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Abstract 

 

Carbonate reservoirs typically exhibit very complex geological structures and are characterized by flow 

dynamics primarily occurring in fractures. The intricate network of fractures as well as their 

interconnectedness may lead to unexpected flow patterns and uneven sweep efficiency. Determining 

reservoir properties of both matrix and fracture channels is quintessential for accurately tracking the 

fluid front movement in the reservoir, optimizing sweep efficiency, and maximizing hydrocarbon 

production. In this study, we showcase the application of a feature-oriented ensemble-based history 

matching workflow to a complex fractured carbonate reservoir box model, focusing on the use of 

formation resistivity tomography data that are usually inferred from deep crosswell electromagnetic 

(EM) surveys. Compared with the production data that are commonly used in history matching, deep 

EM measurements provide additional information about the spatial distribution of subsurface reservoir 

properties in the interwell volumes by exploiting the strong resistivity contrast between water and 

hydrocarbons. A hybrid parameterization approach is used to represent the multiscale fracture 

distribution in which the spatial distribution of small-scale fractures is modelled by a truncated Gaussian 

simulation method. A large number (over one million) of uncertain model parameters including 

reservoir matrix and fracture properties as well as Archie’s parameters are identified and updated by an 

iterative ensemble smoother. For an efficient integration of the high-dimensional and noisy EM 

tomography data, the boundary or contour information extracted from the EM resistivity field is instead 

assimilated through a distance parameterization approach. A modified bootstrap-based localization is 

proposed to regularize the model updates adaptively during the iteration to reduce sampling errors. 

Especially, to improve the computational efficiency in dealing with the large dimensions of both data 

and model parameters, the localization is implemented in a projected low-dimensional data subspace. 

Experimental results demonstrate the applicability and efficiency of the developed workflow for 

reservoir history matching in more realistic model settings. The comparative case study also illustrates 

the significance of jointly incorporating multiple sources of data for better quantification of model 

uncertainty, and the great potential of deep EM data for enhancing the characterization of complex 

fractured carbonate reservoirs.  

 

Keywords: History matching, Ensemble methods, Adaptive localization, Distance parameterization, 

Fractured carbonate reservoir, EM tomography. 

 

 

Introduction 

 

Ensemble-based assimilation methods such as the ensemble Kalman filter (EnKF) and smoother (ES) 

have recently received remarkable interests in various disciplines, especially for the study of large-scale 

geophysical systems. In petroleum industry, the applications covers many aspects including reservoir 

characterization, production optimization, and uncertainty quantification (Aanonsen et al., 2009; Jung 

et al., 2018; Oliver and Chen, 2011). Compared to conventional assisted history matching techniques, 

the ensemble-based assimilation methods provide an efficient and scalable framework, under which 

large-scale reservoir models can be easily calibrated through the integration of various types of data. 

Significant research has been conducted to improve the performance of these ensemble methods in 

dealing with more challenging and realistic inverse problems (Dovera and Della Rossa, 2011; Emerick 

and Reynolds, 2013; Hoteit et al., 2012; Liu et al., 2016; Lorentzen et al., 2012; Luo et al., 2015; Oliver 

and Alfonzo, 2018; Zhang et al., 2014). For real field case studies, Chen and Oliver (2014)) showcased 

a history-matching application in the Norne field using an iterative ensemble smoother, in which 

approximately 150,000 model parameters including permeability, porosity, net-to-gross ratio, 
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transmissibility, and depth of water/oil contacts were calibrated. It turned out that the ensemble-based 

history matching outperformed the manual counterpart with both better data match to a long production 

history and more plausible calibrated reservoir models. Abadpour et al. (2018) reported a successful 

implementation of ensemble-based history matching for a couple of giant complex reservoirs (over tens 

of millions of uncertain model parameters including geologic facies), demonstrating the robustness and 

superior performance of the ensemble methods for assisted history matching.  

Recent research in reservoir characterization has shown an upward tendency of integrating multiple 

sources of geophysical data (e.g., time-lapse seismic and electromagnetic (EM) measurements), 

together with well production data (e.g., well rates and pressures), to enhance the fidelity of estimated 

reservoir models (Katterbauer et al., 2016; Liang et al., 2016). The motivation behind the joint 

integration of multiple datasets is to exploit the complementary nature of different data types in 

recovering reservoir properties and principal structures. For instance, complementary to the production 

data that typically have limited spatial coverage while high temporal frequency, time-lapse seismic and 

EM data possess much higher spatial resolution with additional information about dynamic changes far 

from well locations in the reservoir. Moreover, cross-well seismic and EM techniques, reaching deep 

into the reservoir and mapping formation resistivity between wells, fill an intermediate resolution gap 

between well logs and surface measurements (Al-Ali et al., 2009). The field studies from Marsala et al. 

(2017, 2008) reported that cross-well EM tomography was able to produce useful interwell resistivity 

and saturation mapping even at widely-spaced wells.  

Compared to commonly used production data for history matching, the integration of geophysical 

data exhibits some distinctive features, including embedded large uncertainty that arises from the 

perplexing acquisition-processing-interpretation process, multiple levels at which the associated 

geophysical attributes can be integrated, and large dimensions. Taking the EM data for example, one 

has the option to history match raw EM data (after necessary data processing), inverted resistivity (from 

geophysical inversion), or interpreted saturation (from petrophysical inversion). No matter which level 

of data is selected, however, the effective exploitation of the characteristics of each data form and the 

proper quantification of the involved uncertainty are the key to convert the data information into valid 

model calibration. 

Inspired by the interpretive nature of geophysical data, feature-oriented history matching approach 

aims to calibrate reservoir models to match the features or patterns detected from the original data. The 

feature may refer to a geometric extraction of spatial changes in saturation, acoustic impedance, or 

resistivity interpreted from seismic and EM measurements. When the features of interest can be 

consistently extracted, they usually retain the essential information contained in the original data. 

