Ultra-robust Wireless Interrogation for Sensors and Transducers: A Non-Hermitian Telemetry Technique

Minye Yang, Zhilu Ye, Mohamed Farhat, and Pai-Yen Chen*, Senior Member, IEEE

Abstract—We herein introduce a non-Hermitian parity-time (PT)-symmetric telemetry platform, capable of wirelessly and robustly acquiring information of passive sensors and chemiresistive or piezoresistive transducers. We theoretically and experimentally demonstrate that the PT-symmetric radio-frequency (RF) system, which consists of an active reader and a passive sensor to obey parity (space inversion) and time-reversal symmetries, may provide not only an improved sensitivity, but also rapid, accurate, and robust acquisition of sensor data. The unidirectional reflectionless properties arising from the spontaneous PT symmetry-breaking may result in high-Q resonances and thus high resolvability in the measured reflection spectrum. Furthermore, the sensor’s effective resistance (capacitance) can be wirelessly queried by electronically tuning the negative impedance converter (varactors) on the active reader, which allows observation of dual-band reflectionless phenomena. Unlike traditional telemetry systems, the measurement results are robust to variations in the inductive coupling strength, namely the distance and alignment between the two coil antennas. The proposed PT-symmetric telemetry paradigm may have an impact on a wide range of wireless sensing and instrumentation applications.

Index Terms—Wireless sensors, telemetry instruments, non-invasive measurement, near-field probing, radio-frequency sensors, parity-time symmetry, exceptional points

I. INTRODUCTION

5G and beyond (5GB) wireless technologies provide wireless connectivity and continuous data gathering for a wide range of new applications in healthcare [1]–[4], vehicles [5], manufacturing industry [6], security [7], smart house automation [8], and internet-of-things (IoTs) [9]–[11]. In general, wireless sensing technology can be categorized into active and passive telemetry [12]. Active sensor telemetry systems could provide relatively long-range bidirectional sensor data transmission, which comes at the price of increased size and shortened lifetime due to their internal batteries (power source). Passive (battery-free) sensor telemetry systems, although providing reduced transmission distances, enable indefinite lifetime and maintenance-free operation. Presently, there are two methods for implementing passive telemetry systems. One method is based on radio frequency identification (RFID) technology [10], [13]–[16], which monolithically integrates micromachined sensors with built-in signal conditioning units, analog-to-digital converters, and RF backscatter onto a chip to reflect a modulated RF signal toward the reader located in the far zone. Another fully passive sensor telemetry approach, which could be lightweight, low-cost, and minimally invasive, is on the basis of RLC oscillator-based sensors that are embedded or implanted in the system to be monitored. These structures can be readily fabricated using micromachining and/or printed circuit technology. In principle, the physical parameter of interest could tune the resonant frequency of the RLC sensor in the form of capacitive, resistive, or less commonly, inductive perturbation. Hence, the loci of the

M. Farhat is with the Computer, Electrical, and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

P.Y.C. would like to thank National Science Foundation Grant No. ECCS-CCSS 1917678 for supporting this work.

Corresponding authors: P. Y. Chen; e-mail: pychen@uic.edu

Manuscript received at
M. Yang, Z. Ye and P. Y. Chen are with the Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
resonant frequency drift can be monitored in a contactless way by using a coil reader antenna inductively coupled to the RLC sensor. Wireless passive RLC sensors have been used for decades in monitoring of pressure [17], strain [18], food quality [19], temperature [20], environmental gases [21], bacteria [22], for which the environmental parameter to be measured is encoded in the reflection spectrum (i.e., search of peak resonant frequency). In the past few decades, RLC oscillator-based wireless sensors and actuators have been extensively studied in terms of device’s structural design, fabrication, and cost reduction. Despite tremendous research effort has already been done in how to achieve the robust wireless readout. In fact, size/geometrical constrains of the sensor and measurement setup usually give rise to low sensitivity and spectral resolvability because the constraint of quality factor is set by unavoidable skin-effect, Eddy current and/or dielectric losses. More critically, given that the resonant frequency shift has poor tolerance to misalignment between the sensor and reader coils in both vertical and axial directions, the absolute accuracy is sometimes questioned. A highly robust and accurate external readout circuit is thus an urgent demand for the practice of wireless RLC sensors. In this paper, we will report a novel readout system for reliable and robust wireless query of passive RLC sensors, such as micromachined capacitive transducers [23], [24] or piezo-chemi-resistive sensors [25], [26]. The proposed telemetry system is inspired by parity-time (PT)-symmetric non-Hermitian Hamiltonians in quantum mechanics, which can be readily implemented and tested in electronic and electromagnetic systems with loss and/or gain. Our approach enables continuous real-time wireless readout of sensors, with absolute accuracy that is independent of the alignment and interrogation range between two coils; namely, a wireless telemetry system that does not require sophisticated alignment, tilt-/range-control, and collimation of coils during the interrogation process.

