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S U M M A R Y
Frequency-domain wavefield solutions corresponding to the anisotropic acoustic wave equa-
tion can be used to describe the anisotropic nature of the Earth. To solve a frequency-domain
wave equation, we often need to invert the impedance matrix. This results in a dramatic in-
crease in computational cost as the model size increases. It is even a bigger challenge for
anisotropic media, where the impedance matrix is far more complex. In addition, the con-
ventional finite-difference method produces numerical dispersion artefacts in solving acoustic
wave equations for anisotropic media. To address these issues, we use the emerging paradigm
of physics-informed neural networks (PINNs) to obtain wavefield solutions for an acoustic
wave equation for transversely isotropic (TI) media with a vertical axis of symmetry (VTI).
PINNs utilize the concept of automatic differentiation to calculate their partial derivatives,
which are free of numerical dispersion artefacts. Thus, we use the wave equation as a loss
function to train a neural network to provide functional solutions to the acoustic VTI form
of the wave equation. Instead of predicting the pressure wavefields directly, we solve for the
scattered pressure wavefields to avoid dealing with the point-source singularity. We use the
spatial coordinates as input data to the network, which outputs the real and imaginary parts of
the scattered wavefields and auxiliary function. After training a deep neural network, we can
evaluate the wavefield at any point in space almost instantly using this trained neural network
without calculating the impedance matrix inverse. We demonstrate these features on a simple
2-D anomaly model and a 2-D layered model. Additional tests on a modified 3-D Overthrust
model and a 2-D model with irregular topography further validate the effectiveness of the
proposed method.

Key words: Neural networks, fuzzy logic; Numerical modelling; Seismic anisotropy; Wave
propagation.

1 I N T RO D U C T I O N

Frequency-domain wave equation modelling is an important topic in
seismic exploration. By inverting a potentially large impedance ma-
trix of the wave equation, which is also referred to as the Helmholtz
equation, the resulting Green’s function can be used to invert for
the structures of the subsurface using many techniques, like reverse
time migration or full-waveform inversion (FWI). A simple acous-
tic isotropic assumption of the Earth often causes poor results in
many areas, especially those with strong anisotropy.

Seismic anisotropy is an important factor that influences wave
propagation. Geophysicists have noted anisotropy in the data since
half a century ago (Postma 1955; Stoep 1966). However, this impor-
tant feature has not been considered in seismic imaging or inversion
until the last two decades. The rapid improvements of the computing

capabilities and the data quality make the seismic anisotropy more
visible. However, solving the elastic wave equations considering
the full anisotropy is still computationally unaffordable for large
models. The most commonly used model to represent the Earth’s
layered structure is the transversely isotropic (TI) model (Tsvankin
2012). Assuming anisotropy is mostly induced by the sedimenta-
tion process, which depends on gravity, the axis of symmetry is
more likely to be vertical. To improve the computational efficiency,
Alkhalifah (2000) derived an acoustic wave equation in transversely
isotropic media with a vertical symmetry axis (VTI media) using
an acoustic dispersion relation obtained by setting the vertical shear
wave velocity to zero (Alkhalifah 1998). To simplify the original
fourth-order differential equation, Zhou et al. (2006) proposed a set
of second-order wave equations for VTI media by introducing an
auxiliary wavefield function. This new acoustic VTI wave equation

846 C© The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/846/6081098 by King Abdullah U

niversity of Science and Technology user on 26 April 2021

http://orcid.org/0000-0002-1087-8701
mailto:chao.song@kaust.edu.sa


PINN modelling 847

is easier to solve and apply to waveform inversions than the orig-
inal fourth-order formula (Song & Alkhalifah 2020c). Currently,
anisotropy is considered, in many areas, an essential ingredient to
include in seismic imaging.