Besides, higher computational efficiency can be achieved because the feature space typically has much 

lower dimensions than the original data space. Leeuwenburgh and Arts (2014) introduced a distance 

parameterization of seismic anomalies due to saturation effects in terms of front positions. It turned out 

that the distance parameterization approach was able to significantly reduce the number of data while 

still capture the primary information carried in the original data. Zhang and Leeuwenburgh (2017) 

further extended this approach from the perspective of image analysis, to improve its performance in 

dealing with more complex reservoir conditions. Obidegwu et al. (2017) proposed a binary approach 

for the integration of time-lapse seismic data. In this approach, converted binary seismic gas and water 

maps representing the ‘hardening’ and ‘softening’ signals from observed seismic data are history 

matched, using the current measurement metric minimized by an evolutionary algorithm. This feature-

based binary approach was indicated as a quick-look tool suitable for reservoir management. Zhang et 

al. (2020) examined the integration of cross-well EM data at different levels (measured magnetic-field 

responses and inverted formation conductivity) using ensemble methods on a synthetic channelized 

reservoir model. The numerical results showed that integrating the inverted resistivity field with the 

feature-oriented approach gave comparable performance as the direct integration of the original EM 

data under relatively ideal conditions. Zhang and Hoteit (2021) further extended the workflow to 

incorporate the joint seismic and EM inversion to reduce the interpretative ambiguities of inverted 

reservoir properties. From the perspective of dimensional reduction, some recent studies utilized 

techniques like wavelet transform (Luo et al., 2017),  dictionary learning (Soares et al., 2020), and local 

analysis (Soares et al., 2021) to handle big seismic data. Luo et al. (2018) proposed a correlation-based 

localization method to overcome some limitations of distance-based localization, and applied it to 

regularize seismic history matching of full Norne field model (Lorentzen et al., 2019). 
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Carbonate reservoirs typically have very complex geological structures and are characterized by 

flow dynamics primarily occurring in fractures. The intricate network of fractures as well as their 

interconnectedness may lead to unexpected flow patterns and uneven sweep efficiency. It is 

quintessential to integrate all available information to determine reservoir properties of both matrix and 

fracture, in order to accurately track the fluid front movement and optimize hydrocarbon 

production. Conditioning fractured reservoir models to dynamic data is still a challenging research area 

due to the inherent complexity of fracture distribution, involved physical modelling processes, and 

strong nonlinearity. Sun (2011) applied the EnKF to identify the fault network geometry using 

production data. A multipoint geostatistical modelling algorithm was used to generate the initial 

ensemble of fault network realizations. Fault network geometry was indirectly inferred from the updated 

permeability fields. Lu and Zhang (2015) proposed a Hough-transform-based parameterization method, 

to facilitate the history matching process of fracture distribution by transforming it into a Gaussian 

random field in the Hough space. Nejadi et al. (2017) presented an integrated approach for the history 

matching of fractured reservoirs, in which the parameters of a discrete fracture network (DFN) model 

were taken as the uncertain parameters and updated with the EnKF based on production data. Yao et al. 

(2019) developed a hierarchical approach for multiscale fracture characterization. The large-scale 

fractures were parameterized by the Hough-transform-based parameterization method and modelled 

by an embedded discrete fracture model. The small-scale fractures were represented by a truncated 

Gaussian field and modelled by a dual porosity dual permeability (DPDP) model. Zhang et al. (2021) 

recently proposed a parameterization method for the multiscale fracture network based on a deep sparse 

autoencoder (DSAE). The DSAE was trained to transform the fracture network to a low-dimensional 

latent variables, which were then conditioned to production data using an iterative ensemble smoother. 

In this study, we apply the developed feature-oriented ensemble history matching workflow to a 

realistic carbonate reservoir box model with a complex fracture channel network. A hybrid 

parameterization approach is used to represent the multiscale fracture distribution in which the spatial 

distribution of small-scale fractures is modelled by a truncated Gaussian simulation method. Over one 

million uncertain model variables including reservoir matrix and fracture properties as well as Archie’s 

parameters are conditioned to both production and time-lapse EM data. A modified bootstrap-based 

Kalman gain localization is proposed to regularize the model update, in order to reduce sampling errors 

and increase the number of degrees of freedom to match the large amount of data. Especially, data 

subspace projection is implemented to improve the computational efficiency of the localization in 

dealing with the large model and data dimensions. Particular attention is devoted to assessing the 

efficacy of the developed workflow in dealing with large-scale complex reservoir applications and the 

potential of cross-well EM data for enhanced characterization of naturally fractured carbonate reservoirs. 

 

Ensemble-based reservoir history matching 

 

History matching is known as the process in which unknown reservoir parameters are estimated to 

reproduce the observed historical dynamic responses. From a mathematical point of view, history 

matching is best described as an ill-posed large-scale inverse problem, whose solution space consists of 

numerous possible combinations of model variables matching the observations equally well. Therefore, 

it is valuable for a history matching workflow equipped with a proper assessment of uncertainty to 

facilitate the decision making on reservoir management and investment.  

