LETTER TO THE EDITOR

Expanding the mutational landscape and clinical phenotype of the \textit{YIF1B} related brain disorder

Eva Medico Salsench,1,† Reza Maroofian,2,† Ruizhi Deng,1 Kristina Lanko,1 Anita Nikoncuk,1 Belén Pérez,3 Obdulia Sánchez-Lijarcio,3 Salvador Ibáñez-Mico,4 Antonina Wojcik,5 Marcelo Vargas,5 Nouriya Abbas Al-Sanna,6 Marian Y. Girgis,7 Tainá Regina Damaceno Silveira,8 Peter Bauer,8 Audrey Schroeder,9 Chin-To Fong,10 Amber Begtrup,11 Meisam Babaei,12 Mehran Beiraghi Toosi,13 Farah Ashrañzadeh,13 Shima Imannezhad,13 Mohammad Doosti,14 Najmeh Ahangari,14 Paria Najarzadeh Torbati,14 Ehsan Ghayoor Karimiani,14,15,16 David Murphy,17 Elisa Cali,2 Ibrahim H. Kaya,18 Mohammad AlMuhaizea,18,19 Dilek Colak,20 Kelly J. Cardona-Londoño,21 Stefan T. Arol,21,22 Henry Houlden,2 Aida Bertoli-Avella,8 Namik Kaya23 and Tahsin Stefan Barakat1

†These authors contributed equally to this work.

Author affiliations:

1 Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
2 Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
3 Centro de Diagnóstico de Enfermedades Moleculares. Centro de Biología Molecular. Universidad Autonoma de Madrid. CIBER Enfermedades Raras. IdiPAZ. Madrid. Spain
4 Pediatric Neurology Unit, Arrixaca University Hospital, Murcia, Spain
5 Gillette Children's Specialty Healthcare, 200 University Avenue E, St. Paul, MN 55101, USA
6 John Hopkins Aramco Health Care, Pediatric Services, Dhahran, Saudi Arabia
7 Pediatric Department, Children's Hospital , Cairo University, Cairo, Egypt
8 CENTOGENE, GmbH, 18055 Rostock, Germany
9 Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
10 Departments of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA

© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Correspondence to: Namik Kaya
Department of Translational Genomics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
E-mail: nkaya@kfshrc.edu.sa

Correspondence may also be addressed to: Tahsin Stefan Barakat
With great interest we read the article by Diaz and colleagues\(^1\) providing further evidence of a neurodevelopmental disorder caused by bi-allelic variants disrupting the function of \(YIF1B\), by reporting a second patient cohort and a mouse model. We had earlier reported 6 individuals from 5 unrelated families, harboring bi-allelic protein truncating mutations in \(YIF1B\), presenting with a progressive encephalopathy with various degrees of movement disorders, microcephaly and epilepsy\(^2\).

We here described 8 additional individuals from 8 independent families harboring protein altering \(YIF1B\) variants, including 4 individuals with homozygous or compound heterozygous missense variants (\textbf{Fig. 1A-D, Supplementary Figs. 1-6}). We provide functional evidence that these missense variants impact on \(YIF1B\) function, and compare the clinical phenotype between these new and all previously reported cases to further delineate the mutational landscape and clinical phenotype associated with this new disease entity, which Online Mendelian Inheritance in Man (OMIM) recently named “\textit{Kaya-Barakat-Masson syndrome}” (KABAMAS, OMIM \#619125).

Individual 1 is a currently 5 years old male, the fifth child of consanguineous parents from Spain, born after an uneventful pregnancy and uncomplicated delivery. Developmental delay was noticed early on. He developed a severe encephalopathy, is non-verbal, has severe motor impairment with poor head control, axial hypotonia, peripheral hypertonia and upper extremity dystonia. He is unable to sit independently. He had a febrile seizure at 12 months and developed epileptic seizures at 21 months, initially treated with levetiracetam followed by valproate. EEG showed bilateral focal fronto-temporal activity and MRI showed cortical atrophy and thin corpus callosum. Hypotelorism and flat occiput were noticed. Whole exome sequencing (WES) identified a homozygous truncating variant in \(YIF1B\) (c.186dupT, p.Ala63fs), heterozygous in the unaffected parents. His 23-year old sister was not investigated, but has a similar encephalopathy although without epilepsy.

