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Abstract

Coral reefs have been challenged by the current rate and severity of environmental

change that might outpace their ability to adapt and survive. Current research focuses

onunderstandinghowmicrobial communities andepigenetic changes separately affect

phenotypes and gene expression of corals. Here, we provide the hypothesis that coral-

associated microorganisms may directly or indirectly affect the coral’s phenotypic

response through the modulation of its epigenome. Homologs of ankyrin-repeat pro-

tein A and internalin B, which indirectly cause histone modifications in humans, as

well as Rv1988 histonemethyltransferase, and theDNAmethyltransferases Rv2966c,

Mhy1, Mhy2, and Mhy3 found in coral-associated bacteria indicate that there are

potential host epigenome-modifying proteins in the coral microbiome. With the ideas

presented here, we suggest that microbiome manipulation may be a means to alter a

coral’s epigenome, which could aid the current efforts to protect coral reefs.
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INTRODUCTION

Coral reefs are the most biodiverse and complex aquatic ecosystems

on earth and provide food and shelter to support a diverse assortment

of macro- and microorganisms.[1–3] These ecosystems are formed by

holobionts composed of individual coral animals and their associated

microorganisms. Coral-associated microorganisms encompass symbi-

otic dinoflagellates within the family Symbiodiniaceae, as well as bac-

teria, archaea, fungi, and viruses.[4] Symbiodiniaceae live within coral

cells and perform photosynthesis, which provides most of the energy

requirements for the majority of shallow water corals.[5,6] In turn, the

coral provides shelter for the Symbiodiniaceae, leading to a long-term

mutualistic relationship.

Global and local anthropogenic impacts have led to environmental

changes that have caused an extreme decline in coral reef health
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in last decades.[7] Environmental changes affect many components

of the coral holobiont and can lead to an imbalance between its

members, which may result in coral bleaching, disease, and potentially

death.[1,2,8,9] In a healthy coral holobiont, the coral works in concert

with its associatedmicroorganisms tometabolize and recycle essential

nutrients and to inhibit potential pathogens through the production of

anti-microbial peptides, anti-biofilm compounds, competition, or viral

lysis [10–12]. Environmental change and stressors can interfere with

these host-microbiota interactions, which can lead to dysbiosis and

declines in coral health and performance [1,9]. Urgency is required to

understand how corals acclimate to their environments in the context

of deteriorating ocean conditions.

Differences in the ability of corals to acclimate to stress have, at

least in part, also been attributed to differences in their symbiont

assemblages.[13,14] For example, corals can acclimate to increasing
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ocean temperatures by exchanging their resident Symbiodiniaceae pop-

ulations with more heat-tolerant strains.[14] However, other research

has found that despite maintaining the same Symbiodiniaceae popu-

lation, heat-acclimated Acropora millepora coral colonies can become

more resistant to temperature increases than colonies that were not

previously heat-acclimated, possibly by upregulating stress response

proteins like heat shock proteins.[15] Further research shows the

coral host itself can directly and solely respond to environmental

changes via phenotypic plasticity,[16–18] which can be maintained

across generations.[1,18–21] Coral phenotypic plasticitymay result from

changes to its epigenome [17,22] through altering gene expression via

chemical or structural modification of DNA and/or its associated pro-

teins (e.g., histones).[23] Differences in epigenomes between geneti-

cally identical corals have been shown to correlate with phenotypes

and bleaching responses.[24] These epigenetic changes can occur in

corals within a single generation, providing another mechanism for

short-term acclimation to environmental conditions[16–18,25] that can

be passed on to offspring (i.e., transgenerational acclimatization).[26]

Asmicrobial and epigenetic processes can both control coral health,

we postulate here that these two aspects are directly or indirectly

linked, providing a way for coral holobionts to adapt to environmen-

tal change. To explore this, we summarize the current knowledge on

the roles that coral epigenetic changes have in environmental stress

response, and, using previous knowledge on the specific roles that

bacteria have on epigenetic state in other host systems, we identify

homologs of epigenetic-modifying proteins in coral-associated bacte-

ria. This survey provides support for a novel functional perspective for

how coral-associated microorganisms may influence the host pheno-

type through modulation of the epigenome. This mechanism could be

exploited in the future to increase coral holobiont resilience to envi-

ronmental stressors or change.