Based on Bayesian statistics, the objective of ensemble-based history matching is to approximate 

the posterior probability distribution of uncertain model variables, by updating the samples from their 

prior probability distribution using available observations. In practice, the implementation of ensemble-

based history matching can be roughly divided into two stages. In the first stage, an initial ensemble of 

identified uncertain model parameters is generated based on available prior knowledge (e.g., well logs 

and seismic), typically via geological and geostatistical modelling. This is a critical step in the sense 

that the posterior solution lives in the subspace of the initial ensemble. It is therefore important to ensure 

that the initial ensemble represents the prior uncertainty properly. In the second stage, the generated 

model realizations are calibrated through a two-step assimilation process which consists of a forecast 

step and an analysis step. Because history matching is essentially a parameter estimation problem in 

which there are no time-varying state variables estimated. The forecast step usually involves only the 

forward simulation of observed responses using the current model estimate. In the analysis step, model 
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parameters are calibrated with a Kalman-type update equation in which the mean and the covariance 

are approximated by their ensemble estimates. The standard implementation of EnKF or ES without 

iteration has shown to be capable of dealing with some degree of nonlinearity. For strongly nonlinear 

problems, however, iterative extensions of these methods will be necessary in order to achieve 

reasonable results. 

In this study, we use an iterative ensemble smoother named as LM-EnRML developed by Chen and 

Oliver (2013), which has shown robust performance in coping with highly nonlinear history matching 

problems. The updating equation in the approximate form of LM-EnRML for the 𝑖th realization of 

model parameters 𝐦𝑖
ℓ with the iteration index ℓ (= 0, 1, …, Nℓ) is, 

 

𝐦𝑖
ℓ+1 = 𝐦𝑖

ℓ + ∆𝐌ℓ∆𝐃ℓT[(1 + λℓ)𝐈Nd + ∆𝐃
ℓ∆𝐃ℓT]

−1
𝐂
D

−
1
2[𝐝obs,𝑖  − 𝐠(𝐦𝑖

ℓ)] , (1) 

 

where 𝐂D is the observation error covariance matrix which is assumed to be diagonal (i.e., uncorrelated 

observation errors), and 𝐝obs,i is a vector of perturbed observations obtained by adding Gaussian noise 

of 𝒩(𝟎, 𝐂D) to the original observation vector 𝐝obs. The operator 𝐠(∙) denotes the forward model (e.g., 

flow simulator and rock physics relationship) relating the model parameters to predicted data, and 𝐈Nd  

represents the identity matrix of size Nd . The term λℓ  is the Levenberg-Marquardt (LM) tuning 

parameter, which controls both the step size and the search direction for each iteration. The deviation 

matrices ∆𝐃ℓ and ∆𝐌ℓ are computed by 

 

∆𝐃ℓ =
𝐂
D

−
1
2(𝐃ℓ − 𝐃ℓ̅̅̅̅ )

√Ne − 1
, ∆𝐌ℓ =

𝐌ℓ −𝐌ℓ̅̅ ̅̅

√Ne − 1
. (2) 

 

The matrices 𝐌ℓ  and 𝐃ℓ  denote the ensembles of model realizations {𝐦i
ℓ}
𝑖=1

Ne
 and corresponding 

simulated data {𝐠(𝐦𝑖
ℓ)}

𝑖=1

Ne
, respectively. The overlined counterpart represents the mean matrix, in 

which each column is identical and equal to the ensemble mean. The scalar Nd is the number of data, 

and the scalar Ne is the number of ensemble members. The detail of the tuning strategy of λℓ and the 

stopping criteria of the optimization used in the application are described in Appendix A.  

 

Carbonate reservoir box model 

 

The synthetic box model of a fractured carbonate reservoir is extracted and tailored from the 

geological model of an oil field. It has two horizontal wells that were drilled roughly parallel, 

approximately 1300 m far apart, although at different vertical levels. The reservoir has relatively high 

porosity while low matrix permeability. The production and recovery behavior is dominated by a 

multiscale fracture network as shown in Figure 1, which causes uneven water advancement with 

flooding predominantly taking place in high permeable fracture corridors. The large-scale fracture 

channels (in blue) penetrate the entire reservoir section with a long horizontal extension. They impose 

a strong influence on the fluid flow. The distribution of small-scale fractures (in turquoise) is often 

lithology-related. For the regions where small-scale fractures densely develop, they may also affect 

subsurface flow dynamics and production behavior.  
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Figure 1 Multiscale Fracture network (in blue for large-scale fractures and turquoise for small-scale 

fractures) for the carbonate reservoir box model with horizontal injector (left) and producer (right). 

 

Relying on well data alone, it is difficult to detect oil patches in the interwell area for further 

production optimization. This motivates the use of cross-well electromagnetic (EM) tomography that 

provides additional information about subsurface conditions far away from the wells. In a crosswell EM 

survey, transmitters and receivers are placed in different wells and moved to log the entire survey depth 

interval. The transmitter generates a primary magnetic field that is sent into the formation at predefined 

frequencies (Wilt et al., 1995). The primary field induces a current in conductive formations, which 

then generates an opposing secondary EM field. The strength of the secondary field is proportional to 

formation resistivity. These generated magnetic fields are finally measured by the receivers. Through 

EM inversion, an interwell resistivity mapping can then be obtained, from which flooded areas can 

potentially be identified by virtue of considerable resistivity contrast between oil and salt water. 

A DPDP model is used to simulate fluid flow dynamics in the fractured carbonate reservoir box 

model. The simulation model has dimensions of 122 × 100 × 20, covering an approximate area of 3000 

× 2500 m2 with varying layer thickness ranging approximately from 3 to 5 m. The fluid system consists 

of two immiscible phases, oil and brine. There is an aquifer support with water influx from the west 

edge of the reservoir. The injector is under bottomhole-pressure control at 5600 psi, and the producer 

is on a liquid rate control at 9000 stb/d. Figure 2 shows the matrix porosity and log-transformed 

horizontal permeability fields of the reference reservoir model. 

 

                   

 (a)                                                                              (b) 

Figure 2 Matrix porosity (a) and log-transformed permeability (b) fields for the reference model. 