Individual 2 is a girl born to consanguineous Somali parents, who required hospitalization due to feeding problems at age of 2 months. She displayed severe global developmental delay, with...
no developmental milestones, and epileptic seizures. EEG showed frequent multifocal
epileptiform discharges and at times evidence of burst suppression. Seizure control was
obtained with phenobarbital and levetiracetam. MRI imaging at 10 months showed reduced
cerebral white matter volume with atrophic prominence of ventricles and cerebellar hypoplasia.
She became ventilation dependent and deceased at the age of 15 months. WES identified a
homozygous truncating \textit{YIF1B} variant (c.598G>T, p.Glu200*), heterozygous in the unaffected
parents.

Interestingly, both p.Ala63fs and p.Glu200* are recurrent variants, identified in 5 and 3
independent families, respectively1, 2. p.Ala63fs was previously found in four Arab families,
and given historic migrations of Arabs to Spain this might suggest a founder mutation. Similar,
all families harboring p.Glu200* are from Somali descent, likely indicating a founder
mechanism.

Individual 3 is a girl born to consanguineous parents from Saudi-Arabia that showed lack of
developmental milestones, congenital microcephaly, severe failure to thrive, spastic
quadriaparesis, axial hypotonia and hypoventilation with pons atrophy, cerebellar and corpus
callosum hypoplasia and white matter alterations. WES identified a homozygous truncating
\textit{YIF1B} variant (c.336C>G, p.Tyr112*).

Individual 4 is a 1 year old boy born to consanguineous parents from Egypt, which showed
severe developmental delay starting at the age of 2 months with spasticity and dystonia, with
progressive psychomotor deterioration and feeding difficulties. Whole Genome Sequencing
identified a homozygous chr19:38796532-38812925 (GRCh37/hg19) deletion that included
the \textit{YIF1B} promoter, \textit{YIF1B} exon 1-7, and exon 1 of \textit{KCNK6}, a potassium channel without a
known OMIM phenotype.

All but one previously reported family1, 2 presented with protein truncating variants.
Interestingly, we identified four additional families with missense variants that resulted in a
similar clinical phenotype.

Individual 5 is a 27 year old woman, born at full term to nonconsanguineous parents of French
and German descent. Due to developmental delay, she encountered medical attention at ~7
months of age. She was able to sit independently at age of ~2-3 years, but lost this capability.
She never walked independently. Speech was limited to few words and lost upon
regression. She currently communicates through noises and facial expression. She is currently
managed for medically refractory generalized epilepsy, with EEG at age of 26 years noting
tonic seizures, and multifocal and diffuse discharges. MRI at age of 25 years showed generalized cerebral and cerebellar volume loss with severe thinning of the corpus callosum. Dysmorphic features include a long face, widely-spaced teeth, a history of gingival hyperplasia, high arched palate, and bitemporal hirsutism. WES identified compound heterozygous missense variants in \textit{YIF1B} (c.569C>A, p.Ala190Glu and c.621C>A, p.Ser207Arg), which were both absent in the unaffected brother.

Individual 6 is a currently 7.5 years old male born to consanguineous parents from Iran that presented in early infancy with developmental delay and hypotonia. Epileptic spasms, axial dystonia and limb spasticity subsequently developed (\textbf{Supplementary Video 1}). His best motor achievements included independent sitting and pencil grasp, but no speech development or eye contact. WES identified a homozygous missense variant in \textit{YIF1B} (c.691G>A, p.Val231Ile), heterozygous in the unaffected parents.

Individual 7 is a 11 months old boy born to consanguineous parents from Iran. He first came to medical attention at age of 4 years because of severe global developmental delay. He failed to develop any milestones and developed axial dystonia and limb spasticity but no epilepsy. Brain MRI showed a thin corpus callosum. WES identified a homozygous missense variant in \textit{YIF1B} (c.377T>C, p.Leu126Pro), heterozygous in the unaffected parents and siblings.

