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Abstract

Oil spills at sea pose a serious threat to coastal environments. Identifying oil pollution sources

could help to investigate unreported spills, and satellite imagery can be an effective tool for this

purpose. We present a Bayesian approach to estimate the source parameters of a spill from contours

of oil slicks detected by remotely sensed images. Five parameters of interest are estimated: the

2D coordinates of the source of release, the time and duration of the spill, and the quantity of oil

released. Two synthetic experiments of a spill released from a fixed point source are investigated,

where a contour is fully observed in the first case, while two contours are partially observed at two

different times in the second. In both experiments, the proposed method is able to provide good

estimates of the parameters along with a level of confidence reflected by the uncertainties within.

Keywords: Oil spills, Source identification, Remotely sensed imagery, Bayesian estimation,

Markov chain Monte Carlo, Uncertainty quantification

1. Introduction

Seas around the world are experiencing a growth in maritime traffic. In fact, ship traffic has

witnessed a fourfold increase between 1992 and 2012 (Tournadre, 2014). As such, oil discharge

from ships at sea is becoming more frequent. Offshore platforms and pipelines are other sources

contributing to the annual release of petroleum to the sea (National Research Council, 2003).5

Whether accidental or deliberate (through bilge dumping, for example), spill events pose a great

threat to the coastal environment, and may cause considerable economic losses to marine activities
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disrupted by the pollution. To control and limit spills, it is essential to identify pollution sources,

and satellite imagery can be an effective tool for this purpose. A similar framework would be

also useful to determine the source of hydrocarbon marine seepage, from resulting surface slicks10

(Mityagina & Lavrova, 2016), for oil and gas exploration, and to backtrack other marine pollutants.

Various methods have been proposed to model the dispersion of pollutants (or tracers in general)

in the ocean, following both Eulerian (e.g., Mouchet et al., 2016) and Lagrangian (e.g., Villa et al.,

2015) approaches. Lagrangian particle tracking (LPT) methods are among the most commonly15

used, in which tracers are modeled by Lagrangian particles, whose trajectories are determined by

a velocity field represented on an Eulerian grid (Van Sebille et al., 2018). Depending on the appli-

cation, different modules can be built on top of LPT models to simulate a specific process, such as

weathering (e.g., evaporation, emulsification, etc.) in oil spill models (Spaulding, 2017), leeway drift

in search and rescue applications (Breivik et al., 2013), and larval reaction in transport models of20

plankton (Batchelder et al., 2002), among others. LPT models require as input a set of parameters

that characterize the release conditions of a polluting event, including the location of the source, the

time and duration of the spill and the quantity of pollutant released. Given these source parameters

that we henceforth group in a vector θ, the state and final location of the Lagrangian particles can

be predicted by solving a forward problem that models the dispersion of a spill. In this work, we25

are interested in the solution of the inverse problem, that is the estimation of the source parameters

of the spill from observations of oil pollution.

Backward tracking, or reverse-time trajectory modeling, has been proposed to identify the source

of pollutants. In this approach, particles are released from a location where pollution is observed30

(final location from a forward-modeling point of view) and advected within a time-reversed flow

field. Diffusion is often enabled in the backward mode and particles are treated as samples of dif-

ferent realizations of the source location (Batchelder, 2006). The results are presented in the form

of probability or likelihood maps of particular locations being sources. Backward tracking has been

employed in oil spill contingency planning to generate probability maps of locations, from which35

oil might reach high-valued coastal regions within a certain time (e.g., Torgrimson, 1981; Galt &

Payton, 1983; Ciappa & Costabile, 2014). The method has been also used to identify sources of

plankton (e.g., Batchelder, 2006), backtrack satellite-detected oil slicks (e.g., Zodiatis et al., 2012),
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locate the origin of tar balls (e.g., Suneel et al., 2016), identify the sources of ocean litter (e.g., Ko

et al., 2018) and determine the site of an airplane crash (e.g., Eichhorn & Haertel, 2016), among40

other applications. Some attempts have been made to enhance the estimation of the source location

within the backward model. Isobe et al. (2009) proposed the two-way particle tracking method to

reduce the number of source candidates. Thygesen (2011) presented a Bayesian approach to time

reversal in stochastic particle tracking, in which a correction is added to the flow in the backward

mode, to account for prior information about the source. El Mohtar et al. (2018) proposed a new45

method for backward tracking in stochastic flow fields generated within an ensemble data assim-

ilation framework. Their method allows to take the uncertainties in the flow field into account,

while controlling the exponential growth in the number of particles that arises from describing the

behavior of the velocity over time as a set of possible combinations of the different realizations of

the flow field.50

Despite being straightforward to apply, backward tracking has some limitations. The method

relies on observations of the location of pollutants at a given time, but cannot incorporate other

available observations. As Thygesen (2011) pointed out, an issue that deserves development is the

simultaneous backtracking of multiple particles and continuous fields. Another important limitation55

is that most of the processes that the particles undergo are time-irreversible, and thus, modules

developed on top of forward trajectory models, which simulate such processes (e.g., oil weathering

processes), cannot be included in the backward mode (Thygesen, 2011; Breivik et al., 2012). The

method is also limited to the estimation of only the source and time of release. A more general

method that relies on forward LPT models along with application-specific modules to estimate60

source parameters would be more appealing. Attempts have been made to use the forward model

and take advantage of already-existing modules developed specifically for the application at hand.