 

Synthetic production and time-lapse EM data are generated from the reference reservoir model. The 

production data include water and oil production rates, producer bottomhole-pressure, and water 

injection rate. The noise in the production data is assumed to be Gaussian with zero mean and standard 

deviations 50 psi for the producer bottomhole-pressure, 200 stb/d for the oil production rate, 100 

stb/d for the water production rate, and 500 stb/d for the water injection rate. The history matching 

period is 7 years during which the production data are collected every two months. Regarding the EM 

data, we focus on the resistivity fields that can be obtained from EM inversion in practice, but in this 

synthetic case they are generated directly from the reference reservoir model through rock physics 
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modeling. Archie's law (Archie, 1942) is used to quantify the relationship of formation resistivity to 

rock porosity and water saturation as: 

 

R𝑡 =  𝑎R𝑤𝜙
−𝑚S𝑤

−𝑛, (3) 
 

where R𝑡 and R𝑤 are formation and the brine resistivity, respectively. The terms 𝑎, 𝑚 and 𝑛 are known 

as Archie's parameters, whose values generally depend on the rock's properties (e.g., pore structure, 

cementation, and wettability). The brine conductivity 𝑅𝑤 is computed from an empirical relationship 

(Dresser, 1982), 

 

R𝑤 = (0.0123 +
3647.5

C𝑤
0.955 )

82

1.8T + 39
, (4) 

 

where C𝑤 represents the salt concentration (in ppm), and T denotes the formation temperature (in ℃). 

The rock physics model is linked to the fluid flow simulator from which the distributions of S𝑤 and C𝑤 

are provided. The concentration of salt in the injected water is 17.52 lb/stb. Table 1 shows the values 

of the parameters in the rock physics model used for the reference reservoir model. Within the fracture 

network in the DPDP model, the resistivity is computed based on the averages between matrix and 

fracture properties using Archie's law. 

 

Table 1 Input values of the parameters in the rock physics model. 

𝑎 𝑚 𝑛 T 

1 1.8 1.8 80 ℃ 

 

Resistivity fields at Year 1 and Year 7 from the reference reservoir model are collected. Considering 

the interpretive capability of cross-well EM data and associated inversion in practice, a subdomain 

enclosing the interwell region and the adjacent area surrounding well trajectories is defined to extract 

valid volume of resistivity from the full field as shown in Figure 3(a). Then, a 2D resistivity map is 

obtained from the extracted resistivity cube through simple vertical averaging. Figures 3(b) and 3(c) 

show the corresponding reciprocals of resistivity (namely, conductivity) maps at Year 1 and Year 7 that 

are used as the observations for history matching. The high resistivity contrasts illuminate water influx 

from the aquifer connected to the west edge of the reservoir and flooded areas by the injected water. 

Time-lapse changes of resistivity reflect the fact that the injected water preferentially flows through the 

more permeable fracture corridors to the producer. 
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(a) 

                
(b)                                                                              (c) 

Figure 3 Cross-well EM data for history matching: (a) subdomain (in brown) defines the valid volume 

of resistivity from which 2D resistivity maps are computed, (b) reciprocal of resistivity (i.e., conductivity) 

map at Year 1, (c) reciprocal of resistivity map at Year 7. 

 

Parameterization and initial ensemble sampling 

 

The identified uncertain model variables for history matching include matrix porosity (MPORO), 

matrix permeability (in x- and z-directions, i.e., MPERMX and MPERMZ), fracture porosity (FPORO), 

fracture permeability (in x- and z-directions, i.e., FPERMX and FPERMZ), cementation exponent 𝑚 

and saturation exponent 𝑛 in Archie's law. To model the prior uncertainty of reservoir matrix properties, 

facies modeling is implemented first to capture the geological heterogeneity with a multipoint-based 

geostatistical algorithm (Strebelle, 2012). Subsequently, conditioned on the generated realizations of 

geological facies, realizations of matrix porosity and permeability are generated with a sequential 

Gaussian simulation in which variogram models are estimated from well logs. Figure 4 shows two 

sample realizations of matrix porosity and permeability in Layer 1 of the simulation model. 
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Figure 4 Two sample initial realizations in Layer 1 for reservoir matrix properties: MPORO, MPERMX 

and MPERMZ. 

 

A hybrid parameterization approach is applied to parameterize the uncertainty of multiscale fracture 

network. For large-scale structures, their location is assumed to be identified, for instance, from seismic 

data and well logs (Souche et al., 2012), but the porosity and permeability within the large-scale 

fractures are assumed to be uncertain. These properties are distributed uniformly and drawn from 

uniform distributions with the ranges of [0.01, 0.07] for FPOROL, [500, 5000] mD for FPERMXL, and 

[1, 5] mD for FPERMZL. The corresponding large-scale fracture properties of the reference reservoir 

model take values of 0.04, 3669 mD, and 1.67 mD, respectively. For small-scale fractures, a truncated 

Gaussian simulation (TGS) method is used to capture their spatial distribution (Dowd et al., 2007; Yao 

et al., 2019). The location of small-scale fractures is represented by a Gaussian random field (𝒢), which 

is defined as an indicator (Ι) for the spatial distribution of the fractures,  

 

Ι(𝑥, 𝑦, 𝑧) = {
1 (fractured region), if 𝒢(𝑥, 𝑦, 𝑧) >   𝜏        

0 (nonfractured region), if 𝒢(x, 𝑦, 𝑧) ≤ 𝜏  
, (5) 
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where 𝜏 is a threshold value and set to be 0.5 in the experiment. By conditioning the Gaussian random 

field to the observations, we can therefore update the location of the small-scale fractures accordingly. 

