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HOMOGENIZATION OF QUASI-CRYSTALLINE FUNCTIONALS
VIA TWO-SCALE-CUT-AND-PROJECT CONVERGENCE*
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Abstract. We consider a homogenization problem associated with quasi-crystalline multiple
integrals of the form u. € LP(Q;RY) — [, fr(=, Z,ue(w)) dz, where ue is subject to constant-
coefficient linear partial differential constraints. The quasi-crystalline structure of the underlying
composite is encoded in the dependence on the second variable of the Lagrangian, fr, and is modeled
via the cut-and-project scheme that interprets the heterogeneous microstructure to be homogenized
as an irrational subspace of a higher-dimensional space. A key step in our analysis is the character-
ization of the quasi-crystalline two-scale limits of sequences of the vector fields us that are in the
kernel of a given constant-coefficient linear partial differential operator, A, that is, Aus = 0. Our
results provide a generalization of related ones in the literature concerning the A = curl case to more
general differential operators A with constant coefficients and without coercivity assumptions on the
Lagrangian fr.
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1. Introduction. The theory of homogenization addresses the description of the
macroscopic or effective behavior of a microscopically heterogeneous system. There
are multiple applications in the fields of physics, mechanics, and materials science and
in other areas of engineering, including problems aimed at the modeling of composites,
stratified or porous media, finely damaged materials, or materials with many holes or
cracks.

From the mathematical viewpoint, homogenization is often associated with the
study of the asymptotic behavior of oscillating partial differential equations (PDEs),
or of minimization problems deriving from certain oscillating functionals, depending
on one or more small-scale parameters that represent the length scales of the hetero-
geneities.

A common assumption in the literature is based on the premise that the hetero-
geneities are evenly distributed, leading to the mathematical assumption of periodicity
in the so-called fast variable, which encodes the heterogeneities in the mathematical
problem. Even though the study of the effective behavior of periodically structured
heterogeneous media has enabled the study of more complex ones, it is commonly ac-
cepted that periodicity is often not the most well-suited structural hypothesis. This
fact is at the basis of many recent works devoted to the study of the effective behavior
of random heterogeneous materials whose small-length-scale properties are described
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at a statistical level only.

Here, we are interested in materials with a quasi-crystalline microstructure charac-
terized by small-length-scale properties that are neither periodic nor random.
Quasi-crystals, also known as quasi-periodic crystals, are ordered structures that
do not share the translational symmetry of traditional crystals [56, 57]. A quasi-
crystalline pattern can continuously fill an n- dimensional space but will never be
translational symmetric in more than m — 1 linearly independent directions.

The discovery of quasi-crystals was announced in the early 1980s by two groups
of crystallographers, Shechtman et al. [56] and Levine and Steinhardt [43]. At first,
this was received with skepticism, and even hostility, by the scientific community, as
quasi-crystals violate the foundations of classical crystallography. However, in 2011,
Shechtman was awarded the Nobel Prize in Chemistry for this discovery. A striking
feature of quasi-crystals is that their Bragg diffraction displays peculiar five-, ten-,
or twelvefold symmetry orders in contrast with the rigid crystallography of periodic
crystals. Moreover, the assembly of quasi-crystalline tiling patterns is nonlocal and
exhibits similar patterns at different scales (self-similarity).

In various mathematical communities, there has been a rich discussion on quasi-
crystals, and extensive efforts have been made to model them; see [7, 16, 42, 46]
and related references. A well-established mathematical approach for studying quasi-
crystals is based on aperiodic tilings of hyperplanes, in which one aims at finding a set
of geometric shapes, called tiles, paving the Euclidean plane without gaps or overlaps,
in a nonperiodic manner only (see Figure 1). A systematic, but not exhaustive, scheme
for deriving such tilings is the cut-and-project method, introduced by de Bruijn [26]
and further developed by Duneau and Katz [27], which extends Penrose’s ideas of
aperiodic tilings of the plane [54] to higher dimensions (see [8] for a more detailed
description).

Fia. 1. A quasi-crystalline heterogeneous microstructure corresponding to the so-called “kite
and dart” tiling of the plane with fivefold symmetry. Image source: hitps://rosettacode.org/ wiki/
Penrose_tiling.

Roughly speaking, m-dimensional quasi-crystalline patterns can be modeled by
cutting periodic tilings in an m-dimensional space, with m > m, through an n-
dimensional subspace with irrational slope. To be precise, given an m-dimensional
quasi-crystal R and representing by o : R® — R a constitutive property of R, we
can find m € N, with m > n, a Y™-periodic function o : R™ — R with Y™ C R™ a
parallelotope, and a linear map R : R™ — R™ such that

(1.1) or(x) = o(Rzx).
In the homogenization literature, the structural condition (1.1) is referred to as quasi-

periodicity [16, 40]. Here and in what follows, we do not distinguish the linear map
from its associated matrix in R™*™, and denote both by R. For example (see [35]),
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setting 7 = 1+2\/g7 the matrices

V5 0 0 7
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R=R;,_,, L vaT !
m-sym 5 b
VIO |1 — Nor= T
1 0 -2
NG
-1 T T 1]
1 T 0
T 0 1
1 0 1 T
R = Rm3—sym T 2(7_ T 2) -1 T 0 )
T 0 -1
0o -1 7
2741 -1 17
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2741 0 -2
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\/G(Ai'r+3) 6(T+2)
\/6(4i7+3) V2(+2)  \/6(r+2)
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are associated with icosahedral quasi-crystalline patterns exhibiting a pentagonal
5m-symmetry phase, a cubic m3-symmetry phase, and a rhombohedral trigonal 3m-
symmetry phase, respectively, where we adopted the terminology commonly used for
the classification of quasi-crystals’ symmetry space groups (see, for instance, [59]).
These icosahedral quasi-crystalline patterns are found in alloys within, for instance,
the Al-Mn-Si, the Al-Li-Cu, and the Al-Cu-Fe ternary systems (see [35]).

In general, there are multiple choices for m, o, and R, which could lead to some
ambiguity in our asymptotic analysis. However, as proved in [8], the homogenization
analysis does not depend on R provided it satisfies the diophantine condition

(1.2) Rk #0 for all k € Z™\{0},

where R* denotes the transpose of R. This condition implies that some entries of R
must be irrational, which justifies the expression irrational slope used above.
Quasi-crystalline composites and alloys have played a central role in materials
science and other areas of engineering [4, 6, 28, 36, 38, 39, 49, 61]. Indeed, Al-Cu-Fe
quasi-crystalline materials in polymer-based composites have been shown to signifi-
cantly improve wear-resistance to volume loss, and a twofold increase in the elastic
moduli. As we mentioned before, the mathematical study of such quasi-crystalline
composites does not fit within the classical periodic homogenization theory. More
appropriate in the context of quasi-crystal composites are almost-periodic and sto-
chastic homogenization, which were initiated with the works of Papanicolaou and
Varadhan [53], Kozlov [40], and Oleinik and Zhikov [52] for partial differential equa-
tions, Modica and Dal Maso [47] and Braides [9, 10, 11] within a variational frame-
work; see also [12, 17, 25] and the references therein. However, such approaches do
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not take full advantage of the quasi-crystalline feature of the problem, often leading
to asymptotic formulas that pose computational difficulties and are not stable under
perturbations. Instead, we adopt and further develop a homogenization procedure
based on the two-scale-cut-and-project convergence introduced in [8], and recently
revisited in [60], which leads to a more tractable (even though higher-dimensional)
cell problem.

In this paper, we initiate a research program that is devoted to the study of
quasi-crystalline homogenization problems involving oscillating integral energies under
quasi-crystalline oscillating differential constraints and falls within the framework of
A-quasiconvexity. To be precise, we aim at characterizing the asymptotic behavior of
integral energies of the form

(1.3) FW@:A&@%WMDM

as e — 0T, where e* > 0, with a > 0, represents the length-scale of the tiles featuring
the quasi-crystalline composite. Moreover, 2 C R", with n € N, is an open and
bounded set that represents the container occupied by the composite, and fg is the
Lagrangian of the system whose dependence on the second variable, the fast variable,
encodes the quasi-crystalline structure of the composite, indicated with the subscript
R asin (1.1). Finally, u. is an abstract vector-valued order-parameter whose physical
interpretation might depend on the problem in question. A typical case is that in
which wu. is curl-free, and u. = Vv, for some potential deformation v.. However,
many applications require that u. instead satisfies other linear partial differential
constraints, such as Maxwell’s equations in the case of electromagnetism, or, in the
case of linear elasticity, that u. be the symmetric part of a gradient. A unified abstract
approach to several of these constraints is that of A-free fields, as pioneered by Fonseca
and Miiller [32] (see also [20, 21, 55]). To be precise, u. € LP(€;RY) is subject to
quasi-crystalline oscillating differential constraints such as

—~ i () 0u N
Acue = ZlAZR(Sﬁ)&Ei() — 0 strongly in W~1P(Q; R

or, in divergence form,

Acus = i % (A%(E—B)us()) — 0 strongly in W~1P(Q; R,
i=1 "

withd, 1 € N and 1 < p < oo, where for every z € R®, A% (z) € Lin(R%; R!) features
a quasi-crystalline pattern, and S > 0 is a parameter. For the study of homogenization
of integral energies with periodic energy densities and under periodically oscillating
A-free differential constraints, we refer the reader to [13, 23, 24, 31, 41, 45].

