is beneficial for photocatalytic CO₂ reduction. As verified by the CO₂ adsorption isotherms in Figure S20, the presence of oxygen defects can promote the ability for CO₂ adsorption, which may facilitate the stabilization of the key intermediates and thus promotes the CO₂ reduction.²⁹

Subsequently, the influence of oxygen defects on the confined Co centers was further investigated. As
shown in Figure 4c-4d, both of the activity and selectivity exhibit huge decreases for 1%Co-α-Fe₂O₃ after annealing in the air owing to the reduced oxygen defects. This phenomenon can be the direct proof of the synergetic effect between confined Co centers and oxygen defects for CO₂ photoreduction. Therefore, it can be deduced that although the intrinsic catalytic activity of oxygen defects in α-Fe₂O₃ is moderate, the oxygen defects can significantly promote the catalytic activity of confined Co active sites when work cooperatively due to the improved CO₂ adsorption. However, it should be noted that the photocatalytic performance of 1%Co-α-Fe₂O₃-N₂ only displays a slight enhancement compared with the 1%Co-α-Fe₂O₃ (Figure S21). Owing to the significant influence of Co decoration, the annealing treatment would have weak effects for the generation of oxygen defects after Co decoration for 1%Co-α-Fe₂O₃, as verified by the O 1s XPS spectrum of 1%Co-α-Fe₂O₃-N₂ in Figure S22 (the ratio for oxygen defects varied from 45.9% to 47.4% after annealing in the N₂).

Figure 4. a-b) Comparison of activity and O 1s XPS spectra between α-Fe₂O₃ and α-Fe₂O₃-air (α-Fe₂O₃ annealed in the air). c-d) Comparison of activity and O 1s XPS spectra between 1%Co-α-Fe₂O₃ and 1%Co-α-Fe₂O₃-air (1%Co-α-Fe₂O₃ annealed in the air).

The charge carrier dynamics of different catalysts was also elucidated. Firstly, the photoluminescence (PL) spectroscopy was utilized to probe the recombination of the photogenerated carriers. As shown in
Figure 5a, the emission of Ru photosensitizer is quenched when the as-prepared cocatalysts are introduced, indicating the recombination of photogenerated charge carriers has been substantially suppressed.[43] In addition, the existence of confined Co sites and oxygen defects can further restrict the charge recombination by acting as the trapping sites for the photogenerated carriers, as presented with the lower PL intensities of \(\alpha\)-Fe\(_2\)O\(_3\)-N\(_2\) and 1%Co-\(\alpha\)-Fe\(_2\)O\(_3\) compared with the pure \(\alpha\)-Fe\(_2\)O\(_3\). Subsequently, time-resolved transient photoluminescence decay (TRPL) measurement was carried out to experimentally investigate the charge behaviors of the photocatalytic system.[44] As displayed in Figure 5b and Table S1, the Ru photosensitizer exhibits a long average lifetime of 406.8 ns, which is similar to the reported results.[43] The introduction of cocatalysts can significantly reduce the average lifetimes. The 1%Co-\(\alpha\)-Fe\(_2\)O\(_3\) exhibits a shorter lifetime (219.9 ns) than \(\alpha\)-Fe\(_2\)O\(_3\)-N\(_2\) (252.0 ns) and pure \(\alpha\)-Fe\(_2\)O\(_3\) (309.7 ns), verifying the greatly enhanced charge transfer induced by the synergy of confined Co sites and oxygen defects. Based on the above results, the relevant photocatalytic processes for CO\(_2\) reduction are demonstrated in Figure 5d. Upon irradiating by the visible light, energetic electrons can be excited from the Ru photosensitizer and transferred to the confined Co centers on the \(\alpha\)-Fe\(_2\)O\(_3\) platelets, where CO\(_2\) molecule is activated and reduced to CO. Simultaneously, the oxidized Ru photosensitizer would be reduced by the sacrificial reductant TEOA to form an entire cycle.