CORAL EPIGENOMES RESPOND TO
ENVIRONMENTAL CHANGES

Mechanisms of epigeneticmodifications includeDNAmethylation, his-

tone modifications, and non-coding RNAs. The former is most widely

studied and involves the addition of a methyl group to a cytosine,

usually restricted to CpG dinucleotides, resulting in changes to the

gene expression,[23] likely by controlling access of transcriptional

machinery.[27] Histone modifications can alter nucleosome structures

via the phosphorylation, methylation, acetylation or ubiquitination of

N-terminal aminoacids; thus, changing the accessibility of theDNAand

transcriptional regulation.[28]

In corals, changes in DNA methylation correlate with phenotypic

changes in response to shifts in environmental conditions.[17] For

example, the scleractinian corals Pocillopora damicornis and Stylophora

pistillata show an increase in global DNA methylation when subjected

to stressful lowpHenvironments.[17,25] Specifically, S. pistillata reduces

its expression of cell proliferation genes under low pH conditions as

a compensatory mechanism to maintain colony growth rates despite

decreased calcification rates, which results in significantly larger cell

sizes.[17] This acclimatory phenotypic change is also correlated with

increased methylation of genes controlling cell growth, which shows

a positive correlation between DNA methylation and gene expres-

sion. Similarly, Dixon et al. [16] found that translocating Acropora mille-

pora corals between environments with different temperature profiles

leads to acclimatory changes in DNA methylation marks that more

resemble the epigenome of non-translocated corals in the recipient

habitat. This mirroring of DNA methylation marks by the translocated

corals coincided with increased weight gain, lipid content, protein con-

tent, and carbohydrate content. Therefore, phenotypic plasticity may

be driven by DNA methylation and changes to gene expression which

help acclimate corals to different environments.

DNA methylation in corals is found to be mostly located in the

gene body, rather than promoter regions, so methylation is hypothe-

sized to have a more important role in transcriptional fidelity than in

direct transcriptional regulation.[16,17,29] DNA methylation in corals is

higher in highly expressed housekeeping genes and lower in dynam-

ically expressed environmental response genes.[16,29,30] This pattern

of bimodal distribution of DNA methylation with hypermethylation in

housekeeping gene bodies is also observed in other invertebrates such

as the pacific oyster [31] and honey bees.[32] Increased expression of

genes increases the likelihood of creating partial proteins via spuri-

ous transcription mediated by cryptic promoters within gene bodies
[33] To counter this phenomenon, DNA methylation can reduce spu-

rious transcription of genes by disabling cryptic promoters within the

genebodyand thus increase transcriptional fidelity of genesunderhigh

expression.[17,33,34]

Histone modification in corals has been considerably less studied

than DNA methylation. In mammals, H2A.X phosphorylation is trig-

gered in regions that flankDNAdamage and can be used asmarkers for

DNA damage [35]. The only study available to date examining histone

modifications in corals found that global histone H2A.X phosphoryla-

tion correlateswith heat stress aswell aswith nitrogen or nitrogen and

phosphorous enrichment.[36] Nitrogen enrichment is predicted to lead

to growth of Symbiodiniaceae, which would drive phosphorous deple-

tion in coral cells as well as increases in photosynthesis, leading to

the production of reactive oxygen species (ROS), and hence oxidative

DNA damage.[36] In corals supplemented with nitrogen and phospho-

rous, oxidative DNA damage could be repaired with the aid of H2A.X

phosphorylation,which shows increased levels that last 35days. Corals

exposed to heat stress combined with only increased nitrogen, how-

ever, only show initial increases inH2A.X phosphorylation, but after 35

days, phosphorylation decreases, and DNA repair is impaired due to a

lack of phosphorous. Here, increased coral symbiont proliferation may

have indirectly affected histonemodifications in the coral host through

metabolic processes with detrimental effects for the host.[36] How-

ever, it remains to be seen whether histone modifications can have a

role in coral acclimation to stressors andwhether they are heritable.