As in the periodic setting [23, 24], we expect different asymptotic regimes ac-
cording to the ratio between o and 8. As a starting point to this extensive research
project, we first focus here on the case where B = 0 and A% is independent of z,
in which case wu. is subjected to homogeneous first-order linear partial differential
constraints. Precisely, in this paper we address the problem of characterizing the
asymptotic behavior as ¢ — 07 of integral energies of the form

(1.4) mm:ﬁh@gwmm
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for u € LP(; RY) satisfying Au = 0, where
(1.5) Au = ZA“)%‘ with A® ¢ R™? for all i € {1,...,n}.
i=1 i

We refer the reader to section 2.2 for a rigorous definition of the identity Au = 0,
in which case we say that the vector field u is A-free (see Definition 2.1). A common
assumption within studies involving A-free vector fields is the constant-rank property,
which states that there exists r € N such that for all w € R™ \ {0}, we have

(1.6) rank A(w) = r,

where A : R™ — R4 denotes the symbol of A and is defined by
(1.7) Aw) =Y ADw;
i=1

for w € R™. We assume that our operator A4 satisfies the constant-rank property, and
we refer the reader to [32, 48, 58] for further insights on this property and on A-free
fields.

Our asymptotic analysis of the energy integrals in (1.4) under the constraint
(1.5) is based on I'-convergence techniques, whose key point is to find an integral
representation for

(1.8)  Fhom(u) = inf { liminf FL(ue): ue = win L/(QRY), Au, = o}.
To state our main theorem regarding this integral representation, we first introduce
the hypotheses on the Lagrangian, fr : Q x R® x R® — [0, 00):

(H1) (quasi-crystallinity): There exist m € N, with m > n, a matrix R € R™*®
satisfying (1.2), and a continuous function f : Q@ x R™ x R® — [0, 00) such
that the function f(x,-,¢) is Y™-periodic for each (z,¢) € Q x RY, with Y™
denoting a parallelotope in R™, and

fr(x,2,8) = f(z, Rz,§)

for all (z,2,£) € 2 x R® x RY.
(H2) (growth): There exist p € (1,00) and C' > 0 such that

for all (z,2,£) € Q x R* x R™.
In the proof of the lower bound for the integral representation of Fon,, we will require
an additional hypothesis:
(H3) (convexity): For all (z,y) € Q x R™, the function £ — f(x,y,&) is convex
and C'.

We refer the reader to section 2 for a list of the main notation we use in this paper.
However, for the readability of our main results, we clarify upfront that Li(Ym; R™)
denotes the space of Y™-periodic functions belonging to Li. .(R™). Moreover, given
a Lebesgue measurable set B C R, with k € N, we use the notation fB - in place of

D%(B) [ -, where L%(B) denotes the k-dimensional Lebesgue measure of B.
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THEOREM 1.1. Let Q C R™ be an open and bounded set, let fr : Q x R™ x R? —
[0,00) be a function satisfying (H1)—(H3), let Fyhom be the functional introduced in
(1.8), and assume that (1.6) holds. Then, for all

(1.9) u€elUy = {ueLP(GRY): Au=0},

Fhom(u):/thom(myu(x))dx7

where

fhom(mug) = Uier%)fA ]{/m f($7y7£ + ’U(y)) dy7
with
(1.10)

V= {v € L;&(Ym;le): v is Ag~-free in the sense of Definition 3.11 and

/m o(y) dy = 0}.

Remark 1.2 (on the hypotheses of Theorem 1.1). (i) In the homogenization lit-
erature, measurability of f with respect to the fast variable is often preferred over
continuity. As we further discuss in section 2.1, measurability of fr requires, in gen-
eral, Borel-measurability of f. A common approach for dealing with lack of continuity
is to combine periodicity with Scorza—Dragoni type results that, up to a set of small
measure, allow us to reduce the problem to the continuity setting. Here, however, we
cannot use such an argument because a set of small m-dimensional Lebesgue mea-
sure, the ambient space for the fast variable in terms of (the periodic function) f,
may not have small n-dimensional Lebesgue, the ambient space for the fast variable
in terms of (the quasi-crystalline function) fg. (ii) The nonconvex case raises nontriv-
ial difficulties in the quasi-crystalline setting and will be the subject of a forthcoming
work.

In the Sobolev setting, homogenization of integral energies of the form (1.4) under
nonperiodic assumptions was undertaken in [12, 37, 47] in the A = curl case, assum-
ing coercivity. Within the quasi-crystalline framework, Theorem 1.1 extends these
results to the general A-free setting and without coercivity. We prove Theorem 1.1
in section 4; the main tools we use here are based on I'-convergence and on two-scale
convergence adapted to the quasi-crystalline setting, also called two-scale-cut-and-
project convergence. For brevity, and having in mind the relation (1.1), we refer to
the two-scale-cut-and-project convergence as R-two-scale convergence. This notion
was introduced in [8] (also see [60]) as an extension of the usual notion of two-scale
convergence [1, 51] to enable the study of composites whose underlying microstructure
has a quasi-crystalline feature.

Here, we further extend the study of R-two-scale convergence in two different
ways. In [8, 60], the authors consider sequences in L?, and their arguments are
based on Fourier analysis relying heavily on Parseval’s and Plancherel’s identities.
Instead, we consider the more general case of LP with p € (1,00). Moreover, in [8]
the authors characterize the limit, with respect to the R-two-scale convergence, of
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bounded sequences in W2, while in [60] the authors characterize the limit associated
with bounded sequences in L? that are divergence-free or curl-free. Here, besides
generalizing these results to the LP case, we provide a unified approach to all these
cases by considering bounded sequences in LP that are A-free, in the spirit of [31]
concerning the periodic case.

Next, we state our main result regarding the characterization of the limits of
bounded sequences in LP that are A-free. We refer the reader to sections 2.2 and 3.1,
where we give precise meanings of the expressions “A-free” and “(A, A%.)-free” that
we make use of in the following statement.

THEOREM 1.3. Let R € R™*™ satisfy (1.2). A function v € LP(Q x Y™;RY)
is the R-two-scale limit of an A-free sequence {u.}. C LP(;RY) if and only if u is
(A, A%.)-free in the sense of Definition 3.13; that is,

(1.11) .A’L_Lo =0 and A%*ﬂl =0

in the sense of Definitions 2.1 and 3.11, respectively, where uy = fym u(-,y)dy and
Up = U — Ug.

We prove Theorem 1.3 in section 3.1, where we use arguments similar to those
in [31] concerning the periodic case (see [31, Theorem 2.12]). We observe that the
sufficient part in Theorem 1.3, which guarantees that (1.11) fully characterizes the
R-two-scale limits, is new in the literature even for p = 2 and A = curl or A =
div treated in [8, 60]. Furthermore, in section 5 we give an alternative proof of
Theorem 1.3 for the A = curl case using arguments based on Fourier analysis that
differ from those in [8, 60] because Parseval’s and Plancherel’s identities do not hold for
p # 2. This alternative proof provides an equivalent alternative characterization for
the R-two-scale limit of bounded sequences in W1 and may provide useful arguments
for studying homogenization problems involving quasi-crystalline functionals in the
A = curl case. This alternative characterization can be stated as follows.

THEOREM 1.4. Let R € R™*™ satisfy (1.2), and let Y™ C R™ be a parallelotope.
Then, a function v € LP(Q x Y™;R"™) is the R-two-scale limit of a sequence {Vv.}c
with {v:}e bounded in WYP(Q) if and only if there exist vg € WHP(Q) and vy €
LP(Q;G) such that

v = Vg + v1,

where

(1.12)
= {w € L;(Ym;lR“): W = MRk for some { A }rez= C C with Ao = O},

with Wy, 1= fym w(y)e= 2™k v dy, k € Z™, denoting the Fourier coefficients of w.

Remark 1.5. We recall that if u, € LP(€;R™) is curl-free in R™ with Q simply
connected, then there exists v. € WHP(Q) such that u. = Vw.. Thus, in terms of
the notation in the two previous results with d = n, we have @9 = Vuvg and 4, = vy.
In particular, (1.12) provides an alternative characterization of Ag-- and A%.-free
vector fields introduced in Definition 3.11 in the A = curl case (also see Remark 5.7
for a detailed argumentation).

2. Notation and preliminaries. Throughout this paper, m, n € IN are such
that m > n, @ C R™ is an open and bounded set, Y™ is a parallelotope in R™,
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IT C R™ is a parallelotope in R®, d, I € N, and p, p’ € (1, 00) are such that %4—% =1.
Moreover, we assume that € takes values on an arbitrary sequence of positive numbers
that converges to zero.

We use the subscript # within function spaces to highlight an underlying period-
icity, in which case the domain indicates the periodicity cell. For instance, Cx(Y™) =
{u € C(R™): u is Y™-periodic} and LY, (IT) = {u € Ly, (R™): u is TI-periodic}.

Next, we compile the notation and main properties of the cut-and-project maps
R and differential operators A presented in the introduction and that we make use

of in what follows.