Density functional theory (DFT) calculation was utilized to explore the origin of the synergistic effects between confined Co sites and oxygen defects for superior photocatalytic CO\(_2\) reduction (Figure S23). Generally, the first step of the CO\(_2\) conversion is the adsorption of CO\(_2\) molecules onto the catalysts (CO\(_2\)→CO\(_2^*\)).[45, 46] Therefore, in order to verify the effects of oxygen defects for CO\(_2\) adsorption, the adsorption energy of CO\(_2\) molecule on bare \(\alpha\)-Fe\(_2\)O\(_3\) and \(\alpha\)-Fe\(_2\)O\(_3\) with oxygen vacancies (\(\alpha\)-Fe\(_2\)O\(_3\)-N\(_2\)) were calculated, respectively. As shown in Figure 5c, the adsorption energy of CO\(_2\) on \(\alpha\)-Fe\(_2\)O\(_3\)-N\(_2\) (-0.40 eV) is stronger than that of the bare \(\alpha\)-Fe\(_2\)O\(_3\) (-0.27 eV), implying the enhanced adsorption affinity of oxygen defects towards CO\(_2\). In addition, the synergy of confined Co centers and oxygen defects (1%Co-\(\alpha\)-Fe\(_2\)O\(_3\)) can further improve the CO\(_2\) adsorption energy to -0.86 eV, which is consistent with the experimental measurements in Figure S17.[47] The stronger CO\(_2\) adsorption energy can stabilize the key intermediates and thus proceed the CO\(_2\) reduction more smoothly.[48] After CO\(_2\) adsorption onto the catalysts, the photocatalytic conversion from CO\(_2\) to CO generally undergo the pathways of COOH\(^+\), CO\(^+\) and CO in order.[7] To further understanding the catalytic processes of different catalysts, the free energy for every step was also calculated and displayed in Figure 5c. The energy barrier is the minimum amount of energy that must be provided to complete the relevant chemical reaction, which is indicated in Figure 5c for CO\(_2\) reduction with different catalysts. The calculated results disclose that the activation energy barrier for CO generation over 1%Co-\(\alpha\)-Fe\(_2\)O\(_3\) (1.28 eV) is smaller than that of \(\alpha\)-Fe\(_2\)O\(_3\) with only oxygen defects (\(\alpha\)-Fe\(_2\)O\(_3\)-

This article is protected by copyright. All rights reserved
N₂, 1.77 eV) and pristine α-Fe₂O₃ (1.79 eV), indicating that the synergy of confined Co centers and oxygen defects is kinetically more favorable for the formation of CO with CO₂ reduction.

![Figure 5.](image)

Figure 5. a) Steady-state PL spectra and b) time-resolved PL spectra of different samples. c) Calculated free energy of CO₂ reduction reaction with different catalysts. d) Scheme of the photocatalytic processes for CO₂ reduction.

3. Conclusion

In this study, we demonstrate a synergetic effect between confined Co centers and oxygen defects on α-Fe₂O₃ platelets for efficient photocatalytic CO₂ reduction. The highly dispersed Co sites are spontaneously confined into the α-Fe₂O₃ platelets during the preparation processes and abundant oxygen defects are generated simultaneously along with the Co decoration. Experimental results and theoretical calculations verify that the confined Co sites not only perform as the active centers for CO₂ conversion but also significantly facilitate the transfer of energetic electrons from the photosensitizer, while the oxygen vacancies can enhance the adsorption ability for CO₂ molecules. When combining together, the oxygen defects can fundamentally promote the CO₂ reduction capability of confined Co sites, resulting in greatly accelerated catalytic kinetics and enhanced efficiency for CO₂ photoreduction. This work may offer new
opportunities to design novel catalysts that combining robust active sites and defect engineering for efficient solar-driven photocatalysis.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work received financial support from the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitectonics (MANA), MEXT (Japan), JSPS KAKENHI (JP18H02065), the Phot excitonix Project at Hokkaido University, National Natural Science Foundation of China (21633004, 22001094), the Fellowship of China Postdoctoral Science Foundation (2020M673057, 2020TQ0123) and Guangdong Basic and Applied Basic Research Foundation (2020A1515110003). We thank Dr. Shengyao Wang and Dr. Huiwen Lin for their constructive suggestions and great support.

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))
Published online: ((will be filled in by the editorial staff))

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved

This study demonstrates a synergetic effect between confined Co centers and oxygen defects on α-Fe$_2$O$_3$ platelets for efficient photocatalytic CO$_2$ reduction. The oxygen defects can fundamentally promote the catalytic capability of the confined Co sites, resulting in greatly accelerated charge transfer and reduced energy barriers for CO$_2$ photoreduction.

Gaoliang Yang, Yunxiang Li, Qi Wang, Xusheng Wang,* Shouwei Zuo, Huabin Zhang, Xiaohui Ren, Yu He, Fumihiko Ichihara and Jinhua Ye*

Synergy between Confined Cobalt Centers and Oxygen Defects on α-Fe$_2$O$_3$ Platelets for Efficient Photocatalytic CO$_2$ Reduction