Epigenetic inheritance in coral was originally inferred due to

observations that offspring are more resistant to stress conditions

if their parents were previously exposed to and acclimatized to the

same stressor.[37] For example, offspring from P. damicornis colonies

that experienced high temperature and pCO2 (partial pressure of
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F IGURE 1 Epigenomes can be vertically transmitted across generations. Coral epigenomes can changewithin a generation as a response to
environmental stress. These epigenomes are vertically transmitted to their offspring, whichmight increase the survivability of offspring that are
exposed to the same stress (right column). Me, methylation

carbon dioxide) have higher survival rates to those stressors than

offspring from colonies that had not experienced these conditions.[37]

Correlated epigenome and genome differences from the same coral

species located in different environments also imply that there is a

heritable relationship between them.[38] Furthermore, hypermethy-

lation patterns in stress response genes also can be transmitted from

high temperature acclimated adult corals to their offspring, which

correlates with higher survival in the coral offspring [26] (Figure 1).

While still a lot of further research needs to be undertaken in the

field of coral epigenetics, these nascent studies illustrate how changes

in the epigenome could facilitate both short-term response and

trans-generational changes to environmental conditions.

BACTERIA CAN MODIFY HOST GENE EXPRESSION

Host gene expression can also be modulated by epigenetic changes in

response to microbe-associated molecular patterns (MAMPs), such as

lipopolysaccharides (LPS) and glycans, which are detected by pattern

recognition receptors (PRRs).[39] The detection of commensal bacteria

by mouse intestinal epithelial cells leads to decrease in the expression

of toll-like receptor genes due to increasedmethylation in the 5′ region
of the TLR4 gene.[39] This relationship is necessary to prevent the over-

activation of immune pathways in response to nonpathogenic bacteria

andmaintain homeostasis in themouse gut.[39]

The expression of PRRs in the coral P. damicornis has been shown

to decrease in response to temperature stress,[40] potentially altering

the recognition of pathogenic MAMPs and thus potential downstream

epigenetic activation. This was demonstrated when pairing tempera-

ture stresswith the coral pathogenVibrio coralliilyticus, as coral immune

response pathways related to pattern recognition andmicrobial killing

were downregulated.[40] Notably, the presence of the coral pathogen

without temperature stress causes an upregulation of pattern recogni-

tion genes as well as other immune response pathways, suggesting an

activation of the coral immune system that is diminished during tem-

perature stress.[40]

Immune parameters, such as phenoloxidase activity, which acti-

vate the immune-related melanization cascade, and/or bactericidal

activity, also change in corals due to the presence of bacterial LPS

and/or high temperature conditions.[41] The combination of LPS treat-

ment and heat stress leads to a decrease in the bactericidal activ-

ity in the Caribbean corals Montastraea faveolata and Stephanocoenia

intersepta.[41] However, LPS treatment and heat stress together cause

an increase in the phenoloxidase activity in Stephanocoenia intersepta,

when compared to ambient conditions, and Porites astreoides, when

compared to LPS treatment without heat stress.[41] This modulation

of gene expression profiles related to immune response pathways, and

more specifically the increase of phenoloxidase activity as a result of

LPS exposure during heat stress, provides a promising avenue for fur-

ther discovery into the bacterially mediated epigenetic control of coral

gene expression.

BACTERIA INFLUENCE HOST EPIGENOMES

While many studies suggest that environmental stress can correlate

with changes to a coral’s microbiome [42–44] or epigenome (see above),

evidence that coral-associated microorganisms cause epigenetic mod-

ification in their hosts is currently lacking. Such a mechanism would

have very impactful ramifications, as microorganisms can be vertically

transferred between generations [45] and thus could change the coral

epigenome over multiple generations.