Finally, individual 8 is a currently 4.5 years old female, born to consanguineous parents from Iran, that presented with global developmental delay, microcephaly and hypotonia, developing into limb spasticity, dystonia, dyskinesia and oculomotor apraxia, without epilepsy. MRI brain imaging showed global atrophy and a thin corpus callosum. She could sit independently but was unable to stand and spoke only a few words. Metabolic screening was unremarkable. WES identified a homozygous missense variant in \textit{YIF1B} (c.803G>T p.Arg268Leu).

Interestingly, all \textit{YIF1B} missense variants encountered localized in or close to the transmembrane domains (previously shown to be required for YIF1B function3), and were absent from gnomAD, with the exception of p.Val231Ile which is found a single time in heterozygous state (MAF 0.00040). All changed highly conserved residues, had a CADD score >22, and \textit{in silico} analysis predicted pathogenicity (\textbf{Fig. 1B, Supplementary Fig. 7-9, Supplementary Note, Supplementary Table 1}).

As primary cells of affected individuals were unavailable, we introduced the encountered missense variants by site-directed mutagenesis4, 5 in an YIF1B expression plasmid, and first tested protein expression of these mutants upon transient transfection in HEK cells. Missense
variants assessed did not result in significantly reduced YIF1B proteins levels (Fig. 1E, F). To investigate sub-cellular localization of wild type and mutant YIF1B, we performed co-staining for YIF1B and the ER marker Calnexin (Fig. 1G). Whereas wild type YIF1B showed a high co-localization with the ER, as previously found⁶, YIF1B variants showed significantly reduced co-localization (Fig. 1H). Previously, YIF1B was found to interact with RAB6A⁷ and TAPL³. Upon co-transfection of RAB6A and YIF1B, we found significantly reduced co-localization between both proteins for all YIF1B variants, except p.Leu126Pro and p.Ser207Arg (Supplementary Fig. 10A, D). In contrast, all tested YIF1B missense variants showed reduced co-localization with TAPL (Supplementary Fig. 10B, E). YIF1B overexpression diminishes co-localization of TAPL and lysosomal markers³. In agreement, whereas overexpression of wild type YIF1B resulted in low co-localization correlation between TAPL and the lysosomal marker LAMP2, overexpression of mutant YIF1B failed to diminish this co-localization (Supplementary Fig. 10C, F). Also, co-localization correlation between YIF1B and LAMP2 was higher for mutant YIF1B. Together this indicates that the assessed missense YIF1B variants show mislocalization, reduced co-localization with known interactors and reduced functionality compared to wild type YIF1B.

Including the 8 individuals described herein, in total 24 individuals from 19 families have currently been identified, harboring bi-allelic truncating/whole gene deletion (n=18), or missense variants (n=6) in YIF1B (Table 1, Supplementary Table 2). All individuals presented early in life with a progressive encephalopathy with global developmental delay and cognitive impairment, after uneventful perinatal development. Virtually all had feeding problems, axial hypotonia and limb spasticity, with seizures (varying from myoclonic jerks, to generalized tonic clonic seizures and infantile spasms) in around 2/3rd of the cases. Around half of the individuals showed signs of dystonia, dyskinesia or microcephaly. Whereas hypoventilation was relatively frequent in the cohort described by Diaz et al, in total this was only found in 5 individuals and seems to correlate to brain stem atrophy. 2/3rd of the individuals have brain imaging abnormalities, including white matter alterations, cerebral atrophy, corpus callosum hypoplasia and cerebellar hypoplasia. Interestingly, limited developmental milestones, such as head control, independent sitting, and limited speech were only observed in individuals harboring missense variants, reaching statistical significant differences between the truncating and missense group after Bonferroni correction (p=0.0001783, p=0.001694, p=0.001694, respectively). This might suggest that the encountered missense variants harbor some residual YIF1B activity in vivo, in agreement with our in vitro functional investigations.
Other clinical features were not significantly different between the truncating and missense cohort (Table 1, Supplementary Table 2).

Together, our work\(^1\) (and this paper) and that of Diaz\(^1\) defines a previously unrecognized neurodevelopmental disorder, presenting with severe to profound neurodevelopmental delay, cognitive impairment, neurological sequelae, seizures and microcephaly. Long term follow-up of individuals with *YIF1B* variants will help to further delineate this new disease entity.