2.1. Cut-and-project maps R. In this paper, R : R™ — R™ is a linear
map, whose associated matrix in R™*™ is also denoted by R. We do not distinguish
between the transpose matrix and the adjoint of R, and denote both by R*. We often
assume that the criterion (1.2) on R holds, in which case we refer to it explicitly.

As shown in [8], if g : R™ — R is a Y™-periodic trigonometric polynomial, with
Y™ a parallelotope in R™, then the ergodic mean of g o R, #(g o R), is uniquely
defined provided that R satisfies (1.2), in which case we have

1
Mige R) = lim &g /(_”)n 9(Rz)dz = ][m 9(y) dy.

Throughout this paper, we consider functions og as in (1.1). We observe that
such a definition raises measurability issues. In fact, we can only guarantee that
or in (1.1) is measurable provided that o is Borel-measurable. We conjecture that
there are functions ¢ € L>®°(IR™) for which the corresponding function op in (1.1)
is not measurable. This conjecture is based upon the observation that the preimage
of a measurable set B C R™ through R, R~(B), acts as a projection of the set B
onto the lower-dimensional space R™; moreover, as is well known, the projection of a
measurable set may not be measurable. To overcome this issue, we take in (1.1) the
Borel representative of o.

2.2. Differential operators A with constant coefficients. We consider ho-
mogeneous first-order linear partial differential operators with constant coefficients,
A, that map v : Q@ — RY into Au : Q — R!, of the form

n

Au = ZA(i)g—u with A® e R for all i € {1,...,n}.

"
i=1 v

The formal adjoint of A, which we denote by A*, maps v : © — R!into A*v : @ — RY
and is defined by

A= =3 (40T

-
i=1 Oz;

We observe that A can be viewed as a bounded, linear operator A : LP(Q; R%) —
W=LP(Q; RY) by setting

(Au,v) = / u- A*vdx
Q

for allu € LP(Q;RY) and v € Wol’pl (€2;RY). We observe further that if u € C!(£; RY)
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and v € C}(; RY), then

/Au~vdx:/u~A*vdx
Q Q

by integration by parts. Similarly, if u € C;E (I; RY) and v € C;E (IT; RY), then

/Au~vdx:/u~A*vdx.
Il 11

We assume that A satisfies the constant-rank property, that is, there exists r € N
such that for all w € R™\ {0}, we have rank A(w) = r, where A : R® — R denotes
the symbol of A, and is defined by (1.7). As we mentioned in the introduction, the
constant-rank property is a common assumption within studies involving A-free vector
fields. We refer the reader to [32, 48, 58] for further insights on this property and on
A-free fields, whose notion we recall next.

DEFINITION 2.1 (A-free fields). (i) Given u € LP(;RY), we say that Au
exists in LP(Q;RY) if there ewists a function U € LP(;RY) such that, for every
¢ € CL(Q;RY), we have

(2.1) /Qu-.A*gbdx:/QU~¢dx.

In this case, we write Au := U. We say that u is A-free, and write Au =0, if (2.1)
holds with U = 0.

(ii) Given v € L’;#(H;Rd), we say that Av exists in Li(H;RH) if there exists a
function V € L;(H;]Rﬂ) such that, for every ¢ € C;&(H;IRH), we have

(2.2) /u~A*g0dy:/V-cpdy.
I I

In this case, we write Av := V. We say that v is A-free, and write Av =0, if (2.2)
holds with V= 0.

Remark 2.2 (A applied to vector fields depending on several variables). Whenever
a vector field depends on two or more variables, we index A with the underlying
variable to which A is being applied to the vector field. For instance, if u = u(zx,y),
then A,u refers to A applied to u as a function of x with y regarded as a fixed
parameter. Similarly, A,u refers to A applied to u as a function of y with = regarded
as a fixed parameter.

A crucial result in the variational theory of A-free fields is the following A-free
periodic extension lemma, established in [32, Lemma 2.15]. We make repeated use of
a similar statement, also proved in [31, Lemma 2.8], and hence record it here for the
reader’s convenience.

LEMMA 2.3 (A-free periodic extension). Let I € R™ be a parallelotope, let
O C II be an open set, let 1 < p < oo, and assume that A satisfies (1.6). Let
{v,} € LP(O;RY) be a p-equi-integrable sequence in O, with v, — 0 in LP(O; RY) and
Av, = 0 in W=LP(O;RY). Then, there exist an A-free sequence {u,} C L;(H;]Rd),
which is p-equi-integrable in I, and a positive constant C = C(A) such that

Uy — vp — 0 in LP(O;RY),  u, — 0 in LP(I1\O; RY), f U, dy =0,
I

[unllLrray < Cllvnlleo;ra) for alln € N.
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Proof. The proof of this lemma with IT = (0, 1)™ can be found in [32, Lemma 2.15]
and [31, Lemma 2.8]. The case in which IT is an arbitrary parallelotope follows by an
affine change of variables. ]

3. Cut-and-project-two-scale convergence. The notion of two-scale conver-
gence was first introduced in the L? setting by Nguetseng [51] and further developed by
Allaire [1]. Initially, it was used to provide a mathematically rigorous justification of
the formal asymptotic expansions that are commonly adopted in the study of homog-
enization problems. Posteriorly, the notion of two-scale convergence was extended,
in particular, to LP, L', BV, and Besicovitch spaces [3, 15, 17, 30, 44], and also to
the multiple-scales case [2, 29, 33] that enhanced several variational homogenization
studies hinging on a I'-convergence approach, such as [5, 19, 30, 33, 50].

In this section, we first address the study of the notion of two-scale convergence
in the quasi-crystalline setting, which we refer to as cut-and-project-two-scale conver-
gence (or, for brevity, R-two-scale convergence), with R as in section 2.1. We then
prove Theorem 1.3.

As we mentioned in the introduction, the R-two-scale convergence was introduced
in [8] (also see [60]) as an extension of the usual notion of two-scale convergence to en-
able the study of composites whose underlying microstructure has a quasi-crystalline
feature. Using arguments based on Fourier analysis, the authors in [8] characterize
the limit, with respect to the R-two-scale convergence, of bounded sequences in W12,
while the authors in [60] characterize the limit associated with bounded sequences in
L? that are divergence-free or curl-free. Here, besides generalizing these results to
the LP setting, with 1 < p < oo, we provide a unified approach to all these cases
by considering bounded sequences in LP that are A-free, with A as in section 2.2.
Our arguments are close to those in [31] concerning the periodic case and hinge on
properties of A-free vector fields.

We first introduce the definition of R-two-scale convergence in LP(Q;R¥). We
make use of the results in this section with k equal to either 1, d, 1, or m.

DEFINITION 3.1 (R-two-scale convergence). We say that a sequence {u.}. C
LP(Q;R¥) R-two-scale converges to a function u € LP(2 x Y™; RK) if for all ¢ €
LV (Q; Oy (Y™; RE)) we have

(3.1) lim ue(x) - ga(z, %) de = /Q][m u(z,y) - p(z,y) dedy,

e—=0t Jo

. R-2sc
and we write U, ————— u

Remark 3.2 (uniqueness of R-two-scale limits). There is uniqueness of the R-
two-scale limit. In fact, if {uc}. C LP(;RYX) and u, @ € LP(Q x Y™;RK) are such

R-2 R-2
that v, ———~ y and u, ——o ¢, then

[ £ (wla) = i) - oty dady = 0

for all ¢ € L' (Q; Cx(Y™; R¥)). Hence, u = @ a.e. in Q x Y™,

Remark 3.3 (on the test functions for R-two-scale convergence). Assume that
{uc}. is a bounded sequence in LP(Q; RX). Then, {u.}. R-two-scale converges to a
function v € LP(Q2xY™;R¥) if and only if (3.1) holds for all ¢ € C°(Q; Cxry™; RX)).
To prove this statement, it suffices to use the density of CEC(Q;C;O(Y“;JRIR)) in
LV (Q; O (Y™; RE)) and the boundedness of {u.}. in LP(Q;RE).
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The next two propositions characterize the relationship between the R-two-scale
limit and the usual weak and strong limits in LP(€; R¥). These two results are simple
adaptations of [44, Theorems 9 and 10] concerning the periodic case (also see [8,
Proposition 2.10] concerning the p = 2 case), which we include here for completeness.

PROPOSITION 3.4. Assume that {u.}. C LP(Q;R¥) is a sequence that R-two-
scale converges to a function u € LP(Q x Y™ RX). Then, u. — g weakly in
LP (S RY), where o () := fym u(-,y) dy. In particular, {u.}. is bounded in LP(Q; R¥).

Proof. Let ¢ € L? (Q;IRE‘), and set p(x,y) := ¢(z) for (x,y) € @ x Y™. Then,
© € LP (Q;Cx(Y™;RX)), and by (3.1) we have

lim [ w.(z)-¢(z)de = lim ug(;v) . <p<x, ?) dz

e—=0t Jo e—0t

:/][m w(z,y) - oz, y) dedy
) e

and this concludes the proof. 0
PROPOSITION 3.5. Let {u.}. C LP(;RX) and u € LP(;RX) be such that u. —
w in LP(Q;RX) as e — 0F. Then, u. R2sc

Proof. Let ¢ € L (; O (Y™;RK)). Using Hélder’s inequality, the convergence
ue — w in LP(£; R¥), and Proposition 3.7 applied to 9 (z,y) := u(x) - ¢(x,y), we get

limsup‘/ ue(x x — dxf/][ o(z y)dxdy‘
e—0+ m

< limsup <||Us - U||Lp(9;m)||90||Lr’(n;c#(ym;m))

e—0+
‘/ m— da:f/f zy)dxdyDO. d

The proof of the following version of the Riemann—Lebesgue lemma may be found
n [8, Lemma 2.4]. This lemma will be used in the subsequent proposition, which
encodes nontrivial examples of sequences that R-two-scale converge.