Banas et al. (2009) employed a forward LPT model that simulates larval behavior to determine

crab larval retention in a bay. The end locations of the larvae were mapped to their release lo-

cations via lookup tables obtained from the forward model runs. Breivik et al. (2012) used an65

iterative seeding-and-selection algorithm with a (forward) trajectory model to determine the origin

of a leeway-drifting object (e.g., a lifeboat). The iterative process allows to retain only the particles

that fall within a certain time-space distance of the observation. Gautama et al. (2016) solved a

minimization problem of the level-set distance between observed and modeled oil contours, using a
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forward trajectory model, to estimate the source parameters of an oil spill.70

In environmental problems where observations are available in the form of concentration mea-

surements of a contaminant (or any other measured quantity), Bayesian inference and Markov chain

Monte Carlo (MCMC) techniques have been used to solve the inverse problem of source parame-

ters’ estimation. For instance, Delle Monache et al. (2008) employed a Bayesian approach along75

with MCMC sampling to estimate the source location and emission rate of a polluting event in the

atmosphere on a continental scale. Ait-El-Fquih et al. (2020) estimated five source parameters in a

groundwater pollution problem, using MCMC and a deterministic variational Bayesian approach.

Unlike backward tracking, a Bayesian approach allows the estimation of different parameters, other

than the source and time of release, along with parameters of the measurement error’s probability80

distribution. Moreover, reversing time is not needed since the forward model (or its surrogate (e.g.,

Marzouk et al., 2007; Marzouk & Najm, 2009; Sraj et al., 2013; Giraldi et al., 2017; Sraj et al.,

2017; Navarro et al., 2018)) is used within MCMC, which means any application-specific model can

be employed without any modification. Prior knowledge about the parameters of interest can be

further taken into account within the Bayesian framework, in the form of a probability distribution85

of those parameters. Finally, the method allows to quantify the uncertainties in the estimated

parameters, which reflects a level of confidence in the final solution. Given these advantages, we

propose in this work a Bayesian approach for the estimation of oil spill source parameters, from

observations of oil pollution.

90

Unlike observations in other environmental problems where pollution is measured by sensors at

specific locations, marine pollution is more effectively monitored from space, in the form of binary

images, or contours, that delineate the pollutant at the sea surface (Garcia-Pineda et al., 2009).

Those contours are obtained by segmentation of grayscale images captured by satellite-based syn-

thetic aperture radar (SAR) sensors. SAR sensors, however, are prone to speckle noise, which95

degrades the quality of the captured images, leading to an undesired granular aspect and a statis-

tical distribution with large standard deviation, even for a homogeneous area (Brekke & Solberg,

2005). As such, the observed oil contours (or binary images) are affected by this measurement

error, which introduces uncertainties into the observations. Moreover, depending on their field of

view, available SAR images do not always capture the whole area of a spill, which means that in100
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some cases parts of the contours are missed, and therefore, one has to rely on the observed parts

and deal with the problem of missing data. Nonetheless, observations at different times may be

available. To compare model simulations with observations, Lagrangian particles are sometimes

overlaid over images of oil slicks (e.g., Cheng et al., 2011; Xu et al., 2013). Gautama et al. (2016)

compared observed contours to modeled contours using a level-set method. They defined the mod-105

eled contours as the 85% highest-density contours (Haselsteiner et al., 2017) of the particles’ density

distribution obtained by kernel density estimation. In this study, we follow a similar approach to

that of Gautama et al. (2016), however, we define modeled contours as contour lines of computed

concentration fields, for a given concentration threshold. Given the oil density, this threshold is

related to the minimum thickness of oil that can be detected by SAR sensors, at the edge of an110

observed oil slick (Fingas & Brown, 2018), which is also an uncertain parameter. For comparison,

we employ a non-local metric (the global Hausdorff distance (Zhang & Leeuwenburgh, 2017)) to

measure the dissimilarity between the observed and modeled contours.

The difference in the type of observations (binary images or contours as opposed to quanti-115

ties such as concentrations) between marine pollution problems and classical Bayesian estimation

problems calls for the need to develop a new (statistical) observation error model, and a likelihood

function based on that model. Another contribution of this work is the introduction of such an

observation error model (i.e., a likelihood) in which observations are image contours and not mea-

sured quantities. We propose a likelihood function such that maximizing it amounts to minimizing120

the proposed dissimilarity measure between modeled and observed contours. The likelihood is then

used in a Bayesian framework along with MCMC sampling to infer the source parameters from

observed contours. To this end, we design synthetic experiments of an oil spill from a fixed point

source and conduct MCMC simulations to solve the Bayesian estimation problem of the source

parameters. We demonstrate the robustness of the method to noise in the observations and missing125

data.

The paper is structured as follows. Section 2 describes the LPT model used in the experiments.

Section 3 presents the proposed Bayesian approach and MCMC sampling technique. Section 4 de-

scribes two synthetic experiments designed to assess the relevance of the proposed method. Section130

5 presents and discusses the numerical results. Final conclusions are presented in Section 6.
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2. Model Description

We use a 2D advection-diffusion LPT model for illustration purposes. The developed Bayesian

machinery, however, is non-intrusive, and more complex models (or their surrogates) can be used

instead. This allows to take advantage of already-existing codes (or software) developed to model135

application-specific processes. The model we employ simulates the transport and spread of oil

on the sea surface without accounting for weathering processes. For a spill released from a fixed

point source, the model generates contours that delineate modeled oil slicks, from a computed

concentration field.