Data availability

All data are available from the corresponding author upon reasonable request, with the exception of primary patient sequencing data that cannot be made available due to consent regulations.

Acknowledgements

We would like to thank the individuals described herein and their families for participating in this study. We would like to thank all members of the Barakat lab for helpful discussion. We thank Rupert Abele (Frankfurt) for providing the TAPL plasmid, and Gerben Schaaf (Rotterdam) and Grazia M.S. Mancini (Rotterdam) for providing the LAMP2 and Calnexin antibody, respectively.

Funding

RD is supported by a China Scholarship Council (CSC) PhD Fellowship (201906300026) for her PhD studies at the Erasmus Medical Center, Rotterdam, the Netherlands. BP was funded by PI19/01155 and B2017/BMD-3721. The work by KJCL and STA was supported by the King Abdullah University of Science and Technology (KAUST) through the baseline fund and the Award No. FCC/1/1976-25 and REI/1/4446-01 from the Office of Sponsored Research (OSR). NK’s lab is supported by KFSHRC seed grants (RAC2120022), King Salman Center for Disability Research (KSCDR#2180 004) and King Abdulaziz City for Science and Technology (KACST#14-MED2007-20). TSB’s lab is supported by the Netherlands...
Organization for Scientific Research (ZonMw Veni, Grant 91617021), an Erasmus MC Fellowship 2017 and Erasmus MC Human Disease Model Award 2018.

Competing interests

AB is an employee of GeneDx, Inc. TRDS, PB and ABA are employees of CENTOGENE GmbH. All other authors declare no conflict of interest.

Author contributions

Conceptualization: NK, TSB

Data curation: EMS, RM, RD, KL, AN, TSB

Formal analysis: EMS, RD, KL, TSB

Funding acquisition: TSB

Methodology: EMS, KL, AN, TSB

Writing – original draft: ESM, TSB

Writing – review & editing: all authors

Supplementary material

Supplementary Material is available at Brain online.

References

Figure legends

Figure 1: Pedigrees of families, clinical hallmarks and functional investigations of identified YIF1B variants.

A) Family pedigrees of ascertained families. Affected individuals with homozygous YIF1B variants and healthy parents with confirmed heterozygous YIF1B variants are indicated in black and half black, respectively. Presumed carrier parents which were not available for segregation analysis are indicated with empty circles or squares and a question mark. Affected individuals with confirmed genotype are indicated with an arrow and numbered. Not-tested affected siblings presenting with similar phenotypes are indicated with a question mark. Consanguineous parents are indicated with a double connection line. Males are squares, females are circles; deceased individuals are marked with a line.

B) Drawing of the YIF1B transcript and YIF1B protein, including the tolerance landscape as determined by MetaDome analysis, that displays regional tolerance or intolerance to missense or synonymous variation. All currently known YIF1B variants from Almuhaisea et al and Diaz et al (blue) and those reported herein (orange) encountered in individuals with Kaya-Barakat-Masson syndrome are indicated. Missense and truncating variants are indicated with circles and tri-angles, respectively.

C) Images of individuals 4, 5, 6, 7 and 8 at age of 1 year, 27 years, 7.5 years, 11 months and 4.5 years, respectively. No gross dysmorphic features were observed. Note the neurological posture in individuals 4, 5 and 7.

D) T1 and T2 weighted brain MRI images of individual 1, 5, 6, 7 and 8 in sagittal and axial plane. Note the various degrees of cerebral atrophy, cerebellar hypoplasia, thin corpus callosum and white matter abnormalities.

E) Immunoblotting detecting proteins of wild type and YIF1B variants upon transient transfection for 48 hours in HEK293 cells. Endogenous vinculin served as a normalization control. Full length blots are given in Supplementary Fig. 11.

F) Western blot quantification was performed using biological triplicates, normalized to Vinculin for each sample and to the WT YIF1B control. Box-plots represent interquartile range (IQR); line is median; and whiskers extend to 1.5x IQR, dots are outliers. Wilcoxon signed-rank test; ns, not significant. Full length blots used for quantification are given in Supplementary Fig. 11.
G) Representative images of immunofluorescence of HEK293 cells, transfected for 24 hours with wild type or mutant eGFP-YIF1B expression plasmids, and co-stained for the ER marker Calnexin (red) and DAPI (blue). Scale bar 10µm.