LEMMA 3.6 (cf. [8, Lemma 2.4]). Let ¢ € Cx(Y™;R¥), and assume that R
satisfies (1.2). Then, the sequence {¢:}. C L®(;RY) defined by ¢ (x) := (b(%),
x € Q, converges weakly-x in L>=(Q;RK) to the constant function ¢ := fym y) dy.

As we mentioned above, the next proposition provides nontrivial examples of
sequences that R-two-scale converge; moreover, it will be useful to prove compactness
of bounded sequences in LP(Q; RX) with respect to the R-two-scale convergence. The
proof is similar to that of [44, Lemma 2.5] concerning the periodic case, which we
include here for completeness.

PROPOSITION 3.7. Let ¢ € LY(Q;Cx(Y™;RX)), and assume that R satisfies
(1.2). Then {@/}(, RT)}E is an equi-integrable sequence in L'*($; RX) such that

62 [e(-T)

<Yl @iy (vmire) :/ sup [¢(z,y)|dx
QyeEYm

L1 (Q;RE)
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and

(3.3) El_i)%l+ Qw( sz dx —/ me z,y) dedy.

Proof. The proof of (3.2) is immediate. Using this estimate (that holds with
Q replaced by any measurable set) and the integrability of the map =z € Q —
sup, cym |¥(x,y)|, we conclude that {z/)(-, R€(~))}€ is equi-integrable in L!(Q; R¥). Fi-
nally, the proof of (3.3) follows along the lines of that of [44, Lemma 2.5], which we
detail next.

Step 1. Assume that 1 is of the form ¥(x,y) = p(z)p(y) with ¢ € L}(Q) and
¢ € Cx(Y™;R¥). Then, (3.3) follows from Lemma 3.6.

Step 2. Assume that ¢ is of the form ¥ (z,y) = Y 7_; ckxa,(2)Px(y), where
j € N, ¢ are distinct real numbers, Ay are mutually disjoint measurable subsets of
Q, and ¢ € Cy(Y™;R¥). Then, (3.3) follows from Step 1.

Step 3. Let ¢ € LY(Q;Cx(Y™;RX)). We can find a sequence {t;}jen of step
functions as in Step 2 such that ¢; — ¢ in L}(Q; Cx(Y™;RK)) as j — oo. Fix j € N;
in view of (3.2), we have

/91/)( Rz d:z:f/ me; ,y)dmdy‘

Rz
< P ‘dx—l—’/w da:—/ w-(x,y)dazdy‘
() (e 5) (o ) an [ f o

/ ][ (2, y) — d(x,y)| dady

(1+[£™( m)] DY = il (@icp (vmime)

‘/% Yo [ wj<x,y>dxdy].

QJym

Letting € — 07 and using Step 2 first, and then letting j — oo, we obtain (3.3) from
the convergence 1; — 1 in L' (€; Cx (Y™; RK)) as j — oo. d

COROLLARY 3.8. Let) € LP(; Cy(Y™; RK)), and assume that R satisfies (1.2).
Then, {1/)(~, RT) }6 is a p-equi-integrable sequence in LP(Q; R¥) that R-two-scale con-
verges to 1.

Proof. The p-equi-integrability assertion follows from Proposition 3.7 applied to
|t)|P. The R-two-scale convergence assertion follows from (3.3) with ¢ replaced by
Y, where ¢ € LY () Cyx(Y™;RK)) is an arbitrary function. 0

Using the previous proposition, we establish next a compactness property with
respect to the R-two-scale convergence. The proof follows along the lines of that
of [44, Theorem 14] in the context of the periodic case, which we include here for
completeness.

PROPOSITION 3.9. Let {u.}. C LP(;RY) be a bounded sequence, and assume
that R satisfies (1.2). Then, there exist a subsequence € < € and a function u €

LP (2 x Y™ RE) such that ues fi-2sc

Proof. To simplify the notation, set X := L (Q; C(Y™;RR¥)), and denote by
X’ the dual of X. Let L. : X — R be the linear map defined, for ¢ € X, by

L) = [ uele) - o ) do.
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By Hélder’s inequality, we have |L.(p)| < cl|¢]lx, where ¢ := sup, |[uc|| r(o;r*)-
Thus, by the Riesz representation theorem, there exists U, € X’ such that (Us, ) x/ x =
Lc(p) for all ¢ € X. Next, we observe that X is separable and

(IIUeIIXf = sup (U p)x x| < C> :

veX llellx <1

Hence, by the Alaoglu theorem, there exist a subsequence ¢ =< ¢ and a function
U € X' such that lim. o+ (Uer, ) x x = (U,p)x/ x for all ¢ € X. Passing the
inequality

1
7/

RJ:
(ool = ool < [ (e 20)[" az)"

to the limit as ¢’ — 07, and invoking Proposition 3.7 applied to ¢ (x,y) := |¢(z, y)|p/,
we obtain

(3.4)
(Wl < [ £ lotenl dsdn)” =elem 0] P el gmn

-

for all ¢ € X. Finally, using the density of X in ¥’ (QxY™;RK), we see that U can be
continuously extended to L¥' (Q2xY™; RK) with (3.4) valid for all p € L' (QxY™; R¥).
Consequently, by the Riesz representation theorem there exists @ € LP(Q2 x Y™; RK)
such that, for all ¢ € L' (Q x Y™; R¥),

(U, )x',x =/Q/mﬂ($>y)~s0(x,y) dzdy.

In particular, this last identity holds for all ¢ € X, from which we conclude the proof
by taking u := L™(Y™) @. |

Remark 3.10. Asshown in [8, Remark 2.8], Proposition 3.9 may fail if there exists
k € Z™\{0} such that R*k = 0.

3.1. R-two-scale limits of A-free sequences. In this subsection, we charac-
terize the R-two-scale limits associated with LP-bounded sequences of A-free vector
fields, as stated in Theorem 1.3. As we will show, this characterization is intimately
related to the notion of (A, A%.)-free vector fields introduced below.

DEFINITION 3.11 (Ag+- and A%.-free fields). We say that v € L;(Ym;]Rd) is
Agr~-free, and write Ag~v =0, if for all ¢ € C’#(Ym;]R“), we have

(35) | o) Artw) ay =0,

where

A= =3 Y (AD) Ry

i=1m=1 Ym

We say that w € L”(Q;L;&(Ym;le)), with w = w(z,y), is AR.-free, and write
A%ow =0, if Ag=w(z,-) =0 for a.e. z € Q.
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Remark 3.12 (on the notion of Ag--free). If v € CJ, (Y™; R?) satisfies (3.5), then
integration by parts yields

0= /m v(y) - ARv(y) dy = —/m v(y) - Z Z(A(i))TRmialQJ) dy

= [ R 2= [ 30— 2wt ay

i=1 m=1 Ym Y™ 1 m=1

for all ¢ € C#(Ym; R"). Thus, Ag+v = 0 pointwise in R™, where

Ag~ = — ZZR

i=1 m=1

ay’"b

We observe further that, as a consequence of our analysis in section 5 (see Re-
mark 5.7), in R™ and in the A = curl case we have that v € LZE(Y“‘; R™) is Ag--free
if and only if v € Gf, where G¥, is given by (1.12).

DEFINITION 3.13 ((A, Ag. )-free fields). Let w € LP(Q; LL (Y™ R")), and de-
fine wo € LP(Q;R™Y) and wy € LP(Q; LY (Y™ R™)) by setting @o := fym w(-,y)dy
and Wy 1= w — Wy. We say that w is (A, AR.)-free if

Awg =0 and Aj.w1 =0

in the sense of Definitions 2.1 and 3.11, respectively.

The next proposition shows that the R-two-scale limit of an LP-bounded sequence
of A-free vector fields is necessarily (A, A%.)-free. This result is the quasi-periodic
counterpart of [31, Proposition 2.11] concerning the periodic case.

PROPOSITION 3.14. Let {uc}e be a bounded and A-free sequence in LP(Q;RY).
Assume that there exists a function u € LP(Q x Y™ RY) such that u. fi-2se
Then, u is (A, A'R.)-free in the sense of Definition 3.13.

Proof. Let ¢ € CL(£2;RY). Using the fact that each u. is A-free first, and invoking
(3.1) applied to ¢ := A*¢p, we get
(3.6)

0= lim [ u(z) A"¢(z)dz = /Q][ u(z,y) - A*¢(z) dedy = /Qﬂo(sc) - A% () dz,

e—0t Jo

where g = fym u(+,y)dy. Recalling Definition 2.1, (3.6) shows that Aug = 0 in
LP(;RY).