2.1. The LPT Model140

The LPT model is a 2D random walk model governed by the stochastic differential equation

dxp(t) = u(xp, t)dt+ σ(xp, t)Z
√

dt, (1)

where xp(t) is the position (xp, yp) of the particle p at time t, u(xp, t) is the deterministic part of

the flow field, corresponding to the mean Eulerian velocity field at the position xp(t) and time t,

and σ(xp, t)Z
√

dt is a stochastic term that represents turbulent diffusion, with σ(xp, t) a symmetric

positive definite diffusion tensor characterizing a random motion

σ =

√2Kx 0

0
√

2Ky

 , (2)

145

Kx and Ky being the diagonal terms of the eddy diffusivity tensor in the two-dimensional Fokker-

Planck equation (both set to 3 m2/s in this study), and Z is a zero-mean Gaussian noise with identity

covariance matrix. Equation 1 is solved for np particles using a first-order Euler integration scheme.

The time step is set to one hour, with 500 particles being released every time step, over the total

duration of the release.150

2.2. Concentration and Contours

The concentration C of a contaminant, at a given location x and time t, is estimated from the

Lagrangian particles by kernel density estimation (Yamada & Bunker, 1988), expressed as

C(x, t) =

np∑
i=1

γiφσ(x− xi), (3)
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where γi is the mass carried by particle i, φσ a radial basis function, and np the total number of

released particles. If we assume that all particles carry the same mass, we can write γi = q/np,

where q is the total mass of the released contaminant. We choose the bivariate normal distribution

(2D Gaussian) with variance σ2 as the basis function, i.e.,

φσ(x− x′) =
1

2πσ2
exp

(
−|x− x

′|2

2σ2

)
. (4)

We set the standard deviation σ as two times the maximum value of the set defined by the distance

between each particle and its closest neighbor at any given time (Beale & Majda, 1982a,b, 1985;

Knio & Ghoniem, 1990):

σ = 2×max
i

{
min
j

(|xi − xj |)
}
, i, j = 1, ..., np. (5)

The contour or front Γτ of a contaminant is obtained from the concentration field as the contour

line for a given value τ of the concentration. Given the density ρ of oil, this concentration threshold

defines the thickness of oil at the edge of a slick, which is given by the ratio τ/ρ. Information about

the minimum thickness of oil detected by SAR images (which is the thickness of oil at the edge155

of observed oil slicks) would help in this case to better tune this parameter. In the experiments,

however, and for the sake of illustrating the proposed method, we set τ = 10−5 kg/m2.

2.3. The Flow Field

A synthetic two-dimensional unsteady double-gyre flow is considered as the flow field that trans-

port the oil in our experiments. The stream function of the flow is given by

ψ(x, y, t) = A sin(πf(x, t)) sin
(
π
y

L

)
, (6)

where

f(x, t) = a(t)
( x
L

)2
+ b(t)

( x
L

)
, (7)

a(t) = ε sin(ωt) and b(t) = 1− 2ε sin(ωt), (8)

over the spatial domain [0, 2L]× [0, L]. The flow is stationary (steady) for ε = 0 and time-periodic

for ε > 0. The x and y components of the velocity, u and v, are derived from the stream function
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as

u = −∂ψ
∂y

= −πA
L

sin(πf(x, t)) cos
(
π
y

L

)
, (9)

v =
∂ψ

∂x
=

πA

L
cos(πf(x, t)) sin

(
π
y

L

)(
L
∂f

∂x

)
. (10)

In the experiments, we set L = 200 km, ω = 2π/T , where the period T of the flow is 7 days, ε = 0.25160

and A such that πA/L = 0.5 m/s. Snapshots of the flow field at t = 0, t = T/3 and t = 2T/3 are

shown in Figure 1.

3. Bayesian Estimation of the Source Parameters

3.1. Bayes’ Rule

Let θ = {θi : i = 1, ... nθ} and d denote the set of source parameters and the set of observations

(or data), respectively. In a Bayesian framework, the parameters are modeled as random variables of

prior probability distribution π(θ). The likelihood π(d|θ) reflects how closely the model prediction

matches d, given θ as input. The estimation of θ is achieved by evaluating the posterior distribution,

π(θ|d), which, based on Bayes’ rule, can be obtained by combining the information about the prior

and the likelihood (i.e., the “data”) as

π(θ|d) ∝ π(d|θ)× π(θ). (11)

In general, the posterior distribution does not have a closed form, and therefore, sampling strate-165

gies, such as MCMC methods, are needed to estimate the posterior distribution. Statistics of the

posterior (e.g., mode, mean, moments and credible intervals) can then be extracted, which help

quantify the uncertainties in the parameters estimation. Any (point) estimator of θ can then be

calculated, along with the associated uncertainties, based on the posterior distribution. Classical

estimators are obtained based on classical loss functions that quantify the error made in evaluating170

θ by its estimate. These include, the posterior mean, θ =
∫
θ π(θ|d) dθ, which is based on the

quadratic loss function, and the maximum a posteriori (MAP), θ̂ = argmax
θ

π(θ|d), which is based

on the zero-one loss function (Robert, 2007). In this work, we consider the MAP estimator.
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Figure 1: Snapshots of the flow field used in the experiments, at t = 0, t = T/3, and t = 2T/3.
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3.2. The Prior

Information about the inferred parameters, prior to the observations, is represented in the prior

probability distribution, π(θ). As is usually the case, we assume that the parameters are a priori

independent, i.e.,

π(θ) =

nθ∏
i=1

π(θi). (12)

For the sake of generality, we further assume that information about the parameters is limited and

choose non-informative priors, i.e., the marginal parameters follow uniform prior distributions over

pre-defined bounds, i.e.,

π(θi) =


1

bθi − aθi
for θi ∈ [aθi , bθi ],

0 otherwise.