The impedance matrix lengths in both vertical and horizontal di-
rections for an acoustic VTI wave equation are twice as big as the
case for isotropic media, as it needs to include the pressure wave-
field and auxiliary wavefield, simultaneously. As a result, solving
this acoustic VTI wave equation in the frequency domain requires
eight times the computational cost compared to the isotropic case,
which will bring a tremendous burden on our computing resources
(Wu & Alkhalifah 2018a,b). Additionally, it would be more chal-
lenging to obtain wavefield solutions for large models, especially for
3-D cases. Solving the acoustic wave equation for anisotropic media
using the finite-difference method suffers severely from numerical
dispersion artefacts in evaluating the spatial derivatives, especially
for cases in which the sources are located in the anisotropic region
(Alkhalifah 2000; Song & Alkhalifah 2013). This kind of arte-
facts come from a slower traveling wave inherent in the solution of
the acoustic anisotropic wave equation, which is inevitable for the
finite-difference method when non elliptical anisotropy exists. This
is discussed in details in Alkhalifah (2000). These artefacts can be
reduced by placing the sources in the isotropic layer, like in the case
of marine surveys. However, these artefacts are difficult to avoid for
some applications, such as microseismic event estimation (Shi et al.
2018a) and reflection-waveform inversion (Wu & Alkhalifah 2016),
when the sources (or secondary sources) are in the subsurface. In
addition, there is another challenge for the commonly used finite-
difference methods. It is difficult for the finite-difference method
to deal well with models having irregular topography. Although
finite-element and spectral-element methods can achieve seismic
modelling for models with topography, they are often computation-
ally expensive and their accuracy depends on the meshing quality
(Virieux et al. 2011; Trinh et al. 2017). Thus, it is important to
seek an alternative way to obtain wavefield solutions, especially for
anisotropic media.

Machine learning (ML) is quickly gaining a lot of attention due
to its ability to deal with large data. For example, support vector ma-
chine is an effective approach widely used in pattern recognition and
classification (Vapnik 2013), and it has been applied to amplitude-
variation-with-offset (AVO) classification (Li & Castagna 2004),
seismic facies recognition (Zhao et al. 2015), source type classifi-
cation (Song et al. 2018), carbonate pore type classification (Li et al.
2020a) and suppressing image artefacts (Chen et al. 2020; Song &
Alkhalifah 2020a). With the rapid developments in computing ca-
pabilities and the rampant growth of available data, neural networks
(NNs) and different forms of it (e.g. deep/convolutional/recurrent
NN) are gaining more attention. By taking advantage of the abilities
of the convolutional NN in image processing, it has shown effective-
ness in detecting salt bodies (Shi et al. 2018b), horizons and faults
(Wu et al. 2019). Besides classification applications, convolutional
NN can be used to predict low-frequency data to better enable FWI
to converge (Ovcharenko et al. 2019) and monitor the time-lapse
velocity change (Regone et al. 2017). Deep NNs have also been
utilized to pick seismic arrival time (Zhu & Beroza 2019), improve
the resolution of the migrated images by approximating the Hessian
inverse (Kaur et al. 2020) and FWI inverted velocity models by ex-
tracting facies from well-log information (Li et al. 2020c; Zhang &
Alkhalifah 2020). Seismic wave simulations (Siahkoohi et al. 2019;
Moseley et al. 2020) and direct velocity inversions can be solved
by deep NN (Li et al. 2020b; Ren et al. 2020). Besides applications

in seismic exploration, a Gaussian Process ML technique is devel-
oped to apply the electromagnetic inversion (Ray & Myer 2019).
There are also wide applications of ML-based methods in global
seismology, such as inverting surface waves for the global crustal
thickness using NN (Meier et al. 2007), developing an earthquake
early warning system using generative adversarial network (Li et al.
2018), and predicting and detecting earthquakes using DNN (Jiao
& Alavi 2020).