Next, we prove that A%.%; = 0 with @ := u — Gp. Let ¢ € C}(Q) and ¢ €
C#(Y“‘;]RH), and set p.(z) 1= eg(z)y (EL) for € Q. Then ¢, € CH( R with

- 0905
Z T ox; (z)

=

i
i
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Hence, arguing as above, we have
(3.7

0= lim /uE(I)A*cps(x) dz

e—=0t Jo

where in the last equality we used the fact that o depends only on z, and . yeARY(y)dy =
0 by the periodicity of .

Because (3.7) holds for all ¢ € C}(2) and o € C#(Ym;]RH) and C;E(Ym;]Rﬂ) is
separable, we conclude that A%.%; = 0 in the sense of Definition 3.11. ]

The next proposition shows that Proposition 3.14 fully characterizes the R-two-
scale limit of an LP-bounded sequence of A-free vector fields, as we prove that any
(A, A%.)-free vector field is attained as the R-two-scale limit of such a sequence.
This result is the quasi-periodic counterpart of [31, Proposition 2.11] concerning the
periodic case. Moreover, as we mentioned in the introduction, this result is new in
the literature even for p = 2 and A = curl or A = div which were treated in [8, 60].

PROPOSITION 3.15. Let u € LP(£; L;(Y]m;]Rd)) be an (A, A%.)-free vector field
in the sense of Definition 3.13, and assume that R satisfies (1.2). Then, there exists

a bounded and A-free sequence, {u.}e, in LP(;RY) such that u. R-a2sc

Proof. Fix u € LP(Q; LY, (Y™; RY)), an (A, A%.)-free vector field. We have

(38) Atig =0 and .A?ﬁ*ﬂl =0

in the sense of Definition 2.1 and Definition 3.11, respectively, where tig := fy.., u(-,y) dy
and %y := u — %g. Note that for a.e. x € §2, it holds that

(3.9) / (e y)dy =0,

We will proceed in three steps.
Step 1. Assume that 4o = 0 and 4y € C’Cl(]Rm;C;ﬁ(Ym;]Rd)). In this case, (3.9)
holds for all z € €2, and, as observed in Remark 3.12, we have

(3.10) Ag-u; = 0 pointwise in Q x R™, where Ap- = — g E RZmA(z)a—.
; Ym
i=1 m=1

For each ¢ > 0, define v. € C}(R™) by setting

R
(3.11) ve(z) =Wy (x, ?a:) for x € R"™.
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By Corollary 3.8 and Proposition 3.4, together with (3.9), we obtain
{v.}. is a p-equi-integrable sequence in LP(Q; RY),
(3.12) ve B2 g,
v. — 0 weakly in LP(Q;RY).
On the other hand, in view of (3.10) and recalling Remark 2.2, we have

Ave(x) = (Agm) (. %)

for all z € Q. Because Azu; € C.(R™; C#(Ym; RY)), we may invoke Proposition 3.4
and (3.9) once more to conclude that

Ave = (A, y) dy = Am( f

a1 (z,y) dy) = 0 weakly in LP(; RY).
Ym

m

Hence,
(3.13) Av, — 0 in W=HP(Q; R,

Let II C R™ be a parallelotope containing 2. By Lemma 2.3, we can find a p-
equi-integrable sequence in II, {u.}. C LP(IT;RY), and a positive constant depending
only on A, C'= C(A), such that

Au. =0 for all € > 0,
(3.14) u. —ve — 0 in LP(Q; RY),
||UEHLP(H;]Rd) < C”UE”LP(Q;]RC‘) for all € > 0.

To conclude Step 1, we observe that the second condition in (3.12) and (3.14), together
with Proposition 3.5, yield

(3.15) ue 2250 .

Step 2. Assume that 4 = 0 and 4y € LP(Q; L (Y™ RY)).

For all y € R™, we extend u1(+,y) by zero outside 2, which we still denote by
1. Let {p;}jen C CP(R™) and {pf}jeN C C(Y™) be sequences of standard,
symmetric mollifiers. For each j € N, we define

(2, y) = / / a1 (2!, )3 (w — o)t (y — o) do'dy’

=/ / (2, + y)pj(a — a)pl (y') da'dy,

where in the last equality we used the Y ™-periodicity of #; along with the sym-

metry and Y™-periodicity of pf. By standard mollification arguments, we have

i; € O (R™; 05 (Y™ RY)) with

] Lo (mm; e (vemira)) < U1l e (e (vemira))-

Moreover,

Apg+t; = 0 pointwise in 2 x R™ and / (-, y)dy =0
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by (3.8) and (3.9), together with the Y™-periodicity of 4; and Fubini’s theorem.
By Step 1, for each j € N, we can find a p-equi-integrable sequence in I, {u(j )} C

LP(IT; RY), satisfying (3.14)—(3.15) with u. replaced by ud and, recalling (3.11), v
replaced by

- R
v (z) = 4, (a:, —x) for x € R™.
€
In particular, we have

limsuplimsup/ |u j) |pdx C”hmsuphmsup/ ’ﬂj x

g0 e—0F j—00  e—0t

=CP hmsup/ ][ | (z,y) P dedy

j—o0
Em(ym CpHulHLp(Q Lp(Y™:Rd))"
This estimate and the separability of L¥’ (Q; C(Y™;R™)) allow us to use a diagonal-
ization argument as in [29, proof of Prop. 1.11, p. 449] to find a sequence (j:). such
that j. — oo as € — 0" and u, := u?s) satisfies the required properties.

Step 3. We treat the general case.

By Step 2, there exists a bounded and A-free sequence, {u.}., in LP(£2; R?) such
that u. R-ase uy. Defining . := ug + u., we have Ad, = 0 and . R-2se
up + u; = u, using (3.8) and Proposition 3.5. |

Proof of Theorem 1.3. The statement in Theorem 1.3 in an immediate conse-
quence of Propositions 3.14 and 3.15. 0

4. T'-convergence homogenization. In this section, we prove Theorem 1.1.
To this end, we first show in Theorem 4.1 below that the sequence {F.}., with F.
given by (1.4), I'-converges to a certain functional, Fyom, with respect to the weak
topology in LP(Q;RY), as ¢ — 0F. Then, in Proposition 4.6 below, we establish the
integral representation for this I'-limit as stated in Theorem 1.1.

THEOREM 4.1. Let Q C R™ be an open and bounded set, let fr : @ x R" x RY —
[0,00) be a function satisfying (H1)—(H3), let F. be the functional introduced in (1.4),
and assume that (1.6) holds. Then, the sequence {F.}. T'-converges on Us = {u €
LP(Q;RY): Au = ()} as € — 0%, with respect to the weak topology in LP($;RY), to
the functional Fynom defined, for u € Uy, by

From(w)i= inf [ £ rlapute) +w(o.9) dod,
weW A ym

where

(4.1)
Wy = {w € L”(Q;L;(Ym;]Rd)):w is (A, AR.)-free in the sense of Definition 3.13,

with/ w(-,y)dy = O}.

Precisely, given an arbitrary sequence {e, }nenw C RT converging to 0, the following
pair of statements holds:
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1. (T-liminf inequality). Let {un}nen C Ua be a sequence such that u, — u in
LP(;RY) for some u € LP(Q;RY). Then, u € Uq and

hm 1nf Fan (Un) 2 fhom(”) .

n—oo

2. (recovery sequence). For every u € Ua, there exists sequence {un tnen C Un
such that w, — u in LP(Q;RY) and

limsup F;, (tn) < Fhom(u).
n—oo

The proof of Theorem 4.1 is obtained as a consequence of Propositions 4.3 and
4.4 below. We begin with a lemma that will be used in the subsequent proposition,
where we establish the recovery sequence property, and is a simple adaptation of [31,
Proposition 3.5-(i)].

LEMMA 4.2. Assume that hypotheses (H1)—(H2) hold. Let {en}nen C RT be a
sequence converging to 0, and let {uptnen, {Wntnen C LP(LRY) be two p-equi-
integrable sequences such that lim, . |4y — Wyl Lrray = 0. Then,

lim ; {fR(x, %,u“w)) dx — fR(;v, ;,wn(x))] dx = 0.

n— oo n

Proof. Fix 7 > 0. We want to show that there exists ng = ng(7) € N such that
if n > ng, then

‘/Q [fR(x’ %,un(x)) dz — fR(Sc, é,wn(x))] dz

Using the p-equi-integrability of {u,} and {w,}, there exists § = §(7) > 0 such
that if £ C Q is a measurable set with |E| < d, then

<7

(4.2) sup / C(2 + [un(@)? + [wn(@)P) de < T
neNJE 8

Moreover, there exists r5 > 0 such that
(4.3) sup [[{hua| > 73} + [l > rs}] <8
ne

Let Q5 € Q be such that |\ Q5| < . Using the continuity assumption on f
and the Y™-periodicity of f with respect to its second variable, we conclude that f is
uniformly continuous on Qs x R™ x B, (0). Thus, we can find 0 < § < & such that,
for all x € Qs, y € R™, and &1, & € B, (0) with |&; — &| < 0, we have

(4.4) |f (@, y.61) — fla,y.6)] < ﬁ

Finally, by Chebyshev’s inequality, there exists 0 < § < & such that if ||v|| Lr(@Re) <
5, then
(45) (ol > 8| <4

We observe further that because lim, oo [[tn — Wl Lr(;ra) = 0, we can find ng =
no(7) € N such that [[u, — wy 1rmre) < 6 for all n > ny.
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Thus, for each n > ng and for A := (Q\ Q) U {|un| = 75} U{|wn| = 75} U {un —
wy| = 0}, we conclude from (H2), (H3), and (4.2)—(4.5) that

,i,wn(x))} dx

n

; [fR(x, é,un(x)) da — fR(x
</ (2+\un< P+ fuwn(a)?) d

‘ /Q\A - (x)) dz — f(x, I;—j,wn(:c)” dz

Al < a0

2\9 |

The recovery sequence property in Theorem 4.1 is a simple consequence of the
following proposition. We observe that this result does not require assumption (H3)
to hold and is the quasi-periodic counterpart of [31, Proposition 2.7] concerning the
periodic case.