(13)

Other probability laws (e.g., Gaussian, truncated Gaussian) can be used to model the prior if further175

information about the parameters is available (Ait-El-Fquih et al., 2020).

3.3. The Likelihood

As mentioned above, the likelihood π(d|θ) expresses the probability that the (LPT) model

output matches the observations, given θ as a set of source parameters. This probability distribution

is obtained by assessing the degree of mismatch (or dissimilarity) between the model prediction

and the observations d, based on a specified statistical relationship. In general, any metric (or

dissimilarity measure) can be used to measure the “distance” between the observed and modeled

contours, Γ and Γτ . We denote this metric by δ, i.e.,

δ = δ(Γ,Γτ ), (14)

and adopt the exponential distribution as the likelihood function in our problem. Hence,

π(Γ|θ) = Exp(δ;β),

=
1

β
exp

(
− δ
β

)
,

(15)

where β is the scale parameter of the distribution. Comparing contours for shape matching has

been widely used in the image recognition (and computer vision) community. Toyama & Blake

(2002) used the exponential distribution to model the likelihood function in a shape matching

problem. Gavrila (2007) further incorporated additional degrees of freedom by choosing the gamma
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distribution as the likelihood (which generalizes the exponential distribution). In the atmospheric

modeling community, a similar choice has been adopted in several studies (e.g., Jackson et al.,

2004; Qian et al., 2018), in which the likelihood is proportional to the exponential of the negative

of a scaled cost function. It is worth mentioning that, for a given β (the scale parameter of the

distribution), maximizing the likelihood π(Γ|θ) is equivalent to minimizing the mismatch δ between

Γ and Γτ . This is similar to the equivalence between maximizing the Gaussian likelihood

π(d|θ) ∝ 1

σν
exp

(
−|d− h(θ)|2

2σ2
ν

)
, (16)

and minimizing the squared error |d−h(θ)|2 in the classical measurement error model d = h(θ)+ν,

where h(θ) is the model prediction and ν ∼ Normal(0, σ2
ν).

180

For a set d of nd independent contours we obtain

π(d|θ) =

nd∏
i=1

Exp(δi;β),

=
1

βnd
exp

(
− 1

β

nd∑
i=1

δi

)
,

(17)

where δi is the distance from the ith observed contour Γi to the corresponding modeled contour

(Γτ,i), i.e., δi = δ(Γi, (Γτ,i)). The scale of the exponential distribution β (which is also its mean)

represents, on average, the distance between the observed and true modeled contours, for different

realizations of the observation error (which might be introduced by noise in SAR images affecting the

observed contours). In the case where a decent number of observations (contours) is available, β can185

be estimated as a hyper-parameter along with the inferred source parameters. In the experiments

presented here, we assume that β is known and set it to 100 km. This value was selected after

assessing the distribution of the distance between predicted contours and samples of (pseudo-)

observed contours generated as described in Section 4.

3.4. The Dissimilarity Measure190

To measure the dissimilarity (i.e., δ) between observed and modeled contours, Γ and Γτ , we

employ the global Hausdorff distance (GHD). As in Tillier et al. (2013), we define this non-local

metric as the L2 norm of the local Hausdorff distance (LHD), which is a 2D matrix:

GHD = L2(LHD). (18)
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The LHD was introduced by Baudrier et al. (2008) and is computed here as described in Zhang

& Leeuwenburgh (2017). A binary image of a certain shape (an oil slick for example), limited by

a contour, is defined as a matrix of zeros and ones, where the zeros are assigned to the matrix

elements (or pixels) lying outside of the shape (or the contour), and the ones are assigned to the

elements that are inside. Given two binary images, IA and IB , of two shapes, A and B, respectively,

the LHD between A and B is computed as

LHD(A,B) = |IA − IB | ◦max(DA, DB),

= max (|IA − IB | ◦DA, |IA − IB | ◦DB) ,

where ◦ is the element-wise multiplication, and max denotes the element-wise maximum operator.

DA and DB are distance maps of the shapes A and B. A distance map labels each pixel of

the (binary) image with the (Euclidean) distance to the nearest pixel in the shape. Zhang &

Leeuwenburgh (2017) also showed that the LHD can be constructed from two directed distance

maps as

LHD(A,B) = max(IB ◦DA, IA ◦DB),

= IB ◦DA + IA ◦DB ,

where IB ◦ DA represents the distance from A to B, and IA ◦ DB the distance from B to A (see

Figure 2).

3.5. Sampling the Posterior

To sample the posterior distribution, we employ the Metropolis-Hastings (MH) algorithm (Gilks

et al., 1995; Gelman et al., 2013), which is an MCMC technique in which samples collected from195

a distribution form a Markov chain. The posterior distribution can then be estimated from the

collected samples by means of kernel density estimation (Hill, 1985). Each iteration s = 1, ... ns of

the MH algorithm can be described by the following steps.