Figure 5 shows a couple of sample realizations of the distribution of small-scale fractures via TGS. The 

porosity and permeability within the small-scale fractures are distributed uniformly and sampled from 

uniform distributions with the ranges of [0.01, 0.04] for FPOROS, [50, 1000] mD for FPERMXS, and 

[1, 10] mD for FPERMZS. The corresponding small-scale fracture properties of the reference reservoir 

model take values of 0.02, 325 mD, and 3.5 mD, respectively. Archie's parameters 𝑚 and 𝑛 are sampled 

from uniform distributions as well with a range of [1.4, 2.4]. As a result, an ensemble of 100 realizations 

of the considered model variables is generated to represent the prior uncertainty in the model. The total 

number of model parameters considered in the experiment is over one million. 

 

              

Figure 5 Two sample initial realizations in Layer 1 for the distribution of small-scale fractures (in 

black). 

 

Feature-oriented integration of resistivity maps 

 

Although the number of EM data has been greatly reduced by the use of the 2D resistivity maps as 

shown in Figure 3, the compressed number of data is still big, over 10,000. Moreover, the magnitudes 

of individual grid blocks in the resistivity map from EM inversion often involve large uncertainty that 

is difficult to quantify. Therefore, to circumvent these difficulties resulted from the direct integration, 

we instead utilize the shape information of reproduced features in the resistivity maps by employing a 

distance parameterization (Zhang and Leeuwenburgh, 2017) combined with the ensemble assimilation 

methods. 

For the resistivity map, the feature of interest is related to the shape of resistivity anomalies, which 

are induced by saturation changes and the inherent high resistivity contrast between oil and salt water. 

To extract associated features coherently from the resistivity maps, we adopt a simple image 

segmentation procedure involving spatial smoothing and thresholding. Figure 6 shows the extracted 

shapes (in red contours) from the smoothed reciprocals of resistivity maps with a threshold value of 0.1. 

The positions of these extracted contours will be then used as the observations for history matching. 
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(a)                                                                         (b) 

Figure 6 Smoothed reciprocals of resistivity maps at Year 1 (a) and Year 7 (b) from which the contours 

(in red dots) of anomalies are extracted with a threshold value of 0.1 for history matching. 

 

To quantify the difference between ‘observed’ and simulated contours of resistivity anomalies, we 

select the scheme termed as LHDC (local Hausdorff distance based on contour) in Zhang and 

Leeuwenburgh (2017). Let matrices 𝐈𝑜𝑏𝑠 and 𝐈𝑠𝑖𝑚 denote the binary images (0 for the background and 

1 for the contour) corresponding to the observed contour 𝐜𝑜𝑏𝑠  and the simulated contour 𝐜𝑠𝑖𝑚 , 

respectively. In the LHDC, the difference between two contours is measured by, 

 

LHDC(𝐜𝑜𝑏𝑠 , 𝐜𝑠𝑖𝑚) = 𝐈𝑜𝑏𝑠 ∘ 𝐃𝑠𝑖𝑚 + 𝐈𝑠𝑖𝑚 ∘ 𝐃𝑜𝑏𝑠, (6) 
 

where 𝑫𝑜𝑏𝑠 and 𝑫𝑠𝑖𝑚 are the corresponding distance maps for the contours 𝒄𝑜𝑏𝑠 and 𝒄𝑠𝑖𝑚, respectively. 

There exist readily available algorithms to compute these distance maps efficiently such as the fast 

marching methods (Gillberg et al., 2012; Zhang and Leeuwenburgh, 2016). The value at each location 

of a distance map measures the distance from this location to the nearest location on a contour in the 

binary image. Briefly speaking, the difference of the contours in the LHDC is quantified by the sum of 

two directed distance maps in complementary directions, 𝑰𝑜𝑏𝑠 ∘ 𝑫𝑠𝑖𝑚(distance from 𝒄𝑠𝑖𝑚 to 𝒄𝑜𝑏𝑠) and 

𝑰𝑠𝑖𝑚 ∘ 𝑫𝑜𝑏𝑠 (distance from 𝒄𝑜𝑏𝑠 to 𝒄𝑠𝑖𝑚). After applying the LHDC, the observed feature is converted 

to zero distance map, i.e., 𝒅𝑜𝑏𝑠 = 𝐿𝐻𝐷𝐶(𝒄𝑜𝑏𝑠, 𝒄𝑜𝑏𝑠) = 𝟎 and the simulated feature is converted to the 

dissimilarity distance map, i.e., 𝒅𝑠𝑖𝑚,𝑗 = 𝐿𝐻𝐷𝐶(𝒄𝑜𝑏𝑠 , 𝒄𝑠𝑖𝑚,𝑗). The reparametrized distance data are 

then assimilated by the LM-EnRML. Uncorrelated distance-measurement errors are assumed with a 

standard deviation of one grid block length. A more complete description of the distance 

parameterization method can be found in Zhang and Leeuwenburgh (2017). 

 

Kalman gain localization 

 

It is usually necessary to apply some type of regularization when the ensemble methods are used for 

history matching. The regularization is implemented basically for two reasons. The first is to reduce the 

impact of spurious correlations that may result in over-reduction of ensemble variability or even 

collapse, and the second is to increase the number of degrees of freedom in order to fit the data when 

its number is much larger than the ensemble size. In this study, we use an adaptive Kalman gain 

localization method introduced by Zhang and Oliver (2010). This localization method utilizes bootstrap 

sampling to assess the confidence level of each element in the Kalman gain matrix, so that the real and 

the spurious correlations can be discriminated. One advantage of the bootstrap-based localization over 

the distance-based localization is its easy adaption to the cases involving multiple types of model 

variables, in which the selection of distance functions can be complicated or even intractable for some 

model variables (like the Archie’s parameters considered here). As will be described below, the 

bootstrap-based screening also allows the flexibility to implement the localization in the reduced data 

subspace, which expediates the computation significantly when the model and data dimensions are very 
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large. In the standard implementation, the localized Kalman gain is obtained by multiplying the original 