H) Quantification of Calnexin-YIF1B co-localization (n=30 cells for each variant) using Pearson’s correlation coefficient (range: -1 negative correlation, 1 max correlation). Box-plots represent IQR; line is median; and whiskers extend to 1.5x IQR, dots are outliers. ***, p<0.001, Kruskal-Wallis test with post hoc Dunn’s test.
Figure 1

208x294mm (300 x 300 DPI)
Table 1 Overview of core clinical phenotypes of 24 individuals harboring bi-allelic variants in YIF1B

<table>
<thead>
<tr>
<th>Summary</th>
<th>Total</th>
<th>%</th>
<th>Truncating</th>
<th>Missense</th>
<th>Odds ratio</th>
<th>P value</th>
<th>Low CI</th>
<th>High CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncating mutation</td>
<td>18/24</td>
<td>75</td>
<td>10/18</td>
<td>8/24</td>
<td>1.238</td>
<td>0.000</td>
<td>1.128</td>
<td>11.999</td>
</tr>
<tr>
<td>Missense mutation</td>
<td>6/24</td>
<td>25</td>
<td>5/6</td>
<td>1/6</td>
<td>Inf</td>
<td>Inf</td>
<td>0.305</td>
<td>Inf</td>
</tr>
<tr>
<td>Female</td>
<td>13/24</td>
<td>54.2</td>
<td>10/18</td>
<td>3/6</td>
<td>0</td>
<td>Inf</td>
<td>0.280</td>
<td>Inf</td>
</tr>
<tr>
<td>Deceased</td>
<td>5/24</td>
<td>20.8</td>
<td>5/8</td>
<td>0/6</td>
<td>0</td>
<td>Inf</td>
<td>Inf</td>
<td>Inf</td>
</tr>
<tr>
<td>Growth parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcephaly</td>
<td>15/23</td>
<td>65.2</td>
<td>11/17</td>
<td>4/6</td>
<td>0.920</td>
<td>0.000</td>
<td>0.065</td>
<td>8.949</td>
</tr>
<tr>
<td>Level of Functioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global developmental delay</td>
<td>23/23</td>
<td>100</td>
<td>17/17</td>
<td>6/6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Inf</td>
</tr>
<tr>
<td>Head control</td>
<td>5/23</td>
<td>30.4</td>
<td>0/17</td>
<td>5/6</td>
<td>83.3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.189</td>
</tr>
<tr>
<td>Sitting</td>
<td>4/23</td>
<td>17.4</td>
<td>0/17</td>
<td>4/6</td>
<td>66.7</td>
<td>0.000</td>
<td>0.002</td>
<td>0.351</td>
</tr>
<tr>
<td>Standing</td>
<td>2/23</td>
<td>8.7</td>
<td>0/17</td>
<td>2/6</td>
<td>33.3</td>
<td>0.000</td>
<td>0.059</td>
<td>1.733</td>
</tr>
<tr>
<td>Walking</td>
<td>2/22</td>
<td>9.1</td>
<td>0/16</td>
<td>2/6</td>
<td>33.3</td>
<td>0.000</td>
<td>0.065</td>
<td>1.844</td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>23/23</td>
<td>100</td>
<td>17/17</td>
<td>6/6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>Inf</td>
</tr>
<tr>
<td>Speech development</td>
<td>4/23</td>
<td>17.4</td>
<td>0/17</td>
<td>4/6</td>
<td>66.7</td>
<td>0.000</td>
<td>0.002</td>
<td>0.351</td>
</tr>
<tr>
<td>Progressive speech loss</td>
<td>3/4</td>
<td>75</td>
<td>n/a</td>
<td>3/4</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoventilation</td>
<td>5/18</td>
<td>27.8</td>
<td>5/16</td>
<td>0/2</td>
<td>0</td>
<td>Inf</td>
<td>1.000</td>
<td>0.069</td>
</tr>
<tr>
<td>Feeding problems/swallowing</td>
<td>19/23</td>
<td>82.6</td>
<td>16/17</td>
<td>5/6</td>
<td>3.390</td>