1. Suppose that the current state of the Markov chain is θ(s−1) = {θ(s−1)i : i = 1, ... nθ}. Draw a

candidate θ′ = {θ′i : i = 1, ... nθ} from a Gaussian distribution centered at the current state

θ′ ∼ Normal
(
θ(s−1),Σ

)
. (19)

2. Evaluate the posterior probability distribution π(θ′|d), or more precisely, π(d|θ′)× π(θ′).

12
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Figure 2: Schematic illustrating the process of obtaining the local Hausdorff distance from the binary images of two

shapes A and B.
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3. Calculate the acceptance probability

r = min

(
1,

π(θ′|d)

π(θ(s−1)|d)

)
. (20)

4. Draw a sample α from a uniform distribution between 0 and 1, i.e., α ∼ Uniform(0, 1).200

5. The new state θ(s) is chosen as

θ(s) =

θ
′ if α < r,

θ(s−1) otherwise.

(21)

To prevent drawing samples from outside of the prior bounds, we use reflection at the boundaries

(Yang & Rodŕıguez, 2013; Thawornwattana et al., 2018). If a new value θ′i is proposed, such that

θ′i > bθi (θ′i < aθi), we reflect that value back to the interval [aθi , bθi ] to obtain the proposed value

θ′′i = bθi − (θ′i − bθi) (θ′′i = aθi + (aθi − θ′i)).

4. Numerical Experiments Design205

Two numerical experiments were carried out to assess the effectiveness of the proposed frame-

work. A total mass of qr = 100 tons of oil is first released at time tr = 0, over a period of dr = 3

days, from a fixed point source located at xr = 100 km and yr = 25 km, and transported by the

velocity field described in Section 2.3. In the first experiment (Exp. I), we assume that the oil

slick is observed at time to = 7 days, i.e., after ∆t = to − tr = 7 days from the time of the initial210

release. The observed contour Γ of the oil slick is extracted from the simulated oil concentration,

as described in Section 2.2. To mimic a realistic situation that includes the effect of speckle noise

and generate a “noisy” contour, we perturb the computed concentration field with an additive

zero-mean normally distributed noise. The noise has a standard deviation equal to the mean value

of the concentration field within the unperturbed contour Γτ , i.e., the subset bounded by Γτ of the215

unperturbed concentration field. The observed contour Γ is then obtained as the contour line of the

perturbed concentration field for the concentration threshold τ . Figure 3a shows the “observed”

contour Γ at day to = 7 (blue contour). The red curve represents the same contour before adding

the noise (i.e., Γτ ). The red dot marks the location of the source of release. The blue vectors

represent the flow currents at tr = 0, the time of the initial release.220
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The second experiment (Exp. II) considers the same setup as in Exp. I, but assumes that the

slick is observed at days to1 = 6 and to2 = 8. We further assume that the contours are partially

observed within a specific field of view. The goal of this experiment is to demonstrate how multiple

observations (in time) of parts of a moving slick can be used in the proposed method. The observed225

contours are displayed in Figure 3b along with the field of view represented by the red dashed

rectangle. The parts of the contours outside that rectangle are assumed to be unobserved (missing

data).
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Figure 3: Observations used in Exp. I (a) and Exp. II (b). The blue contours represent the edge of the slick observed

at to = 7 days in Exp. I, and to1 = 6 and to2 = 8 days in Exp. II. The red contours are modeled contours (without

noise), obtained based on the true (or reference) parameters. Observations in Exp. II are only available within a

field of view shown by the red dashed rectangle in b. The red dot marks the location of the source of release. The

blue vectors represent the state of the flow field at the time of release, tr = 0.

The proposed Bayesian inverse system is then implemented to infer the source parameters of230

the oil spill from the “observed” contours. We focus in particular on addressing the following

questions. Where did the release occur?, when did it start prior to the time when observations

became available?, for how long did the release last?, and how much oil was released overall?

Using the observations generated in each experiment, we infer 5 parameters that would enable us

to answer those questions; xr, yr, ∆t, dr and qr. For consistency, we choose tref = 7 days in235

the inverse problem as our reference point in time from which the time tr of release (which is to

be estimated) can be measured in both experiments. In this case, the time of release would be
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measured with respect to tref and not to the time of observation (to in Exp. I and to1 or to2 in Exp.

II), and hence, its reference value would be the same in both experiments, i.e., ∆t = tref − tr = 7

days. Table 1 shows the reference (or “true”) value and the bounds of the prior distribution, aθi240

and bθi , corresponding to each parameter θi.

Table 1: True (reference) values and prior bounds for each inferred parameter θi.

Inferred True Prior bounds

parameter θi Value aθi bθi

xr (km) 100 0 200

yr (km) 25 0 100

∆t (days) 7 5 9

dr (days) 3 1 5

qr (tons) 100 0 500

5. Results and Discussion

Exp. I

The posterior distribution π(θ|d) was sampled using the proposed MH algorithm. The number

of MCMC iterations was set to 10,000. Figure 4 shows the Markov chain obtained in the form of a245

trace plot. The blue line in each plot represents the samples of the parameter θi, whereas the red

horizontal line marks the reference value of the corresponding parameter. The chain mixes well and

explores the parameters’ space. This can be noticed from the frequently oscillating pattern of the

chain that samples around the reference values. The ratio of the newly accepted samples to their

total number, or acceptance rate, is 35%.250

For better representation of the posterior distribution, we ran 7 additional MCMC simulations

to obtain a total of 80,000 samples (see Gilks et al. (1995) for a discussion about the choice of the

number of chains). Each chain was initiated differently by sampling the initial state from the prior

distribution. Note that the simulations can be run in parallel on a multi-core processor. For burn-255

in, we discarded the first 500 samples of each chain. The remaining samples of the 8 chains were

then used as realizations of the source parameters to estimate the posterior distribution by means
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true (reference) parameter.
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of kernel density estimation (Botev et al., 2010; Botev, 2016). This resulted in a 5-dimensional

discrete probability distribution. For visualization, we extracted 2D slices of the posterior, in the