PROPOSITION 4.3. Assume that hypotheses (H1)—(H2) hold, and let Ua be the
set introduced in (1.9). Then, for each § > 0, u € Ua, and w € Wy = {w €
Lr(Q; L;(Ym;le)): w is (A, A%.)-free in the sense of Definition 3.13}, there exists
a sequence {u:} C U such that ue — u + wy weakly in LP(Q;RY) as e — 0T and,
for all k € N,

@o)  tm [ fa(eZow@)do< [ £ flmu) + o) dpds+
g QJym

e—0t Jq
where, recalling Definition 3.13, we have Wy := fy, w(-,y) dy.

Proof. Fix § > 0, u € Uy, and w € W,. We will proceed in two steps, first
assuming extra regularity on w, and then treating the general case.
Step 1. Recalling the decomposition w = wy + w; introduced in Definition 3.13,
assume that w; € C'(Q; CL(Y™; R")).
For k € N and (z,y) € Q x Y™, define
V(z,y) = f(z, ky,u(z) + w(z,y)) = fz, ky, u(z) + ©o(x) + 01 (2, y)).

Using (H1), (H2), the continuity of f, and the regularity of w;, we conclude that
¥ € LY(Q;Cx(Y™)). Then, by Proposition 3.7, we have

Rz
lim ¢( x dx —/ Y(z,y) dady,
Q € ym

e—=0t

ie.,

(4.7) lim Ir (x, g, wg(x)> dzr = /ﬂ - flx, ky,u(z) + w(z,y)) dyde,

e—=0t Jo

where, for z € Q,

we(z) == u(z) + Wo(x) + Wy (x, %)

Arguing as in Step 1 of the proof of Proposition 3.15 with u; replaced by w; in
(3.11), and using the fact that Au + Awg = 0 by the definition of U, and W 4, we
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conclude that (see (3.12)—(3.13))

{w.}. is a p-equi-integrable sequence in LP(Q; RY),
we — u + Wy weakly in LP(Q;]Rd),
Aw, — 0 in W=HP(Q;RY).

Then, by Lemma 2.3, we can find a sequence {u.}. C LP(€2; R?) such that
{uc}e is p-equi-integrable,

Au. =0 in LP(Q;RY),
ue —w. — 0 in LP(; RY).

In particular, u. — u + wo weakly in LP(£2; RY). Moreover, by Lemma 4.2, we have

lim ; fr (az, ?%(@) dr = lim ; IR (m, %,ws(x)) dz,

e—0t e—0t

which, together with (4.7), concludes Step 1.

Step 2. We treat the general case.

Fix j € N. Arguing as in Step 1 of the proof of Proposition 3.15 with 4y replaced
by w1, we can find w; € C'(Q;CL(Y™;RY)) such that wy + @; € W4 and [[w; —
W ||Lp(Q;Lp#(Ym;Rd)) < % Then, extracting a subsequence of {0, } ;e if necessary, the
Vitali-Lebesgue theorem and (H1)—(H2) yield

lim /Q - [z, ky, u(x) + wo(z) + w;(x,y)) dydz

j—o0
= /Q - f(z, ky, u(z) + wo(x) + w1 (x,y)) dyda.
Hence, we can find j5 € N such that
[ £ 1)+ n(w) + o) duda
< /Q - flz, ky,u(z) + wo(z) + w1 (z,y)) dydz + 4.

To conclude, we invoke Step 1 to find a sequence {u.} C U4 that depends on 4,
u, and w, such that u. — u + wo weakly in LP(Q;R%) as e — 0% and, for all kK € N,

lim /r (3:, E,%(x)) dz = / fz, ky, u(z) + Wo(x) + Wy, (x,y)) dyde. 0O
Q € QJym

e—0t

Next, we establish the I'-liminf inequality property stated in Theorem 4.1.

PROPOSITION 4.4. Let {ep nen € RT be a sequence converging to 0, and let
{un}nen C U4 be a sequence such that u, — u in LP(Q; RY) for some u € LP(Q;RY).
Then, under the assumptions of Theorem 4.1, we have u € U4 and

(48) lim inf an (Un) 2 fhom(u)'

n—oo
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Proof. The condition u € U4 follows from the fact that w, € Uy for all n €
N together with the convergence u, — wu in LP(€;R%). Moreover, by Proposi-

tions 3.14 and 3.4 and the uniqueness of R-two-scale limits (see Remark 3.2), we

have u, —=s v for a vector-field v that is (A, A% )-free in the sense of Defini-

tion 3.13, with [, v(-,y)dy = u(-). In particular, we have the decomposition
v=u+uv, v € LP(Q;L’;(Ym;]Rd)), Ao = / v1(-,y)dy = 0.

Let {1;}jen C Ce(Q;Cx(Y™;R")) be a sequence converging to v in LP(Q x
Y™ RY) and pointwise in 2 x Y™. By (H3), we have, for all n, j € N,

1o B w0) 2 1o 2 ()

e B (0 ) (o ),

Integrating this estimate over 2 and passing to the limit as n — oo, we invoke
Proposition 3.7 and (H2)—(H3) to infer that

liminf F._ (u )—hmlnf/ f(yc,&7 ())dx

n—oo n—oo

/][ f(@,y, (. y)) dwdy+/][ % (=, 9,05 (2,9)) - (v(z,9) = ¢;(x,y)) dedy

for all j € N. Letting j — oo in this inequality, Fatou’s lemma and (H1) yield

n—oo

liminf F. (uy) / f(z,y,v(z,y)) dydz —/ flzyy,u(x) + vi(x,y)) dydx
ym ym

> inf / Fa, . u(z) + w(, 9)) dedy = Foom(u). 0
WEW 4 ym

Proof of Theorem 4.1. Proving that both the I'-liminf inequality and the recovery
sequence properties in Theorem 4.1 hold is equivalent to proving that (see [22]) for
all u € U4, we have

(4.9) Fhom (u) = T-liminf F, (u) = I-limsup F;, (u),

n—oo n— oo
where {€, }nen C RT is an arbitrary sequence converging to 0 and

I-liminf F, (u)

n—o0

= inf{hmlan (un): up — uin LP(RY) as n — 0o, Au, =0 for all n € ]N}7

n—oo

I-limsup F., (u)

n—o0

= inf { limsup F., (u,): w, — u in LP(Q;RY) as n — oo, Au,, = 0 for all n € ]N}.

n—oo
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Taking the infimum over all admissible sequences on (4.8), we conclude from
Proposition 4.4 that

(4.10) I-liminf F, (u) 2 Fhom(u).

n—oo

On the other hand, Proposition 4.3 with x = 1 and wg = 0 yields

I-limsup F;, / f(z, ky,u(z) + wy(x,y)) dydx + §
Ym

n—oo

for all § > 0 and w; € W4. Hence, taking the infimum over w; € Wy, and then
letting 6 — 0, we get

(4.11) I-limsup Fe,, (u) < Fhom(u).

n—oo

Because I'-liminf, ,o F. (u) < I-limsup,,_, F, (u), we obtain (4.9) from (4.10)
and (4.11). O

Next, we establish an integral representation for the functional F,op, introduced
in Theorem 4.1. This integral representation is the quasi-periodic counterpart of [31,
Corollary 3.2] concerning the periodic case, and its proof uses the following measurable
selection criterion, proved in [31, Lemma 3.10] (also see [18]).

LEMMA 4.5. Let Z be a separable metric space, let T be a measurable space, and
let T : T — 2% be a multivalued function such that (i) for every t € T, Y(t) C Z is
nonempty and open; and (ii) for every z € Z, {t e T: z € Y(t)} C T is measurable.
Then, T admits a measurable selection; that is, there exists a measurable function,
v:T — Z, such that v(t) € T(t) for allt € T.