Ever since PT-symmetric quantum systems were discovered by Bender and Boettcher in 1998, there have been abundant studies in the exotic physical phenomenon [27]–[30]: non-Hermitian Hamiltonians may counterintuitively have entirely real eigenspectra once the system is invariant under combined operations of parity (P) and time-reversal (T) symmetry. The concept of PT-symmetric quantum systems is still a matter of debate, its electromagnetic[31]–[34], optical [35]–[38], acoustic [39], and electronic analogues [40]–[46] have been experimentally demonstrated. Electronic and electromagnetic measurement systems, although seemingly unrelated to the quantum theory, exhibit formal similarities between the Helmholtz and Schrödinger equations, essentially originating from the isomorphism of the two equations, i.e., Helmholtz equation governs vector fields of a monochromatic electromagnetic wave, and the time-independent Schrödinger equation describes the wavefunction of a massive particle. Further, electronic circuitry, which can be described by the telegraph equations (transmission line networks) and Kirchhoff’s Laws (e.g., equivalence of wireless sensor telemetry and lumped-element circuitry) has emerged as a promising platform for observing PT-symmetry and non-Hermitian physics because there are many experimentally feasible ways to create balanced, spatially modulated gain and loss in electronics [40]–[46].

In this context, we herein present theory and practical implementation for the PT-symmetric telemetry system that enables flash and robust data acquisition. Figs. 1(a) and 1(b) illustrate the proposed PT-symmetric telemetry
instrumentation and its practically realized circuit diagram for wireless interrogation of passive sensors and transducers, respectively. The circuit topologies in Figs. 2(a) and 2(b) can satisfy the PT-symmetry condition: the input impedances seen looking either side have the same reactance and oppositely signed resistance of the same value, which is necessary for the time-reversal symmetry. Such a paired amplifying and attenuation oscillators wirelessly linked via inductive coupling could support unidirectional reflectionless propagation for radio waves, when connected to a two-port network. The active resistance can be realized with the classical cross-coupled (XC) pair [47] with, for example, an input impedance of \(-1/(2g_m)\) or a Colpitts-type feedback circuit [48]. For practical sensor telemetry applications, the active reader represents the -RLC oscillator connected to the vector network analyzer (VNA) with a port impedance \(Z_0 = 50\) Ohm, while the passive sensor, typically modeled as an RLC oscillator, is terminated by a load resistance of \(Z_0\) such that the PT-symmetry condition is valid, as illustrated in Fig. 2(b). In conventional passive sensing systems, the sensor information is generally encoded in the reflected signal, which can be amplitude and/or phase modulated by the effective impedance of RLC sensor. A straightforward way to read the sensor’s impedance variations is to observe the shift in the resonance frequency. However, the resonance frequency is quite sensitive to the alignment between two coil antennas because it could be readily shifted or split due to changes in mutual inductance [49], [50]. On the other hand, in our approach, the sensor information is interpreted by the absolute value of \(-\kappa\) or \(C\) in the reader circuit, which enables rapid and precise contactless readout, with excellent lateral and vertical coil misalignment tolerances. In the following, we will present the theoretical foundation of PT-symmetric telemetric sensing technique in section II, followed by experimental validation in section III.