(xr, yr) space, for different values of the parameters ∆t, dr and qr. Figure 5 shows those 2D maps260

(slices) for ∆t = 5, 6, 7, 8 and 9 days, dr = 2, 3 and 4 days and qr = 50, 100 and 200 tons. The

red dot in each plot marks the true (xt, yt) location of the source of release, whereas the black

dot marks the point that has the highest posterior probability in each 2D map. The blue vectors

in the background show the flow pattern at the time of release corresponding to each map, i.e.,

at tr = tref − ∆t. The blue contour represents the observation that is available at to = 7 days.265

The black curve is the output of the LPT model for a release from the black dot, for ∆t, dr and

qr that correspond to each plot. Since our prior distribution is uniform, the value of the posterior

probability density function at a given point (xk, yk) in a 2D map, for which ∆t = ∆tk, dr = dk and

qr = qk, is proportional to that of the likelihood, and reflects the similarity between two contours:

the observed contour (shown in blue), and a modeled contour resulting from a hypothetical release270

at (xk, yk), simulated at ∆tk days prior to tref, and that lasted for dk days, during which qk tons of

oil were spilled.

For fixed values of dr and qr (looking at a single column of plots in Figure 5, for a constant

dr), the highest-probability point of a 2D map (i.e., the black dot) gets closer to the observation,275

along the streamlines of the flow, as ∆t decreases. In other words, if ∆t is small, there are higher

chances that the source would be closer to the observation, along the flow, than if ∆t is large. This

is related to the distance that the slick covers within ∆t, given the form of the ocean currents. For

fixed values of ∆t and qr, we notice that the larger the duration dr of the spill, the closer the black

dot is to the observed slick along the flow. If the duration dr is larger, the resulting slick is expected280

to be larger in size. Therefore, a better match between the modeled and observed slicks, in terms of

the Hausdorff distance, is obtained if the slicks are ‘centered.’ This happens if the source is closer

to the observation. An analogous interpretation can be made for the case when dr is small. Varying

qr, while dr and ∆t are fixed, does not seem to have an important effect on the position of the

black dot. In fact, changes in qr only affect the size of the slick, if all other parameters remain the285

same. The more oil is spilled (larger qr), the larger the size of the resulting slick, and vice-versa.

Varying qr has a similar effect as varying the concentration threshold τ of the contour (as well as

the thickness of oil at the edge of the slick). Increasing qr for instance, for a given concentration
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Figure 5: (xr, yr) maps (slices) of the 5D posterior probability distribution of Exp. I, for dr = 2 days, ∆t = 5, 6,

7, 8 and 9 days, and qr = 50, 100 and 200 tons. The red dot in each plot marks the true values of (xr, yr). The

black dot marks the (xr, yr) location that has the highest posterior probability in each 2D map. The blue contour

represents the observation, whereas the black contour is the model output of a hypothetical release from the black

dot, for values of dr, ∆t and qr corresponding to each plot. The blue vectors show the currents at the time of release

corresponding to each map, that is to − ∆t.
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Figure 5: Continued for dr = 3 days.

20



qr = 50 tons qr = 100 tons qr = 200 tons
∆
t

=
5

d
ay

s
∆
t

=
6

d
ay

s
∆
t

=
7

d
ay

s
∆
t

=
8

d
ay

s
∆
t

=
9

d
ay

s

Figure 5: Continued for dr = 4 days.
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threshold, would result in a slick similar in size to a one obtained for the same quantity qr but for

a smaller concentration threshold τ . Therefore, a strong negative monotonic relationship seems to290

exist between qr and the concentration threshold used to define a contour. This strong relationship

leads to an undetermined problem in the sense that it is difficult to infer both qr and the concen-

tration threshold together, since different combinations of the two parameters yield the same result.

A visual inspection of the different 2D maps allows us to determine the point that has the295

highest posterior probability (the MAP). This point, which we denote by A, is indicated as a black

dot in the plot corresponding to dr = 3 days, ∆t = 7 days and qr = 100 tons. In the same plot,

the red dot, which represents the true parameters (see Table 1), lies in a high-probability region

(close to point A), indicating that the method has successfully provided a good estimate of the

solution of the inverse problem. Another interesting observation is the good match between the300

blue and black contours in the plot at dr = 3 days, ∆t = 6 days and qr = 100 tons. This match is

reflected by the high posterior probability at the black dot in the same plot (which we will call B).

The high probability of that point, along with the close match between the two contours, suggest

that point B would be also a good estimate of the solution. A more informative prior in this case

would have helped to set the true parameters apart from other probable parameters. For instance,305

the estimated solution could have been improved if the prior had assigned more weight on earlier

times (i.e., larger ∆t’s). At this point, two sets of parameters associated to points A and B appear

to be good point estimates. A relevant question is whether an observation at a previous time

(before to = 7 days) would have helped to provide a better estimation by increasing the difference

in probability between point A (which is close to the true parameters) and point B, and present A310

as a unique point estimate. To answer that, we plot the contours resulting from the true parameters

and from point B (for which ∆t = 6 days, dr = 3 days and qr = 100 tons) at different times before

to = 7 days. Those contours are shown in Figure 6, one, two, and three days prior to to (or tref).