PROPOSITION 4.6. Under the assumptions of Theorem 4.1, for all u € Uy, we
have

(412) -Fhom / fhom LC ’LL

where

From(@,6) = mff F(, 9.6+ v()) dy

veEY

with V4 given by (1.10).
Proof. Let u € U4. Note that, by (H2), we have

(4.13) 0 < fhom(2,€) < C(L+[¢7)
for all (z,¢) € Q x RY. Moreover,
(4.14) T € Q> from(z, u(z))

is a measurable map. In fact, let V4 be a countable and dense subset of V4 with
respect to the (strong) topology of L;(Ym;le). We observe that such a set Vyu

exists because V4 is a subset of the separable metric space L’;#(Y]m; Rd). Then, the
continuity of f (see (H1)), the Vitali-Lebesgue theorem, and (H2) yield

inf f(z,y,u(z) +v(y))dy = inf f(z,y,u(z) +v(y)) dy,

vEV A ym vEV 4 ym
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from which we conclude the measurability of the map in (4.14).
Fix w € Wy4. For a.e. z € Q, we have w(z, ) € V4; hence, for a.e. z € ),

inf [y, u(@) +o)dy < £ fla,y,u(z) +w(z,y)) dy.
vEVA Jym ym

Integrating this estimate over €2, and then taking the infimum over w € Wy, we
conclude that

/ Srhom(z,u(z)) dz < Fhom(w).
Q

To prove the converse inequality, we first observe that, by (4.13), we may assume
that

(4.15) from(x,u(z)) € R for all x € Q

without loss of generality. Fix § > 0, and consider the multivalued function Y5 : Q —
P m,pd
oL% (YR defined, for = € Q, by

T(w) = { eVa: £ Flayu@) + o) dy < fuom(e, ulz) + 5}.

ym

Also, let § € (0,6) be such that
(4.16) / C + Ju(@)P) dz < 6
E

whenever E C () is a measurable set with £*(E) < §, where C is given by (H2).
By (4.15), we have Ts(z) # 0 for all x € Q. Furthermore, arguing as above, using
the continuity of f, the Vitali-Lebesgue theorem, and (H2), it can be checked that

for each x € Q, LL, (Y™; R™)\ Ts(z) is a closed subset of L (Y™, RY). On the other
hand, recalling the measurability of the map in (4.14), we have that

x> h(z) = - flx,y,u(x) +v(y)) dy — from(z, u(z)) —d

defines a measurable map for each v € L;(Ym;]R‘d). Thus, {z € Q: v € Ts(x)} =
h=1((—o0,0)) is a measurable set for each v € L’;(Ym;]Rd). Consequently, by
Lemma 4.5, there exists a measurable selection, ws : Q — L’;& (Y™ R"), of Ts. More-
over, by Lusin’s theorem, ws € LP({s; L%(Y]m; R™)) for a suitable measurable set 25
such that £™(2\ Qs) < 0.

Finally, we define ws € W4 by setting ws(x) := ws(x) if © € Q5, and ws(x) :=0
if x € Q\ Q. Then, using the definition of Fpom (v), (H2), (4.16), and (4.13), we get

Fromlw) < [ £ g uta) + ws(z. ) dady
Q Ynn
<5+ / fz,y, u(z) + ws(x,y)) dedy
Qg Y m

<O+ L7(Q)) + / Fuom(,u(z)) dz,

from which we conclude the desired inequality by letting § — 0. O
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Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of Theorem 4.1
(also see (4.9)) and Proposition 4.6. d

5. The curl case. In this section, we prove Theorem 1.4 that provides an equiv-
alent alternative characterization for the R-two-scale limit of bounded sequences in
WP corresponding to A = curl in Theorem 1.3. In this case, by Proposition 3.9 and

extracting a subsequence if necessary, we have u, R-2se ug and Vu, R-asc Uy for
some ug € LP(Q2 x Y™) and Uy € LP(Q2 x Y™;R™). Next, to study the relationship
between ug and Uy, we use Fourier analysis. As we mentioned before, this is the
approach adopted in [8]; however, the arguments in [8] hinge on the Parseval and
Plancherel identities, which are valid in L?(£2) only. Instead, our main tool here relies
on the following theorem, which may be found in [34]. For simplicity, we take

Y™ =[0,1)™,

and we use the Einstein convention on repeated indices.
THEOREM 5.1. Let w € L% (Y™), and define!

wy(y) == Z Wpe?™* Yy e Y™ NeN,

kezm
[kloo <N

where Wy, 1= fym w(y)e 2™k v dy, k € Z™, are the Fourier coefficients of w. Then,

o <C )
H J?flg]?\f |wN|’ LP(Ynn) = p,mnw”[m(y )’
(5.1) Jimfwy = wl|pn(ym) =0,

lim wy(y) = w(y) for a.e.y € Y™,
N—o00

where C, , 15 a positive constant depending on p and m only. Moreover, for all
ke z™,

(5.2) k] < wll7 o (ymy-

Proof. The proof of (5.1) may be found in [34, Thms. 4.1.8 and 4.3.16] (see
also [34, Def. 3.2.3]).

To prove (5.2), we use Jensen’s inequality and the equality |e=2™**¥| = 1, k € Z™,
to obtain

@ < [ e dy = [l :
Remark 5.2. Let w € LP(Q; LY, (Y™)), and define

on(e)i= [ fuw(ey) - we )l dy, €9 NeN,

where wy (z,y) = Zlk‘ezm Wy (2)e*™ R Y with g () = [jm w(z,y)e 2RV dy, k €
kloo <N
Z™. By (5.1), for a.e.-xz € Q, we have
sup Jon ()] < é,,,m/ (-, )| dy € LX(Q) and Tim vx(z) = 0.
NeN ym N —o0

n the literature, wy are called the square partial sums of the Fourier series of w.
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Thus, by the Lebesgue dominated convergence theorem, it follows that wy — w in
LP(2xY™) as N — 0.

Next, we study some properties of the space G introduced in (1.12) that will be
useful in what follows. We first observe that if p = 2, then it can be checked that

G = {w €LL(Y™R™): w(y)= > MR ke®*Y for some {\g}pezm (0} C @}7
kez\ {0}

and we recover the space introduced in [8].

LEMMA 5.3. Assume that R satisfies (1.2). Then, the vector space G5 introduced
in (1.12) is a closed subspace of L%, (Y™;R").

Proof. Let {w;}jen C Gp and w € LL(Y™;R™) be such that lim; e [Jw; —
wl|Lp(ym;ma) = 0. We want to show that w € G,

For each j € N, let w], and @y denote the Fourier coefficients of w; and w,
respectively. By (5.2), we have lim;_, o |}, — | = 0.

On the other hand, by definition of QPR, for each k € Z™ and j € N, there exists
A, € € such that @], = A\, R"k and X = 0. In particular, @y = 0. Fix ko € Z™\{0};
by (5.2), for all j, 7/ € N, we have

My = Mo 1R Ro| = | (M, = M) R Kol = [, — | < llws = wjllogymmn)

Because R*kg # 0 by (1.2), we conclude that {)\io }jen is a Cauchy sequence in C.
Thus, there exists Ay, € C such that lim;_, |)\£O — Ako| = 0. Consequently, passing
the equality @], = A] Rko to the limit as j — 0o, we obtain 1y, = Ak, R"ko. n]

LEMMA 5.4. Assume that R satisfies (1.2), and let wo € LL(Y™;R™) be such
that

(53) [ wotw) vt dy =0

for all ¢ € C;E(Ym;lR“) with %Rﬂ =0in Y™, wherel € {1,...,n} and 7 €
{1,...,m}. Then, wy € Gh.

Proof. By contradiction, assume that wg & G. Then, using Lemma 5.3, together
with (a corollary to) the Hahn—Banach theorem (see, for instance, [14, Cor. 1.8]), there

exists v € L;; (Y™, R™) such that

(5.4 [ o) wtwydy =0
for all w € G, and
(5.5) [ o) unt)ay o

We claim that %R” = 0 in the sense of distributions. In fact, let ¢ € C37(Y™),
and set w := R*V,¢. Then, w € L;(Ym;]Rm), W = 0, and Wy = 2mid,R*k for all
k € Z™\{0}. Thus, w € G§ and so, by (5.4),

0= [ o) wtdy= [ Rew)-V,00) .

ym
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which shows that 0 = div,(Rov(y)) = div,(v(y)R") = %Rﬂ in the sense of distri-
butions because ¢ € C3°(Y™) is arbitrary.

Using standard mollification techniques with a Y™-periodic, smooth kernel, we
may construct a sequence {vpfren C CFF(Y™;R™) such that div,(vs(y)R") = 0 in
Y™ and limp o0 [[vp = V|| 14 (yem,g=y = 0. Then, by (5.3) with ¢ = v, and by the
Lebesgue dominated convergence theorem, we obtain [, wo(y) - v(y)dy = 0, which
contradicts (5.5). Thus, wy € Gh. 0

PROPOSITION 5.5. Let {us}. C WHP(Q) be a bounded sequence, and assume that
R satisfies (1.2). Then, there exist a subsequence &' < € and functions u € WHP(Q)
and w € LP(Q; GY) such that

R-2sc

R-2sc
Uy ————u and Vue

Vu + w.

Proof. By the reflexibility of W1?(Q) and Proposition 3.9, there exist u € WP(Q),
ug € LP(Q x Y™), and Uy € LP(Q2 x Y™;R™) such that, extracting a subsequence if
necessary,

R-2sc R-2sc
—_

(5.6) ue — u weakly in WHP(Q), u. ——5s uy, and Vau, Up.