Kalman gain with a localization matrix 𝐋  

 

𝐊𝑙𝑜𝑐 = 𝐋 ∘ {∆𝐌ℓ∆𝐃ℓT[(1 + λℓ)𝐈Nd + ∆𝐃
ℓ∆𝐃ℓT]

−1
}

⏞                          
Kalman gain 𝐊

, (7)
 

 

where the operator ∘ represents the element-wise multiplication. Each element of 𝐋𝑖𝑗 in the localization 

matrix is computed as 

 

𝐋𝑖𝑗 = [1 + 𝐑𝑖𝑗
2 (1 +

1

𝛾2
)]
−𝟏

, wherein 𝐑𝑖𝑗
2 = 

∑ (𝐊𝑖𝑗
𝑙 − 𝐊𝑖𝑗)

2Nb
𝑙=1

Nb ∙ 𝐊𝑖𝑗
2 , (8) 

 

for 𝑖 = 1, 2, … , N𝑚, 𝑗 = 1, 2, … , Nd. The term 𝐊𝑖𝑗
𝑙  represents an element in the 𝑙th bootstrapped sample 

of the Kalman gain matrix, and Nb  denotes the number of bootstrapped samples. More 

implementational detail about the bootstrap sampling of the Kalman gain is given in Appendix B. Our 

experience from the conducted experiments indicates that setting Nb = 50 is sufficient to ensure the 

screening performance of the bootstrap-based localization.  

The computational cost of the bootstrap-based localization depends on the dimensions of the Kalman 

gain matrix. It becomes expensive when the number of data is large. To improve the computational 

efficiency, we first project the data onto its subspace and then implement the bootstrap-based Kalman 

gain localization in the projected data space. The projection is achieved via a truncated singular value 

decomposition of ∆𝐃ℓ as 

 

∆𝐃ℓ  = 𝐔𝑝
ℓ  𝐖𝑝

ℓ𝐕𝑝
ℓT, (9) 

 

where 𝑝 is the number of singular values retained after truncation (𝑝 ≤ Ne − 1, 99% energy retained in 

this study) and the dimensions for the matrices 𝐔𝑝
ℓ , 𝐖𝑝

ℓ , and 𝐕𝑝
ℓ  are Nd × 𝑝 , 𝑝 × 𝑝 , and Ne × 𝑝 

respectively. Taking Eq. 9 back in Eq. 1, the updating formula becomes 

 

δ𝐦𝑖
ℓ = ∆𝐌ℓ(𝐔𝑝

ℓT∆𝐃ℓ)
T
[(1 + λℓ)𝐈𝑝 + 𝐖𝑝

ℓ2]
−1

 ⏟                        
effective Kalman gain 𝐊𝑒𝑓𝑓

𝐔𝑝
ℓT𝐂

D

−
1
2[𝐝obs,𝑖  − 𝐠(𝐦𝑖

ℓ)] ⏟                
effective innovation

. (10) 

 
This reformulation was first introduced by Chen and Oliver (2017). In Eq. 10, the original Kalman gain 

𝐊 of dimensions Nm × Nd is replaced with the effective Kalman gain 𝐊𝑒𝑓𝑓of dimensions Nm × 𝑝. In 

the case of 𝑝 ≪ Nd, a significant reduction of the computational cost can therefore be achieved when 

implementing the bootstrap-based localization in the data subspace spanned by the columns of 𝐔𝑝
ℓT, i.e.,  

 

𝐊𝑒𝑓𝑓,𝑙𝑜𝑐 = 𝐋 ∘ {∆𝐌ℓ(𝐔𝑝
ℓT∆𝐃ℓ)

T
[(1 + λℓ)𝐈𝑝 + 𝐖𝑝

ℓ2]
−1

} . (11) 

 

In Eq. 8, the degree of screening to spurious correlations is controlled by the weighting factor 𝛾, 

which also precludes the estimate of 𝐋 from taking negative values. The value of 𝐑𝑖𝑗
2  indicates the 

reliability of the correlations present in the matrix of Kalman gain. Obviously, smaller values of 𝐑𝑖𝑗
2  (or 

equivalently larger values of 𝐋𝑖𝑗 ) will impose less screening on the corresponding elements in the 

Kalman gain, therefore indicating more reliable correlations of the related model variable with the data, 

and vice versa. Intuitively, we can penalize unreliable correlations (large 𝐑𝑖𝑗
2 ) in the Kalman gain by 

decreasing the value of 𝛾, so that the confidence factor 𝐋𝑖𝑗 gets smaller value close to 0. By doing so, 

however, it will also slow down the convergence rate resulting in more iterations required. In Zhang 

and Oliver (2010), a single value of 𝛾 was used. However, one drawback of using a single value of 𝛾 is 

that it is not straightforward to select a suitable value of 𝛾 to balance the tradeoff between the reduction 
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of spurious correlations and the computational cost. To overcome this difficulty, we propose to adapt 

the value of 𝛾  to each confidence factor 𝐋𝑖𝑗  in a heuristic fashion by using a Gaussian-type taper 

function as 

 

𝛾𝑖𝑗
2 = 𝛼 exp (−

𝐑𝑖𝑗
2

𝛽2
) , (12) 

 

where 𝛼 defines the maximum value of 𝛾𝑖𝑗
2  (i.e., 𝐑𝑖𝑗

2  = 0) and 𝛽 controls the decaying rate of 𝛾𝑖𝑗
2  with 

increasing variance 𝐑𝑖𝑗
2 . Figure 7 shows how the value of 𝛾𝑖𝑗

2  changes when 𝛼 and 𝛽 take different 

values. The main idea of the adaptive tapering for the weighting factor 𝛾 is to apply less screening on 

the more reliable elements (small 𝐑𝑖𝑗
2 ) while still reducing the effect of the unreliable elements (large 

𝐑𝑖𝑗
2 ) in the Kalman gain. In this study, 𝛼 = 0.6 and 𝛽 = 0.3 (red solid line in Figure 7) are selected based 

on trial and error. Our experience indicates that selecting 𝛼 ∈ [0.5, 1] and 𝛽 ∈ [0.25, 0.35] usually gives 

relatively robust performance.  