<td>0.040</td>
<td>0.796</td>
<td>Inf</td>
</tr>
<tr>
<td>Autistic behaviour</td>
<td>4/13</td>
<td>30.8</td>
<td>2/8</td>
<td>25/6</td>
<td>0.529</td>
<td>1.000</td>
<td>0.025</td>
<td>10.812</td>
</tr>
<tr>
<td>Neurology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>14/22</td>
<td>63.6</td>
<td>10/16</td>
<td>62.5</td>
<td>0.840</td>
<td>0.000</td>
<td>0.059</td>
<td>8.247</td>
</tr>
<tr>
<td>Seizure onset</td>
<td>21/22</td>
<td>95.5</td>
<td>15/16</td>
<td>93.8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>103.833</td>
</tr>
<tr>
<td>Spasticity</td>
<td>19/23</td>
<td>82.6</td>
<td>15/17</td>
<td>88.2</td>
<td>3.497</td>
<td>0.271</td>
<td>0.197</td>
<td>63.558</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>11/23</td>
<td>47.8</td>
<td>8/17</td>
<td>47.1</td>
<td>0.893</td>
<td>1.000</td>
<td>0.091</td>
<td>8.729</td>
</tr>
<tr>
<td>Dystonia</td>
<td>9/20</td>
<td>45</td>
<td>7/14</td>
<td>50/6</td>
<td>3.932</td>
<td>0.642</td>
<td>0.195</td>
<td>28.137</td>
</tr>
<tr>
<td>Dyskinesia or tremor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyes and ears</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear / hearing loss</td>
<td>0/16</td>
<td>0</td>
<td>0/12</td>
<td>0/4</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
<td>Inf</td>
</tr>
<tr>
<td>Strabismus</td>
<td>10/18</td>
<td>55.6</td>
<td>5/12</td>
<td>41.7</td>
<td>0.159</td>
<td>0.152</td>
<td>0.003</td>
<td>2.093</td>
</tr>
<tr>
<td>Optic atrophy</td>
<td>2/20</td>
<td>10</td>
<td>2/14</td>
<td>14.3</td>
<td>0</td>
<td>Inf</td>
<td>1.000</td>
<td>0.078</td>
</tr>
<tr>
<td>Retinal involvement</td>
<td>0/18</td>
<td>0</td>
<td>0/12</td>
<td>0/6</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
<td>Inf</td>
</tr>
<tr>
<td>Cataract</td>
<td>0/18</td>
<td>0</td>
<td>0/12</td>
<td>0/6</td>
<td>0</td>
<td>0.000</td>
<td>1.000</td>
<td>Inf</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>5/19</td>
<td>26.3</td>
<td>4/13</td>
<td>30.8</td>
<td>1/6</td>
<td>1.217</td>
<td>1.000</td>
<td>0.147</td>
</tr>
<tr>
<td>Brain imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White matter/myelinisation</td>
<td>7/24</td>
<td>29.3</td>
<td>6/18</td>
<td>33.3</td>
<td>1/6</td>
<td>1.677</td>
<td>0.629</td>
<td>137.533</td>
</tr>
<tr>
<td>Cerebellar hypoplasia</td>
<td>8/23</td>
<td>34.8</td>
<td>7/17</td>
<td>41.2</td>
<td>1/6</td>
<td>1.677</td>
<td>0.369</td>
<td>188.57</td>
</tr>
<tr>
<td>Corpus callosum hypoplasia</td>
<td>12/22</td>
<td>54.5</td>
<td>9/16</td>
<td>56.3</td>
<td>3/6</td>
<td>1.217</td>
<td>1.000</td>
<td>0.128</td>
</tr>
<tr>
<td>Cerebral atrophy/parenchymal</td>
<td>10/24</td>
<td>41.7</td>
<td>8/18</td>
<td>50/6</td>
<td>33.3</td>
<td>1.570</td>
<td>1.000</td>
<td>0.170</td>
</tr>
<tr>
<td>Pons/brain stem atrophy</td>
<td>5/22</td>
<td>18.2</td>
<td>5/16</td>
<td>31.3</td>
<td>0/6</td>
<td>Inf</td>
<td>0.266</td>
<td>0.352</td>
</tr>
</tbody>
</table>

n/d: not determined; n/a: not applicable.