As can be seen, the contours have a close match, even 3 days prior to to, when the release from

point B had just stopped. Therefore, observations at a previous time would still result in a high315

posterior probability around point B.

A factor that affects the similarity between slicks resulting from different scenarios is the vari-

ability in the ocean currents. This variability plays a role in the ‘geometric’ transformations that a
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Figure 6: Contours resulting from two different releases observed at days t = 4, 5 and 6 (or 3, 2 and 1 days prior

to to, respectively). The red contour corresponds to a slick that originated from the red dot, which represents the

reference (true) source parameters. The blue contour corresponds to a release from point B, which is marked by the

blue dot, for ∆t = 6 days, dr = 3 days and qr = 100 tons. The blue vectors represent the currents at the time when

the contours were observed.

slick undergoes, e.g., stretching where there is divergence in the flow, and compression where there320

is convergence. The higher the variability, the less is the potential similarity between two different

slicks. To illustrate this point, we conducted 3 MCMC experiments (not shown) where we changed

the variability in the currents by varying the period of the flow (the double-gyre). In the first, the

period was halved (i.e., T = 3.5 days), in the second, it was doubled (i.e., T = 14 days), and in the

third, the flow was steady (ε = 0, see Section 2.3). Indeed, the results of the experiment with high325

variability in the currents (T = 3.5 days) showed a high posterior probability only around the true

parameters, whereas in the other experiments where the variability is low, the posterior probability

was flatter and high probability regions were seen across different 2D maps. It is worth noting that,

although high variability in the currents might lead to improved estimates, it is usually associated

with high uncertainties in the flow, which could lead to higher uncertainty in the final estimates.330

The relationships between the five parameters is further explored in a corner plot. This chart,

shown in Figure 7, allows us to visualize the relationship between any pair of variables, in the

form of joint probability distributions, as well as the marginal distributions of the variables. Those

distributions are obtained from the MCMC samples by means of kernel density estimation (Hill,335

1985). The red lines in each plot mark the values of the corresponding true parameters. The

red dashed lines represent the trend of the samples in each plot; the red dashed curved lines are

second-order polynomial fits, whereas the red dashed straight lines are linear fits. The relationship
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Figure 7: Corner plot of the five parameters xr, yr, ∆t, dr and qr, formed by plots of the joint probability distributions
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between xr and yr is a nonlinear u-shaped relationship; yr goes above 25 km whenever xr goes

above or below 100 km. This behavior is reflected by the form of the flow (the gyre) in the domain340

where xr and yr are sampled. A positive monotonic relationship can be observed between xr and

∆t. yr and ∆t exhibit a nonlinear relationship in which yr tends to go above 25 km whenever ∆t

goes above or below 7 days. This behavior, along with the positive relationship between xr and ∆t,

move the inferred source upstream closer to the observation, as ∆t becomes smaller. A negative

monotonic relationship exists between xr and dr, and from the joint distributions between yr and345

dr, and ∆t and dr, one can notice positive relationships between the two pairs of variables (although

with different slopes of the trend lines and a weak relationship between ∆t and dr). This indicates

that a longer duration of release is expected whenever the source moves upstream closer to the

observation (smaller xr) and to the center of the gyre (larger yr), or whenever the release occurs

further back in time (larger ∆t), and vice versa. qr does not seem to have any effect on xr and yr350

as can be seen from the vertical trend line in both (xr, qr) and (yr, qr) plots. This is consistent with

what we have observed previously in the posterior maps, where varying qr did not seem do have

any effect on the position of the black dot in Figure 5. A slightly negative relationship (although

weak) can be noticed between qr and ∆t, and qr and dr, which translates into a smaller quantity

of oil being released, if the release occurs further back in time, or if it lasts longer, and vice versa.355

The plots on the diagonal show the marginal distributions. All reference parameters have relatively

high marginal probabilities.

Exp. II

In this experiment, observations of the oil contour are partially available at two different in-

stances, to1 = 6 and to2 = 8 days. As in Exp. I, we ran 8 MCMC simulations of 10,000 iterations360

each to obtain a total of 80,000 samples, with an acceptance rate of 29%. The first 500 samples of

each chain were discarded for burn-in. Figure 8 shows 2D probability maps, in (xr, yr), of the poste-

rior distribution, for dr = 2, 3 and 4 days, ∆t = 5, 6, 7, 8 and 9 days, and qr = 50, 100 and 200 tons.

Similar conclusions to those made in Exp. I can be made here, in terms of how variations in dr,365

∆t and qr affect the location of the black dot (the point that has the highest posterior probability in

each 2D map). The point corresponding to the highest estimated posterior probability in all maps

(the MAP) is the black dot in the plot at dr = 3 days, ∆t = 7 days and qr = 100 tons. This point
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Figure 8: (xr, yr) maps (slices) of the 5D posterior probability distribution of Exp. II, for dr = 2 days, ∆t = 5, 6, 7,

8 and 9 days, and qr = 50, 100 and 200 tons. The red dot in each plot marks the true values of (xr, yr). The black

dot marks the (xr, yr) location that has the highest posterior probability in each 2D map. The blue curves represent

the observations, whereas the black contours are the model output of a hypothetical release from the black dot, for

values of dr, ∆t and qr corresponding to each plot, shown at to1 and to2. The blue vectors show the currents at the

time of release corresponding to each map, that is tref − ∆t.
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Figure 8: Continued for dr = 3 days.
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Figure 8: Continued for dr = 4 days.
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coincides with the red dot in the same map, which is associated with the reference parameters. This

suggests that the proposed method provided a good estimate of the solution, given the available370

partial observations. Note, however, that the field of view of the observations captures the head

of the slick at to1, and its tail at to2. A single partial observation, or multiple observations of the

same part of a slick might result in an estimate with higher uncertainties, i.e., a flatter posterior

distribution. This is because many hypothetical sources may result in slicks that match part of

the observation, but not the other, especially in flows with low variability. It is worth mentioning375

that a good estimation of the source parameters (as in this experiment) would help to reconstruct

the missing parts of an observation (as shown in the plot containing the point with the highest

posterior probability), and thus, allows to make better forecasts by initiating the LPT model from

the reconstructed observations.