The interaction between bacteria and host epigenomes has, how-

ever, been extensively studied in other systems.[46] Commensal bac-

teria in humans indirectly control epigenomes in early life stages

via bacterially produced nutrients that prime the host epigenome
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to help develop proper responses to diseases that may occur later

in life.[47] Similarly, probiotic Lactobacillus species are able to pre-

vent increases in histone acetylation levels, and thus control inflam-

mation, caused by pathogenic Escherichia coli in human intestinal

epithelia.[48]

Most research, however, relates to bacterial pathogens and their

modulation of the host epigenome.[46,49] The bacterial pathogen Heli-

cobacter pylori triggers histone modifications [50] and hypermethyla-

tion of promoter regions of tumor suppressor genes, which leads to

tumorigenesis in the stomach.[51] Likewise, pathogen stress in plant

species causes changes to DNA methylation levels of defense genes

which alters the plant’s phenotype.[52] In the human gut, the detec-

tion of intracellular MAMPs from the pathogen Listeria monocytogenes

leads to the acetylation and phosphorylation ofH4 andH3histone pro-

teins, which activates expression of pro-inflammatory genes.[46] The

L. monocytogenes effector proteins internalin B (InlB) and listeriolysin

O (LLO) then indirectly modify the host immune response by chang-

ing the host’s epigenome. InlB binds to a tyrosine kinase receptor on

the cell surface, triggering a cascade that represses transcription reg-

ulation genes via histone deacetylases,[46] and LLO leads to the global

deacetylation and dephosphorylation of histones and downregulation

of several immune genes.[46] As a consequence, the human cells’ epige-

netic control of pro-inflammatory response to infection is dampened

by specific bacterial effectors.

In another example, the human pathogen Mycobacterium tuberculo-

sis secretes three enzymes that directly modulate the epigenetic state

within the host cell: Rv1988, a methyltransferase that methylates his-

tones associated with genes promoting defense against pathogens,

including the production of reactive oxygen species; Rv3423, a his-

tone acetyltransferase; and Rv2966c, a DNA methyltransferase.[46]

Similarly, the intracellular opportunistic pathogen Mycoplasma hyorhi-

nis encodes three DNA methyltransferases, Mhy1, Mhy2, and Mhy3,

that also directly change the epigenetic state within the host cell.[53]

Recently, metagenome assembled genomes (MAGs) associatedwith

the coral Porites lutea were found to have an abundance of ankyrin-

repeat proteins (ARPs), which help mediate protein-protein interac-

tions in eukaryotic cells.[54] The ankyrin-repeat containing protein

AnkA has been studied in the tick-derived human pathogenic bacte-

ria Anaplasma phagocytophilum, where it disrupts the host’s antimi-

crobial response.[55] AnkA translocates into the host nucleus and

binds onto regulatory regions of the host chromatin, silencing defense

genes responsible for producing ROS and decreasing H3 histone

acetylation,[55] possibly by increasing histone deacetylase activity.[56]

Some gammaproteobacteria symbionts of sponges also contain ARPs

that prevent proper phagosome functioning in amoeba cells.[57] There-

fore, ARPs may be utilized by pathogenic or mutualistic intracellular

bacteria to epigenetically suppress the host’s immune response and

establish a niche within the host cell.

Many coral-associated bacteria also harbor ARPs,[54] which may

help bacteria avoid phagocytosis and maintain stable endosymbiotic

relationships within coral cells. Coral gastrodermal cells and endosym-

biotic Symbiodiniaceae live in close association with endosymbiotic

bacteria [58,59] These bacteria contribute nutrients to and extend

the metabolic capabilities of the coral holobiont,[58] which further

strengthens the commensal relationships between the coral, Symbio-

diniaceae, and endosymbiotic bacteria, and provides an opportunity for

molecular crosstalk between bacteria and host that may alter coral

epigenomes.

Changes in coral epigenomes could also be driven by metabo-

lites produced by coral-associated bacteria.[25] For example, folate,

riboflavin, and other B vitamins are involved in the synthesis of

S-adenosylmethionine, which is a methyl group donor in DNA

methylation.[60] Interestingly, folate synthesis and riboflavin synthe-

sis were identified in Endozoicomonas [61], which are symbionts inmany

different coral species.[62] These endosymbiotic bacteria also possess

several transport and secretion mechanisms, which may be used for

transferring molecules between the bacteria and Symbiodiniaceae or

coral host.[61]

CORAL-ASSOCIATED BACTERIA MAY CONTAIN
EPIGENOME-EFFECTOR PROTEINS

Many bacteria, such as extracellular pathogens Helicobacter pylori,

Agrobacterium tumefaciens or Vibrio cholerae, have the capacity to

deliver effector proteins into human, plant or invertebrate cells,

respectively, using type IV or VI secretion system.[63] Secretion sys-

tems, such as the Type III secretion systems, have also been highlighted

as potential drivers in the evolution of symbiotic relationships.[64] Sev-

eral secretion systems, including those of type IV, have also been found

in the microbiomes of several coral species [65] and could similarly be

used to deliver effector proteins from the bacterial symbiont to the

host.