II. THEORY OF PT-SYMMETRIC TELEMETRY

Based on the Kirchhoff’s law [51], [52] and assuming a time-harmonic field of the form \(e^{j\omega t}\), the scattering matrix \(S\) of the two-port PT circuit sketched in Fig. 2(a) can be derived as:

\[
S = \begin{bmatrix} t & r_k \\ r_L & t \end{bmatrix} = \frac{1}{a} \begin{bmatrix} jd & b - c_-^3 \\ b - c_+^3 & jd \end{bmatrix};
\]

\[
a = b + j\frac{\omega^2 - 1}{2\kappa\omega};
\]

\[
b = Q^2\eta^2 \left[(\kappa^2 - 1)\omega^4 + 2\omega^2 - 1 \right];
\]

\[
c_{\pm} = \omega(\eta \pm 1); \quad d = 2\eta Q\kappa \omega^3,
\]

where \(c_+^3\) and \(c_-^3\) are the reflection coefficients for RF signal coming out of the left and right directions, respectively, and \(t\) is the transmission coefficient (which is independent of the direction of arrival of incoming signals), the modified quality-factor \(Q = R^{-1}\sqrt{L/C}\) (which can be seen as the non-Hermiticity of PT system), the coupling strength \(\kappa = M/L\) where \(M\) is the mutual inductance between two coil antennas with a self-inductance \(L\), \(\eta = R/Z_0\), and \(\omega\) is the angular frequency; here all frequencies are measured in unit of the natural frequency \(\omega_0 = 1/\sqrt{LC}\). Since the system is reciprocal, \(r_k = r_L = t\), and the product of two reflections is given by: \(r_k r_L^* = 1 - |t|^2\). In a typical passive network, flux conservation infers to the constraint \(S^\dagger(\omega)S(\omega) = I\), whereas in a PT-symmetric one, \(S\) in Eq. (1) satisfies: \(PTS(\omega)PT^\dagger = S^\dagger(\omega)\) [36]. The transition between the exact PT-symmetric (exact PT) phase and broken PT-symmetric (PT-broken) phase can be identified by the asymptotic behavior of eigenvalues of \(S\) [36], given by:

\[
\lambda_\pm = \pm j\sqrt{\pm \sigma} = \frac{jd \pm \sqrt{(b - c_+^2)(b - c_-^2)}}{2a}.
\]

In the exact PT phase, the two eigenvalues are nondegenerate and unimodular \((|\lambda_\pm| = 1)\), while the non-unimodular eigenvalues \((\lambda_+ = 1/|\lambda_-|)\) suggest the PT-broken phase. At the EP, two eigenvalues are equal \((\lambda_+ = \lambda_- = 1/(\lambda_-^*)\); for
further details about PT phase transition, see Appendix A. Fig. 3(a) presents evolution of eigenvalues as a function of Q and the normalized frequency \(\omega \); here, the coupling strength \(\kappa = 0.6 \). As can be clearly seen from Fig. 3(a), the PT phase transition is driven by the effective \(Q \) of sensor and the frequency of operation. Figs. 3(b)-(d) present the corresponding transmission coefficient \(t \) and the reflection coefficient \(r \) for the same system. It is seen from Figs. 3(a) and 3(b) that the change of the transmission coefficient from \(| t | < 1 \) to \(| t | > 1 \) is associated with the transition from the exact-PT to PT-broken phase. Moreover, Figs. 3(b)-(d) clearly show that the reflectionless perfect transmission occurs in one direction but not the other, at the EPs where unimodular eigenvalues would transit to non-unimodular ones. The EP frequencies can be derived from Eq. (2) as:

\[
\omega_{EP}^{(1,2,3,4)} = \omega_0 \sqrt{Q^2 - 1 \pm \sqrt{1 - Q^2 + 4Q^4 \kappa^4}},
\]

where \(Q = (\eta / 1 \pm \eta)Q \) and the “+” and “−” signs of \(Q \) in Eq. (3) correspond respectively to two different types of unidirectional reflectionless propagation: (1) \(r_L = 0 \) and \(r_R \neq 0 \); (2) \(r_R = 0 \) and \(r_L \neq 0 \); in both cases, \(| t | = 1 \). The zero-reflection effect could be attributed to the step-function-like behavior of the phase, which makes the delay time \(\tau_{delay} = \arg(r) / \omega \) behave as a delta function and thus the reflected ac signals are trapped for a long time and being completely absorbed by the loss element [53]. It is also observed from Fig. 3(a) that there exists a threshold \(Q \) value, beyond which real \(\omega_{EP} \) can be found. The critical \(Q \) values can be derived as:

\[
Q_c^+ = \frac{1 \pm (1/\eta)}{\kappa} \sqrt{2 \pm 4 \sqrt{1 - \kappa^2}}.
\]