6. Conclusion380

Marine ecosystems and coastal environments face a serious threat due to oil spills. The ability

to determine the source of pollution from available observations, such as satellite images of oil

slicks, may help to limit and manage such polluting events. We presented in this paper a generic

Bayesian framework, in which LPT models can be used, to infer source parameters from images

of oil contours. The posterior probability resulting from this approach reflects the uncertainties in385

the estimate, and thus a level of confidence in the inferred parameters. Two synthetic experiments

were designed to assess the relevance of the method. In the first experiment, a single observation of

an oil slick was available. In the second one, the slick was partially observed at two different times.

The method proved to be successful at providing good estimates of the source parameters, which

consisted of the x and y coordinates of the source of release, the time when the release happened,390

the duration of the release, and the total quantity of pollutant released. We investigated in the first

experiment the sensitivity of the estimation (through the posterior distribution) to the variability

in the flow field. Uncertainties in the estimation are higher in the case of near-steady flows or flows

that exhibit low variability. More informative priors might help in this case to improve the estima-

tion and reduce the uncertainties. We also showed in the second experiment how inference from395

observations of parts of a slick helps to reconstruct the missing parts of the observations. Initiating

oil spill models from the reconstructed observations may thus allow to make better forecasts of the
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fate and transport of the oil slick.

This study used a simple LPT model in the numerical experiments to demonstrate the proposed400

approach. Using more-computationally-demanding models may not be feasible within MCMC.

One may consider building a surrogate of the LPT model, using, for instance, a polynomial chaos

expansion (e.g., Marzouk et al., 2007; Marzouk & Najm, 2009; Sraj et al., 2013; Giraldi et al.,

2017; Sraj et al., 2017; Navarro et al., 2018). This functional representation, which substitutes the

original model within MCMC, allows for fast sampling of the posterior distribution. This work405

can be extended by 1) further developing the method to allow for the estimation of moving source

parameters, and 2) testing the method in real events of oil spills. These tasks will be the focus of

our future work.
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in fault slip distribution during the tōhoku tsunami using polynomial chaos. Ocean Dynamics,

67 , 1535–1551.

Suneel, V., Ciappa, A., & Vethamony, P. (2016). Backtrack modeling to locate the origin of tar

balls depositing along the west coast of india. Science of the Total Environment , 569 , 31–39.

Thawornwattana, Y., Dalquen, D., Yang, Z. et al. (2018). Designing simple and efficient markov525

chain monte carlo proposal kernels. Bayesian Analysis, 13 , 1037–1063.

Thygesen, U. H. (2011). How to reverse time in stochastic particle tracking models. Journal of

Marine Systems, 88 , 159–168.

Tillier, E., Veiga], S. D., & Derfoul, R. (2013). Appropriate formulation of the objective function

for the history matching of seismic attributes. Computers & Geosciences, 51 , 64 – 73. doi:10.530

1016/j.cageo.2012.07.031.

34

http://dx.doi.org/10.17226/10388
http://dx.doi.org/10.1016/j.cageo.2012.07.031
http://dx.doi.org/10.1016/j.cageo.2012.07.031
http://dx.doi.org/10.1016/j.cageo.2012.07.031


Torgrimson, G. M. (1981). A comprehensive model for oil spill simulation. In International Oil

Spill Conference (pp. 423–428). American Petroleum Institute volume 1981.

Tournadre, J. (2014). Anthropogenic pressure on the open ocean: The growth of ship traffic revealed

by altimeter data analysis. Geophysical Research Letters, 41 , 7924–7932.535

Toyama, K., & Blake, A. (2002). Probabilistic tracking with exemplars in a metric space. Interna-

tional Journal of Computer Vision, 48 , 9–19.

Van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B.,

Chassignet, E. P., Cheng, Y., Cotter, C. J. et al. (2018). Lagrangian ocean analysis: Fundamentals

and practices. Ocean Modelling , 121 , 49–75.540

Villa, M., López-Gutiérrez, J., Suh, K.-S., Min, B.-I., & Periáñez, R. (2015). The behaviour of 129i

released from nuclear fuel reprocessing factories in the north atlantic ocean and transport to the

arctic assessed from numerical modelling. Marine pollution bulletin, 90 , 15–24.

Xu, Q., Li, X., Wei, Y., Tang, Z., Cheng, Y., & Pichel, W. G. (2013). Satellite observations and

modeling of oil spill trajectories in the bohai sea. Marine pollution bulletin, 71 , 107–116.545

Yamada, T., & Bunker, S. (1988). Development of a nested grid, second moment turbulence

closure model and application to the 1982 ascot brush creek data simulation. Journal of Applied

meteorology , 27 , 562–578.
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