To further explore the presence of epigenetic-modifying proteins in

bacteria associated with corals, we searched for potential homologs

of known epigenome-modifying proteins from other host systems (see

above) in the predicted proteins of seven genomes of bacterial iso-

lates from P. damicornis (average genome size 4.8 Mb), [Sweet et al.,

2021 - https://journals.asm.org/doi/10.1128/mSystems.01249-20] 52

P. lutea-associated MAGs (average genome size 3.5 Mb) [54], and 11

bacterial genomes fromtheoctocoralEunicella labiata (averagegenome

size 4.4 Mb).[67] The genomes were chosen to detect the possible

existence of epigenome-modifying proteins in bacteria from three dis-

tinct coral hosts. The list of bacterial genomes is not exhaustive. Using

BLASTP (minimum e-value of 1e-5, minimum identity of 35% [68] and

minimum alignment length of 40), we found potential homologs to the

AnkA protein from A. phagocytophilum; the LLO and InlB proteins from

L. monocytogenes; Rv1988, Rv2966c, and Rv3423 fromM. tuberculosis;

and Mhy1, Mhy2, and Mhy3 fromM. hyorhinis (Table 1 and Supporting

Information).

Although many of the proteins in our database have pathogenic

functions, their roles as epigenetic effectors provide insight into how

homologous proteins may interact in other systems. Homologs to InlB

indicate the potential for coral-associated bacteria to have proteins

that may indirectly alter histone acetylation when identified by recep-

tors on the surface of coral cells (Figure 2). InlB interacts with the
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TABLE 1 Coral-associated bacteria with potential homologous proteins to bacterial epigenetic effectors from humans

# of homologous proteins (e≤ 1e-5,≥35%,≥40 aa)

Coral source # of bacteria AnkA InlB LLO Rv1988 Rv2966c Rv3423 Mhy1 Mhy2 Mhy3

Pocillopora damicornis 7 0 0 0 1 1 0 0 0 0

Porites lutea 52 19 12 0 4 21 0 1 5 1

Eunicella labiata 11 3 0 0 2 9 0 0 0 0

F IGURE 2 Coral-associated bacteria produce compounds that potentially alter the DNAmethylation or histone post-translational
modifications via direct or indirect mechanisms. Direct modifications to coral epigenetic state may occur by compounds produced by (A)
extracellular bacteria (e.g., homologs to Rv1988, Rv 2966c,Mhy 1,Mhy 2,Mhy 3) or (B) intracellular bacteria (e.g., homologs to AnkA).
Extracellular bacteria may also produce compounds that are recognized by coral receptors (C), indirectly causing a cascadewithin the coral cell
that results in changes to the epigenome (e.g., homologs to InlB). Ac, acetylation;Me, methylation

receptor tyrosine kinase c-Met, which triggers the nuclear transloca-

tion of the histone deacetylase Sirt2 that downregulates several genes

related to transcriptional regulation.[69] Interestingly, Sirt2 deacety-

lates forkhead box O transcription factors, which lowers intracellu-

lar ROS.[70] ROS can be produced by invertebrates as defense against

pathogens [71] but has also been recognized in corals to damage host

cells during bleaching.[72] This implies a potentially beneficial out-

come of InlB homolog interactions with coral cell receptors. Protein

homologs to Rv1988, Rv2966c, Mhy1, Mhy2, andMhy3 suggest direct

interactions with the coral’s epigenome.