If \(Q \geq Q_c^+ \), EPs with the first kind of unidirectional reflectionless propagation (\(r_L = 0 \)) can be observed; \(Q_c^− \) is marked as the red star in Fig. 3(a). In the same vein, if \(Q \geq Q_c^- \), the second kind of unidirectional reflectionless transmission (\(r_R = 0 \)) can also be obtained (\(Q_c^- \) is marked with the blue star in Fig. 3(a)). Fig. 4(a) presents evolution of eigenvalues of \(S \) as a function of the coupling strength \(\kappa \) and frequency \(\omega \); here \(Q \) is fixed to 3. Those EPs observed in Fig. 4(a) can still be described by Eq. (3). The critical coupling strength that enables the existence of real \(\omega_{EP} \) can be derived as:

\[
\kappa_c^\pm = \frac{1 \pm (1/\eta)}{\sqrt{Q}} \sqrt{1 - \frac{1 \pm (1/\eta)^2}{2Q^2}}.
\]

If \(\kappa \geq \kappa_c^+ \), EPs with the first kind of unidirectional reflectionless property can be obtained. If \(\kappa \geq \kappa_c^- \) another EP pair that leads to the second kind of unidirectional reflectionless event is also obtained. Figs. 4(b)-(d) report the transmission and reflection coefficients for the system in Fig. 2(a), showing that the EP frequencies associated with the existence of (unidirectional) reflection dips can be well described using Eqs. (3) and (5). We should note that for a specific \(Q \) value, the magnetic coupling strength must be greater than \(\kappa_c^- \), such that EPs and sharp resonances (dips) can be obtained in the reflection spectra. Eq. (5) reveals that the interrogation distance between the reader and sensor coils must be sufficiently short if a low-Q oscillator is used. Fig. 5 shows the \(\omega_{EP}^{(1,2)} \) as functions of \(Q \) and \(\kappa \). It is seen form Fig. 5 that there are branch points at which the \(\omega_{EP} \) bifurcates and drastically varies with respect to changes in \(Q \) and \(\kappa \). Fig. 5 also presents the lower bound for \((Q, \kappa) \) which allows observation of EPs and the associated sharp dips in the reflection spectra. Finally, we note that for a very small \(\eta \), \(Q_c^+ \approx Q_c^- \) and thus two different types of unidirectional reflectionless propagation could occur in the same frequency band. On the other hand, for a large \(\eta \), resonant frequencies of two different reflectionless scenarios are far apart.

For practical wireless sensing applications, a single port setup is usually adopted, as shown in Fig. 2(b), and the sensor’s information is encoded solely in the reflection spectrum. Preferably, passive sensing apparatus comprising a coil antenna and a sensor or transducer may represent the loss element in the PT-symmetric telemetry system. In this case, the equivalent circuit model should be slightly modified as follows: the reader connected to the signal generator (generator impedance \(Z_0 \)) has an effective negative resistance of \(-R\), whereas the equivalent resistance of the sensor or transducer \(R_0 = R + Z_0 \). This results in the PT-symmetry condition illustrated in Fig. 2(b), namely \(-R \equiv R = R_0 - Z_0\), and the reactive/inductive elements in the sensor and the reader are identical. By doing so, the reflection of the system is the same as \(t \) obtained from the above two-
port analysis. When Q is varied due to changes in the resistance (capacitance) of the sensor, the $-R(C)$ on the reader should be adjusted accordingly to maintain the PT-symmetry. Under a constant κ, the resistance variation (ΔR) or capacitance variation (ΔC) of the sensor can be characterized by tracking shifts of the two EP frequencies (i.e., loci of the two resonance frequencies), as shown in Fig. 6(a). This readout method, however, requires a delicately aligning and pitching between two coil antennas because θ_{EP} is rather sensitive to κ, as illustrated in Fig. 6(b). This represents the major challenge for existing wireless passive LC sensor systems. In the proposed PT-symmetric telemetry system, for a given Q and an arbitrary κ, analysis of $\Delta R(\Delta C)$ of the sensor is done by reading the absolute $-R(C)$ value of the reader, instead of the κ (distance)-dependent resonance frequency shift. Thanks to the symmetry between the absolute resistance and reactance of the reader and the sensor, the sensor’s $\Delta R(\Delta C)$ can be contactlessly acquired by electronically sweeping $-R(C)$ of the reader until successful observation of two minima in the reflection spectrum (which means that two EPs are locked under the PT-symmetry condition). Since each (Q, κ) set corresponds to a unique EP frequency pair, the relationship between the measured resonance frequencies and the values of Q and κ could be obtained with proper interpolation.