By the Rellich-Kondrachov theorem, u. — u in LP(2). Hence, Proposition 3.5
and the uniqueness of the R-two-scale limit (see Remark 3.2) yield

U = ug.
We are left to prove that Uy in (5.6) is of the form Uy(x,y) = Vu(x) + w(x,y)
for some w € LP(Q;Gr). Let @ € C2°(Q2; CZ°(Y™;R™)) be such that %Rﬂ =0in

QAxY™ 1 e{l,...,n}, 7 € {1,...,m}. Then, using integration by parts, the second
convergence in (5.6), and the fact that ug = u € WHP(Q), we obtain

/ Uo(z,9) - (x, ) dady
Qxym
= lim /Vus )dx
e—0+

B Ra 1 0%,/ Rz
*7615& </Q’U,5( )lem(p(IL’ 7)(1 x4+ — /Q s(x)a%<x,€>RTde>

R
=— lim [ w.(z)div, <I>(x, 733) dz = — / u(z) div, ®(z, y) dedy
9 Qxym

e—=0t Jo
= / Vu(z) - ®(z,y) dady.
Qxym

Hence,

/ (Uo(z,y) — Vu(z)) - ®(z,y) dedy =0
Qxym

for all @ € C(Q;CF(Y™;R")) such that %Rﬂ = 0 in Q x Y™. Invoking
Lemma 5.4, we conclude for a.e.-x € Q that Uy(z, ) — Vu(z) € G, which, together
with the fact that the map (z,y) — Up(z,y) — Vu(x) belongs to LP(Q x Y™; R™),

concludes the proof. 0
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The next proposition shows that Proposition 5.5 fully characterizes the R-two-
scale limit of bounded sequences in W1P(Q). To the best of our knowledge, in the
framework of R-two-scale convergence, this result is new in the literature even for
p=2.

PROPOSITION 5.6. Let u € WHP(Q) and w € LP(Q;Gg), and assume that R
satisfies (1.2). Then, there exists a bounded sequence {uc}. C WHP(Q) such that

R-2sc

R-2sc
Uy ———> u and Vug

Vu+ w.

Proof. We first consider the case in which w € W'*(Q; Gh).
For each k € Z™, define

wg(x) == / w(z,y)e ™ FYdy, ze Q.

Because w € W'P(Q; Gh), we have @), € WP(Q; C™) with @y = 0; moreover, for
a.e.-z € ), we have wy(r) = A\ (x) R*k for some )\, € WHP(Q; C) with \g = 0.
For each N € N, let wn € WHP(; C(Y™; C)) be the function defined by

~ 1 mik- m
oy (z,y) == E %)\k(x)@ Y (2,y) € O x R™,
kez™
Ieloo <N

Note that the function

U)N(.’B7 y) = R*Vyu?N(a:’y) = Z )\k(x)R*keQTrik'y

kez™
IFloo <N
= Z g (2)e?™ MY (2,y) € Q x R™,
kezZm
kloo <N

belongs to WHP(€; C(Y™;R™)) and, by Remark 5.2, satisfies

(5.7) lim lwn (z,y) — w(z,y)|P dady.
N=oo Joxym

Finally, for each ¢, we define wy := Re(wy) and
ue,N(z) = u(z) + ewn (:1:, %), x € Q.
Then, u. y € WHP(Q) with
[ue, N llLr () < [lullzr) + ellON Ly (vm))
and

HVUE,NHLP(Q;Rm) < ”VUHLT’(Q;]R’“) =+ 5||vwa”LP(Q;C#(Y““;IR“)) + HwNHLP(Q;C#(Ym;]R“))-
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Let o € LP' (9;Cx(Y™)) and ® € LP (Q; Cx(Y™;R™)). By Proposition 3.7, we
have

. . Rz
(5.8) lim lim u&N(az)go(a:, ?)

N—ooe—0t /o

dz
= lim lim (u(x)—i—sz (x, %))g@(m, %)dx

N—ooe—07t /o

= / u(z)p(z,y) dedy
QxYym

and, also using (5.7),

N—00e—0+

lim lim / Ve n(z) - @(m, &> dz
Q €
(5.9) = lim lim (Vu(x) + EV;D?IJ(JJ, %) +wn (JI, %)) : q)(x, &) dz

N—ocoe—01 Jq 3

_ / (Vu(z) + w(z,y)) - &z, y) dady.
QxYym

Due to the separability of L (Q; Cu(Y™)) and L? (Q; C(Y™;R™)) and (5.8)-
(5.9), we can proceed as in [29, proof of Prop. 1.11, p. 449] to find a sequence {N}.
such that N. — co as ¢ — 07 and . := u. n. € WHP(Q) satisfies

Jim [ @ (e Y de = /Q  ul@)pla.y) dady
and
. - Rz
lim [ Va.(x)- @(33, —) dx = / (Vu(z) + w(z,y)) - (z,y) dedy
e=0% Jo € Qxym

for all ¢ € L' (Q; C(Y™)) and ® € L¥ (Q; Cx(Y™;R™)); that is,

~ R-2sc ~ R-2sc
g ——u and Vi,

Vu+ w.

The boundedness of i, in WP (Q) follows from Proposition 3.4.
To conclude, we treat the general case in which w € LP(Q;G%). We claim that
there exists a sequence {wn }nyen C W1P(£2; Gh) such that

(5.10) Jim oy —wllze@xymgn) = 0.
Assume that the claim holds. Then, by the previous case, for each N € N, there
exists a bounded sequence {u}. € WP(Q) such that

R-2sc

(5.11) uY 2wy and Vil B2 Vu+ wy

as e — 0.
Let ¢ € LV (Q;Cx(Y™)) and ® € LP' (Q; Cx(Y™;R™)). Using (5.11) first, and
then (5.10), we obtain

R
lim lim uév(x)np(x,g) d:U:/Q y u(z)p(z,y) dedy
ym

N—ooe—0t Jo
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and
lim lim [ Va2 (z)- <I><x, &) dz = lim (Vu(z) + on(x,y)) - D(z,y) dedy
N—ooce—0t Jo ¢ € N—oo Joxym

= / (Vu(z) + w(z,y)) - ®(z,y) dedy.
Qxym

Finally, arguing as in the previous case, we can find a sequence {N.}. such that
N. — o0 as € — 0%, and @, := ul¥e € WP(Q) satisfies the requirements.
We are left to prove (5.10). As before, for each k € Z™, define

wy(z) = / w(z,y)e ™ FYdy, xeQ.

Because w € LP(Q2;GR), we have Wy € LP(Q; C") with wy = 0; moreover, for a.e.-
z € Q, we have wy(z) = Ap(x)R"k for some A\, € LP(Q; C) with A\g = 0. Then, for
each k € Z™, we can find a sequence {\].};en C WP(Q; C), with A} = 0, such that
)\i — Mg in LP(Q; C) as j — oo. In particular, we have

(5.12)

lim (/ Ag;(x)R*k—Ak(x)R*kwdmy = lim |R*k|(/ M (z) = Ap(@)[? da:)p —0.
j—o0 Q j—o0 Q

Fix N € N; by (5.12), there exists jy € N such that

(5.13) > (/Q NN (2) Rk — A(z) R K|P da:)p < %

kezZm™m
[kloo <N

Defining

wn(z,y) = E MY ()R ke®>™™ Y and wy := Re(wy),
yezm
Ikloo <N

we have wy € W'P(; G ); moreover, invoking Remark 5.2 and (5.13), we have

lim sup (/ [wn (2, y) —w(z, y) dwdy) ’
QxYym

N—oc0

1
< limsup </ lon (2, y) — w(z,y)P dxdy) '
Qxym=

N—o00

1
< limsup K / i (@, ) — w(w)pdzdy)
Qxym

N—o00

’ (/QXY““ o (@, y) —w(z,y)” dxdy) 1

= lim sup (/
N—o00 QxYym

which concludes the proof of (5.10). d

> 8 @) = M) B ke
kezZ™
[kloo <N

p ? 1
dad < i — =0,
x y) 1msupN 0

N—o00
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Remark 5.7. Let Q C R™ be a simply connected, bounded, and open set. Ap-
plying Proposition 5.6 to v = 0 and w € G, we can find a bounded sequence
{uc}e € WHP(Q) such that

R-2sc

R-2sc
e ——— 0 and Vu,

Then, by Proposition 3.4, we have u. — 0 in W'?(Q) and [,... w(y)dy = 0. On
the other hand, using the uniqueness of the R-two-scale limit (see Remark 3.2) and
Proposition 3.14 with d = n and A = cwrl in R, we conclude that w € L%, (Y™; R")
is Agp~-free in the sense of Definition 3.11.

Conversely, if w € L, (Y™;R") is Ag--free with [, .., w(y) dy = 0, then by Propo-
sition 3.15 there exists a bounded and A-free sequence, {u.}., in L?(Q2;IR™) such that

R-2sc . . .
Ue ———— u. As we are in the A = curl case and € is simply connected, we can

find a bounded sequence, {v}., in WP(Q) such that [, ve(x)dz = 0 and Vo, = u..
Then, by Proposition 3.4, we deduce that v. — 0 in WP(2). Finally, Remark 3.2
and Proposition 5.5 yield w € GF.

Thus, in the A = curl case in R"™, we have that w € L; (Y™, R™) is Ag--free in
the sense of Definition 3.11 if and only if w € G.

To conclude, we observe that Theorem 1.4 is an immediate consequence of the
previous results.

Proof of Theorem 1.4. The claim in Theorem 1.4 follows from Propositions 5.5
and 5.6. O
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