 

 

Figure 7 Gaussian-type taper function with different settings of input parameters, among which 𝛼 = 

0.6 and 𝛽 = 0.3 (red solid line) are selected for the experiment. 

 

Results and discussions 

 

A pair of comparative experiments with separate use of production and EM data were first conducted 

to examine the information contained in each type of data for the characterization of uncertain model 

parameters. Figure 8 shows the reduction of production data mismatch (in log-transformed scale) and 

the distribution of RMSEs of updated ensemble members of model parameters along with iterations. 

The RMSE is given by 

 

RMSE =  [∑(𝐦i,j −𝐦t,j)
2
/

Nm

j=1

Nm]

1/2

, (13) 

 

where i denotes realization number, j denotes element index, and t represents reference model property. 

In general, the smaller the RMSE is, the closer the corresponding updated model parameters get to the 

reference ones. In the case of only production data assimilated, the main improvement in the model 

update comes from the horizontal permeability for both large-scale and small-scale fractures 

(FPERMX), while the RMSEs of the other model parameters are hardly reduced. This behavior is 

anticipated because of the high-permeable flow corridors formed by the fracture network, which plays 

a dominant role in the production of associated wells. The result also indicates that for fractured 

carbonate reservoirs, due to the involved geological complexity and large uncertainty, it is necessary to 
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assimilate more types of available data to complement  the limited information content of production 

data for better characterization of reservoir properties.   

 

   

 

  

Figure 8 Boxplots of data mismatch (in log-transformed scale) and the RMSEs of model parameters 

during the iteration using production data only. The bounds of the box are 25% and 75% quantiles, the 

whiskers are the extremes, the line in the box is the median, the dot is mean, and the pluses are outliers. 

 

Figure 9 shows the result of data mismatch and the RMSEs of the updated ensemble of model 

parameters during the iteration, when only EM data from Year 1 are history matched. Compared with 

the previous case when only production data are assimilated, the overall performance on the model 

improvement is significant. There is a pronounced and consistent reduction of the RMSE for most of 

the updated model variables along with iterations. The result also illustrates the rich information content 

of the EM data and the efficacy of the feature-based integration approach that captures the essential 

information contained in the original data. For easy comparison, Table 2 summarizes the mean and 

standard deviation of the RMSEs of the final ensembles of model variables for all considered cases.   
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Figure 9 Boxplots of data mismatch (in log-transformed scale) and the RMSEs of model parameters 

during the iteration using EM data only (Year 1). The bounds of the box are 25% and 75% quantiles, 

the whiskers are the extremes, the line in the box is the median, the dot is mean, and the pluses are 

outliers. 

 

Table 2 Statistical summary (mean  standard deviation) of the RMSEs of the final ensembles of model 

variables for all cases.  

 Archie - m Archie - n MPORO MPERMX MPERMZ FPOROL 

Production only   0.053  0.002 22.94  1.55 151.8  10.6 0.016  0.003 

EM only 0.068  0.049 0.052  0.041 0.042  0.001 16.32  0.31 108.7  2.1 0.013  0.001 

Joint 0.049  0.043 0.048  0.041 0.041  0.001 16.30  0.33 110.5  2.2 0.012  0.001 

 FPERMXL FPERMZL FPOROS FPERMXS FPERMZS  

Production only 447.1  202.3 1.97  0.11 0.009  0.006  281.2  210.4 2.64  1.86  

EM only 375.1  139.8 1.89  0.03 0.006  0.003 97.8  47.7 0.77  0.52  

Joint 390.6  91.6 1.88  0.03 0.005  0.003 114.1  49.2 0.81  0.64  
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As the above comparative experiments indicate, the EM data provide abundant additional 

information that complements the production data with the potential to improve the characterization of 

the considered model parameters. As a result, in the last experiment, both production and EM data 

(including Year 1 and Year 7 as in Figure 6) are assimilated using the feature-oriented ensemble history 

matching workflow.  

Figure 10 compares the distributions of the interpreted resistivity fronts (contours) from the forward 

simulation of the initial model ensemble and the final updated model ensemble after the joint 

production-EM history matching. Even though the initial distributions of resistivity fronts display large 

variation, the final distributions of resistivity fronts show a reasonable match to the reference ones. 

Meanwhile, a significant model improvement is achieved for updated model parameters after the joint 

history matching as shown in Figure 11. 

 

              

   (a) Initial – Year 1                                                (b) Initial – Year 7 

              

(c) Final – Year 1                                              (d) Final – Year 7 

Figure 10 Distributions of interpreted resistivity fronts or contours at two EM survey times before (a, 

b) and after (c, d) history matching. The grayscale indicates the count of occurrence of resistivity front 

at a location. The upper color map limit is mapped from 100 (the ensemble size) to 30 for better visibility. 
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Figure 11 Comparison of the RMSEs of model parameters before and after history matching. The 

bounds of the box are 25% and 75% quantiles, the whiskers are the extremes, the line in the box is the 

median, the dot is mean, and the pluses are outliers. 