Consequently, our approach may offer a rapid and accurate wireless measurement, which is robust to misalignment between the coil antennas or variation in their separating distance, thus requiring no sophisticated alignments or positioning. On the other hand, conventional wireless sensing setups that rely on tracking the locus of impedance, phase, or peak frequency of a resonant mode do not provide similar absolute precision. There exists a general consensus that, to the best of the authors’ knowledge, the data interpretation for traditional wireless passive sensor system is complicated by the fact that two different sets of (Q, κ) could give the same resonance frequency. Additionally, traditional setups typically suffer from poor resolvability due to a rather broad spectral linewidth (low-Q resonance) [49], [54]. This, however, can be mitigated by the sharp reflectionless resonance in the electronic

Fig. 8. Experimental setup of the PT-symmetric telemetric sensing system in Fig. 1, of which the active tank is directly connected to the VNA and the tunable passive tank as a pseudo-transducer is mounted on a micro positioner.

Fig. 9. (a) Reflection coefficients nearby the (a) first and (b) second resonance frequency under different bias conditions; here, the black dash-dot lines are the theoretical results obtained from Eq. (1). When the bias is tuned to 6.2 volts, at which $|\tilde{Z} - Z_0| = R$, the reflection dips are obtained, in consistent with the theoretical prediction in Eq. (3) and Fig. 5.

PT system.

III. EXPERIMENTS AND DISCUSSIONS

We have conducted experiments for validating the proposed telemetric sensing method. In our laboratorial prototype, a reader and a pseudo-transducer were made using the printed circuit board (PCB) technology, as shown in Fig. 7(a). The self-inductance of the planar coil antenna and the mutual inductance between two coils can be determined by the Neumann formula [55]. In this work, the coil antenna self-inductance was designed to be $L = 200$ nH and the magnetic coupling coefficient is tuned from 0 to 0.5. We note that the coil antenna has a small parasitic resistance $R_P \approx 0.2\Omega$, retrieved from the scattering parameters. We have implemented a negative impedance converter (NIC) based on the Colpitts-type feedback oscillator shown in Fig. 1(b). In a Colpitts-type NIC, two variable shunt capacitors are connected parallel to the gate and drain terminals of a metal-oxide-semiconductor field-effect transistor (MOSFET; BF2040, fabricated by Infineon Inc.), as shown in Fig. 1(b) and Fig. 7(a). The input impedance seen into points A and B highlighted in Fig. 1(b) can be written as:

$$Z_{\text{in}} = -R + \frac{1}{j\omega C}$$

$$\approx \frac{g_m(V_{\text{bias}})}{\omega C_{gd} C_{gs}} + \frac{1}{j\omega [C_{gd} C_{gs}]}.$$

In Eq. (6), we assume that the transconductance $g_m >> \omega C_{gs}, \omega C_{gd}$ (i.e., the operating frequency far below the cutoff frequency), where C_{gd} and C_{gs} represent the gate-to-drain capacitance and the gate-to-source capacitance, respectively. The NIC itself can be equivalent to a series combination of $-R$ and \tilde{C} seen into the joint points [points A and B in Fig. 1(b)]. Fig. 7(a) shows the prototype of the NIC and the active reader in Fig. 1(b), which were implemented using the PCB technology. By connecting the gate and drain of the MOSFET to the VNA and the planar coil antenna, a $-\text{RLC}$ tank can be constructed. We note that a VNA (N5242B, Keysight Technologies, Inc) can be described by a negative resistance $-Z_0$ because it is regarded as an external source that steadily injects RF power to the system. Consequently, the net negative resistance of the active reader is $\tilde{R} - Z_0$, which must be tuned to match the resistance of the passive sensor...
\[R_s = R + Z_0 \] such that gain-loss balance, necessary for PT-symmetry, can be achieved. The negative resistance and the input reactance of an isolated \(-RLC\) tank can be measured directly using the VNA. Fig. 7(b) reports the measured input impedance of the Colpitts-type NIC at different DC biases that tune \(-R\) of the NIC, showing that a stabilized and rather non-dispersive series negative resistance (with a bandwidth of \(-40\) MHz) and an input capacitance can be achieved. Here, we note that different DC bias conditions may not lead to noticeable changes in the equivalent capacitance of the NIC module, as described in Eq. (6).