Of the 70 investigated coral-associated bacterial genomes and

MAGs, 53 contained homologs for at least one of the known

epigenome-modifying proteins (Table S1). The most prevalent epige-

netic effector protein was Rv2966c (31 bacteria), followed by Rv1988

(7 bacteria). Rv1988 may be of particular interest due to its role in

methylating histones controlling genes involved in producing ROS.[46]

Because of the role of ROS in cell damage during bleaching,[72]

bacteria-controlled downregulation of genes involved in the produc-

tion of ROSmight reduce coral cell damagewhen exposed to stressors.

Further work is necessary to understand the specific role and impor-

tance of this and other epigenome-modifying proteins in coral health

or disease.

MICROBIAL MODIFICATION OF CORAL
EPIGENOMES MAY PROMOTE HEALTH

Differing host responses to environmental changes can lead to a lack

of predictability for epigenome modifications.[73] Dysbiosis caused by

stressors can further complicatehowbacteria control host epigenomes

and the stability of epigenetic changes caused by this control.[74] How-

ever, some bacteria that are administered on corals when exposed

to environmental stress can be detected via amplicon sequencing,[66]

which suggests that they can establish themselves as part of themicro-

biome. Therefore, epigenome responses to bacteria-host interactions,

and their stability during stress conditions, may inform how bacterial

manipulations can be implemented to causemodifications in coral phe-

notypes.

One way the coral epigenome may also be altered is through the

action of its microbial members, which has been proven in other

eukaryotic hosts [75], but has yet to be explored in corals. Symbi-

otic microbes can contribute to the maintenance and propagation

of corals, while possibly aiding in coral resistance to detrimental

environmental changes.[8,76] By manipulating the microbiome of

P. damicornis through the addition of beneficial microorganisms

for corals (BMCs), Rosado et al. [66] showed that coral bleaching
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could be reduced in the presence of the pathogen Vibrio coralli-

ilyticus at normal and high temperatures. Although BMCs have

been shown to aid in coral resistance [66,77–79], [Santoro et al.,

2021 - https://advances.sciencemag.org/content/7/33/eabg3088]

through the regulation of genes involved in the coral immune

response and protection against heat stress (Santoro et al., 2021 -

https://advances.sciencemag.org/content/7/33/eabg3088), or even

increase energy reserves and calcification rates,[80] the exact mecha-

nisms producing the improved phenotype are not fully known. BMCs

are chosen for their roles in coral holobiont nutrition and growth

(via dimethylsulfoniopropionate degradation or increased cycling and

provision of nutrients), removal of toxic compounds or stress mitiga-

tion (including decreasing intracellular ROS), early life development,

and/or pathogen control.[76] One explanation would be that BMCs

cause epigenetic changes in immune or environmental response

genes resulting from one or more of these BMC functions which

affects the coral’s ability to defend itself against environmental stress

or pathogens. Therefore, microbiome manipulation could present

an exciting opportunity for harnessing epigenome modifications to

promote long-term health of corals.

CONCLUSION

Several coral rehabilitation techniques have been proposed as

ways to facilitate adaptation of coral to rapid global changes.[1,36],

[Peixoto et al., 2019 - https://www.frontiersin.org/articles/10.3389/

fmars.2019.00686/full] For example, “assisted evolution”, aims to,

along with other proposed approaches, selectively breed stress-

resistant corals.[1] Likewise, facilitating phenotypic changes via

deliberate induction of epigenetic modifications in corals has the

potential to quickly acclimate coral to stressors and vertically transmit

such resistances. It remains to be seen how bacteria can contribute

to the epigenetic control of gene expression in corals. As in other

host-associated systems, there is the possibility that coral pathogens

such as V. coralliilyticus can negatively affect the host’s epigenetic

control of the immune response and diminish coral resistance or

resilience to environmental stress. On the other hand, commensal

or mutualistic bacteria may also directly or indirectly (e.g., through

the biological control of putative epigenomic-modulating pathogens)

interact with host epigenomes to improve phenotypic responses to

environmental change, which may explain the resistant and resilient

phenotypes observed in previous microbiome manipulation experi-

ments. As coral reef conditions continue to worsen, research into the

interaction between coral epigenomes and the associated bacteria has

the potential to impact coral adaptation experiments.
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