 

Figure 12 displays the probability maps of the small-scale fractures in some layers before and after the 

history matching. The fracture distribution is obtained by truncating the Gaussian random fields from 

the initial and final updated ensembles. The probability map of the fractures is calculated by   

 

P𝑥,𝑦,𝑧
𝐹 = 

∑ 𝟏[𝒢(𝑥, 𝑦, 𝑧)]
N𝑒
𝑖=1

Ne
, (14) 

where 

 

𝟏[𝒢(𝑥, 𝑦, 𝑧)] =  {
1,  if  𝒢(𝑥, 𝑦, 𝑧) > 0.5

0,  if  𝒢(𝑥, 𝑦, 𝑧) ≤ 0.5 
. (15) 

 

It is clear to see from the initial probability maps in Figure 12 that the small-scale fractures occur 

basically uniformly across the reservoir for the initial ensemble. After history matching, the updated 

probability maps indicate that the final ensemble of updated model parameters captures the fracture 

distribution in the reference reservoir to a certain degree. For instance, the fracture probability in the 

central area of Layer 7 is reduced while it is retained in Layer 11, which is consistent with the reference 
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model. However, due to the limited information and intricate geological complexities, the 

characterization of the small-scale fractures is still poor in general.  

 

 

Figure 12 The distribution of small-scale fractures for the reference reservoir model (left), and the 

probability maps of the fractured area for the initial ensemble (middle) and the final updated ensemble 

(right). The upper color map limit is truncated for better visibility. 

 

Due to the inherent complexity in the characterization of fractured carbonate reservoir models, some 

simplification made in this study may be worth of future investigation for further improvement. Firstly, 

deterministic modeling of large-scale fracture network has been used in the experiment. However, to 

better quantify the uncertainty of fracture distribution and properties, an integrated stochastic modeling 

procedure of the fracture network might be more appropriate, for instance, through a DFN model 

(Nejadi et al., 2017, Maucec et al., 2020). Extension of the developed workflow with the integrated 

fracture modeling seems straightforward. Secondly, the uncertainty in the rock physics model is 

represented by Archie's parameters which are assumed to be uniform in the experiment. However, as 

pointed out by Hamada (2010), Archie's parameters can be heterogeneous and quite uncertain for some 

formations, especially carbonate rocks. Refining the parameterization and estimation of these 

parameters is therefore expected to enhance the performance of the developed workflow in 

characterizing complex reservoirs. 

 

Conclusions 

 

We showcased the application of a feature-oriented ensemble-based history matching workflow to 

a complex fractured carbonate model using production and cross-well EM data. The developed 

workflow expediates the conditioning of complex reservoir models to high-dimensional geophysical 

data, by combining a feature-based integration approach with a data subspace localization method. 

Instead of the direct integration of the inverted EM resistivity data, which are  often in high dimensions 

and noisy in amplitudes, the workflow assimilates the contour information interpreted from the EM 

resistivity field using an iterative ensemble smoother together with a distance parameterization. A 

modified bootstrap-based localization is proposed to regularize the iterative model update, in order to 

reduce the effect of sampling errors and increase the number of degrees of freedom. Due to the large 

dimensions of both model and data, the localization is implemented in a projected low-dimensional data 

subspace to improve the computational efficiency.  

A comparative case study was implemented to examine the added value of deep EM data in 

improving the characterization of fractured carbonate reservoirs using the developed workflow. The 

experimental results demonstrated the efficacy of the developed feature-oriented workflow for the 
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conditioning of realistic reservoir models to high-dimensional geophysical data. The comparative case 

study also illustrated the great potential of deep EM data for enhancing the characterization of complex 

carbonate reservoirs. 
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Appendix A. Tuning strategy of LM-EnRML 

 
Regarding the tuning strategy for λ, we follow a heuristic rule that initializes λ with a proper large 

value and gradually reduces it during the iteration. The rationale behind it is that a larger value of λ 
brings the search direction closer to the steepest descent direction with a smaller step size, which is 

beneficial to stabilizing the model update as the initial data mismatch is often very large. On the other 

hand, reducing the value of λ makes the algorithm closer to the Gauss–Newton algorithm, which may 

accelerate the convergence rate as the ongoing iteration approaches to the optimum solution. 

Specifically, the tunning strategy includes:  

(i) The starting value of λ0 is prescribed as the same order of magnitude as ∑ Sd(𝐦𝑗
0)

𝑁𝑒
𝑗=1 /(2Nd), 

in which the data mismatch Sd is defined by 

 

Sd(𝐦j) =  [𝐝obs − 𝐠(𝐦j)]
T
𝐂D
−1[𝐝𝑜𝑏𝑠 − 𝐠(𝐦𝑗)].  

 

(ii) When both the mean and the standard deviation of {Sd(𝐦𝑗)}𝑗=1
Ne  decrease, the value of λℓ is 

reduced by a factor of 10 (i.e., λℓ+1 = λℓ/10).  

(iii) When only the mean of {Sd(𝐦𝑗)}𝑗=1
Ne  decreases, the value of λℓ is unchanged.  

(iv) When the mean of {Sd(𝐦𝑗)}𝑗=1
N𝑒  increases, the current model update is rejected and the value 

of λℓ is enlarged by a factor of 10 (i.e., λℓ+1 = 10 × λℓ).  
As to the stopping criteria, the iteration stops once the number of iterations exceeds a predefined 

maximum value of 15, or the reduction of the mean of {S𝑑(𝐦𝑗)}𝑗=1
Ne  between two successful adjacent 

iterations is less than 1%. 

 
Appendix B. Bootstrap sampling of Kalman gain 

 
Algorithm - Bootstrap sampling of Kalman gain 

1. Set a random seed (for experimental repeatability) 

2. Start bootstrapping at the ℓth iteration of LM-EnRML: 

for   𝑙 = 1  to  Nb  do 

randomly resample  Ne ensemble members with replacement from 𝐌
ℓ
 

compute 𝐊𝑙 according to Equation 7 or 11 using the resampled ensemble 

end 

 