Fig. 8 illustrates our telemetry experiment setup where the active \(-RLC\) reader and the passive \(RLC\) pseudo-transducer are inductively coupled to form the PT-symmetric electronic system in Fig. 1(a). Here, we used a variable resistor in the \(RLC\) tank for mimicking a chemiresistive or piezoresistive transducer (PVG3A101C01R00 fabricated by Bourns Inc.). Figs. 6(a) and 6(b) report the measured reflection coefficients for four different \((Q, \kappa)\) sets, showing a good agreement between the experimental and theoretical results and proving validity and effectiveness of our reader circuit. In our experiment, the alignment and distance between two coil antennas are randomized. Under certain coupling strength, the exact \(Q\) and \(\kappa\) values can be extracted by adjusting the bias conditions of the MOSFET till observation of two reflection dips on the VNA screen, associated with unidirectional reflectionless property at the \(\omega_{EP}\) frequencies. Figs. 9(a) and 9(b) report variations of reflection coefficients around the two EP frequencies with different DC biases of the reader’s NIC; here, \((Q, \kappa) = (4.7, 0.49), R_s = 81 \Omega, C = 2.3\) pF and \(L = 330\) nH. It can be seen from Fig. 9 that the first and second resonant dips are obtained when the bias is tuned to 6.2 volts, which is in consistent with what predicted by Eq. (3) (presented as the black dash-dot lines in Fig. 9). When the system is operating under the \(PT\)-symmetry condition, the two resonance frequencies \((\omega_1\) and \(\omega_2\) in Eq. (3)) can be correlated to the unique set of \((Q, \kappa)\). The effective resistance of the chemiresistor or piezoresistor is encoded in \(Q \propto R^{-1}\).

Next, we intend to wirelessly read the resistance of the pseudo-transducer under an unknown coupling strength (distance) between reader and sensor coils, in order to validate the robustness and reliability of this alignment-free telemetry system. Here, the resistance of the pseudo-transducer is known by manually adjusting the variable resistor. Fig. 10 reports the measurement results for two random selected coil-to-coil distances, respectively represented by blue and red symbols. As mentioned above, under the condition of \(PT\)-symmetry, the sensor’s effective resistance \(R_s\) must be equal to the sum of equivalent negative resistance of NIC \(-R\) and the negative resistance of the RF excitation source \(-Z_0\) (e.g., \(-50\)\(\Omega\) for VNA used here). From Fig. 10, it is evident that the measurement results show excellent linearity, implying that the sensor’s resistance value can be read in a contactless way with high accuracy by simply citing the negative resistance value of NIC, i.e., \(|-R-Z_0| = R_s\). Finally, we present a wireless temperature sensor composed of the same coil antenna and capacitor in Fig. 9 and a negative temperature coefficient resistor (NTC resistor: NCP15XC680E03RC, Murata Electronics Inc.). The schematics and photograph of the wireless temperature sensing setup are shown in Figs. 11(a) and 11(b), respectively. The resistance of the sensor drops from...
50Ω to 10Ω when the substrate temperature increases from 35°C to 95°C. In our experiment, heat is generated from a hot plate in the laboratory. The relationship between the resistance of NTC resistor and temperature is depicted by blue points in Fig. 11(c), which were obtained using the wired measurement with a digital multimeter. The red, green, and orange points in Fig. 11(c) are the results read wirelessly by the proposed PT telemetry technique for different relative positions (d1, d2, d3) between the center of two coil antennas. Each data point in Fig. 11(c) is the average result of four measurements, with error bars representing the standard deviation of data. It can be evidently seen from Fig. 11(c) that accurate, repeatable, and reliable telemetry data acquisition can be accomplished, regardless of whether the coils are well aligned. As a result, our telemetry technique provides a true alignment-free telemetric sensing, not possible with traditional wireless RLC sensor systems [49, 50]. Although in this work we demonstrated a resistive sensing scheme, the proposed telemetry method can also be applied to reactive sensing schemes where a capacitive sensor is commonly used to tune the system’s Q value (e.g., pressure and strain sensors [18, 56]). The accuracy can be further improved by optimizing the NIC design, e.g., implementation of NIC using complementary metal-oxide semiconductor (CMOS) technology that can minimize noises and fabrication errors, thereby better controlling the effective –R and C values. In addition to the precise control of resistive and reactive impedance values in the reader, the CMOS technology may also reduce the size and cost of readers and sensors, thus facilitating the practice of miniature wireless passive sensors in many applications. As representative examples, battery-free wireless RLC microsensors have been widely used in monitoring the human organ pressures, such as intraocular pressure [50], intracranial pressure [57], blood pressure [58], and intestine pressure [59], to name a few. These kinds of sensors are also commonly used in industry and automotive applications such as the tire pressure monitoring system. Last but not least, wireless passive RLC sensors based on the Low Temperature Co-Fired Ceramics (LTCC) substrate can operate in harsh (e.g., high-temperature, toxic and hazardous) environments [60], where wire connection may not be possible. The proposed telemetry technique is foreseen to be beneficial for these fields.

IV. CONCLUSIONS

We have proposed a robust, maker-free and alignment-free telemetric sensing technique, inspired by PT-symmetry discovered first in Schrodinger and Helmholtz systems. In the non-Hermitian PT-symmetric telemetric sensing system requiring a subtle gain-loss balance, the unidirectional reflectionless property can be found at the exceptional points, associated with a unique set of the coupling strength and the quality factor of electronic oscillators (i.e., a passive RLC sensor and an active –RLC reader, which are inductively or capacitively coupled). We demonstrate that at an arbitrary coil-to-coil distance (i.e., magnetic coupling strength), changes in the effective impedance and Q-factor of an RLC sensor can be accurately and wirelessly read by sweeping bias voltages of the reader circuit and recording the values that give resonant reflection dips related to exceptional points. Once exceptional points are captured, the absolute value of reader’s negative resistance (capacitance) determined by the bias voltage of NIC (varactor) should be identical to the effective resistance (capacitance) of the sensor, which is the condition imposed by PT-symmetry. Such telemetry approach does not require tracing the resonance frequency drift or amplitude/phase of reflected signals at the resonant frequency, which are sensitive to both effective impedance of the sensor and the inductive coupling strength. Hence, the proposed telemetry technique may address the long-standing problem encountered by traditional wireless sensing systems, that is, the measurement results are very sensitive to the displacement and alignment of the reader antenna and, in general, the coil antennas must be precisely aligned and positioned. We envision that the proposed PT-symmetric telemetry technique may have an impact on the field of non-invasive and non-destructive wireless sensing for many real-world applications.

APPENDIX: DETAILS ON PT PHASE TRANSITION

In the two-port scattering problems, S has eigenvalues in Eq. (2) and corresponding eigenvectors ψn, where n ∈ {1,2}. Let ψn be an eigenvector of S corresponding to the eigenvalue λn, we may obtain the following relationship:

\[SPT\psi_n = PT \left(\frac{1}{\lambda_n} \psi_n \right), \]

(A1)

\[S(PT\psi_n) = \frac{1}{\lambda_n} SPT\psi_n. \]

(A2)

where it is clear that \(PTP\psi_n \) is also an eigenvector of S. Eq. (A1) is a weaker constraint than unitarity and can be satisfied in two possible ways: either each eigenvalue is itself unimodular, or the eigenvalues form pairs with reciprocal moduli, which correspond to exact PT and PT-broken phases [37]. First, in the exact PT phase, PT and S share the same eigenvectors, that is, \(PTP\psi_n = \pm \psi_n \). From (A1), we know that \(S(\pm \psi_n) = \pm \lambda_n \psi_n \), and therefore \(S_n = 1 \). As a result, the spectrum of the S should be unimodular and non-degenerate. Physically, the eigenstate exhibits no net amplification nor dissipation in the PT-exact phase [36]. Second, in the PT-broken phase, \(\psi_n \) is not PT-symmetric, but the eigenvectors satisfy PT by transforming into each other: \(PTP\psi_n = \pm \psi_m \). In such a phase, \(S(\pm \psi_n) = \pm (\lambda_n^{-1}) \psi_n \) and thus \(\lambda_n \parallel \lambda_m \parallel 1 \). The eigenvalues of the S are non-unimodular and a complex conjugate reciprocal pair. Physically, one mode of the system is localized in the gain side and thus exponentially amplified, while the other is localized in the loss side and thus dissipated. In other words, the eigenvectors of S cease to be PT-symmetric in the broken-PT phase. Finally, the third case occurs when the eigenvalues and eigenvectors of S are degenerate, namely a transitional (exceptional) point which leads to spontaneously breaking of PT-symmetry. At the exceptional point, the two eigenvectors become degenerate and so do their eigenvalues.