Most of the previous work relies on building the connections
between the input and output data. This kind of supervised learning
often requires a large amount of data and the corresponding manual
labelling in the training process. It is also very dependent on the
training set. Recently, a framework referred to as physics-informed
neural networks (PINNs) has been proposed to solve partial differ-
ential equations (Raissi et al. 2019). PINNs use physical laws in
the loss function instead of pure data-mapping objectives. Using
the concept of automatic differentiation, we are able to calculate
the partial derivatives with respect to spatial and temporal coor-
dinates within the networks and differentiate through them again
with respect to the weights of the network so that they can be
used in a loss function. PINNs demonstrated successful applica-
tions in cardiac activation mapping (Sahli Costabal et al. 2020)
and qualitative flow field characterization (Raissi et al. 2020). In
geophysics, researchers have successfully applied PINNs in solving
the time- and frequency-domain wave equations (Moseley et al.
2020; Alkhalifah et al. 2020a) and isotropic and anisotropic P-
wave eikonal equations (Smith et al. 2020; Waheed et al. 2020a,b).
In solving the Helmholtz equation using PINNs, Alkhalifah et al.
(2020a) propose to solve for the scattered wavefield instead of
solving the wave equation directly to avoid the point-source sin-
gularity. The isotropic acoustic wavefields cannot accurately de-
scribe the wave propagation due to the anisotropic nature of the
Earth. Solving an anisotropic wave equation requires a large amount
of additional computational cost. Analogous to previous work on
solving the Helmholtz equation using PINNs, we can further use
PINNs to predict the pressure wavefields for acoustic VTI media
by using an acoustic VTI wave equation as a loss function. It is
of vital importance to improve the modelling efficiency for fast
seismic imaging, especially for industrial-size 3-D models. Previ-
ous work and current work shown in this paper using PINN focus
on exploration-scale geophysical applications. For global seismol-
ogy problems, it would be more important to develop a fast mod-
elling technique using ML-based methods as global tomography
is far more expensive than seismic tomography (Peter et al. 2011;
Bozdağ et al. 2016).

In this paper, we propose a novel method to solve the scattered
wavefield corresponding to the acoustic VTI wave equation using
PINNs. The background wavefield solutions used in the scattered
acoustic VTI wave equation can be obtained by analytical solutions,
which correspond to an infinite homogeneous velocity model, with
little computational cost. We use spatial coordinate values as input
to the network, and consider the background wavefield, velocity, and
anisotropy parameters as the implicit variables in the loss function.
We build a fully connected deep neural network to train the network.
After training the network, we can predict the real and imaginary
parts of the scattered wavefields for each location in space. For each
velocity model, we need to train a new network. Applications on an
anomaly as well as a layered model show that the proposed method
is able to generate acoustic wavefield solutions free of numerical
dispersion artefacts. An application on a 3-D Overthrust model also
demonstrates the effectiveness of the proposed method.
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2 T H E O RY

2.1 The acoustic VTI wave equation

Considering the anisotropic nature of the Earth, anisotropic acoustic
wave equations are used to simulate wave propagation that approx-
imately represents (at least kinematically) the behaviour of P waves
inside the Earth. In acoustic VTI media, we can solve a coupled
system of second-order differential equations to get the frequency-
domain wavefields. The 3-D frequency-domain acoustic VTI wave
equation with constant density parametrized using the normal move-
out (NMO) velocity vn and the anisotropic parameters δ and η is
stated as follows (Zhou et al. 2006):

ω2mn p + ∂2(p + q)

∂x2
+ ∂2(p + q)

∂y2
+ 1

(1 + 2δ)

∂2 p

∂z2
= s,

ω2mnq + 2η
∂2(p + q)

∂x2
− ∂2(p + q)

∂y2
= 0, (1)

where p is the pressure wavefield and q is the auxiliary perturbation
wavefield associated with anisotropic parameter perturbations; s
denotes the source function; and ω represents the angular frequency.
We use mn = 1/v2

n to represent the NMO squared slowness. As we
mentioned in Section 1, our objective is to solve for the scattered
pressure wavefield δp, which is defined as

δp = p − p0, (2)

where p0 is the background wavefield satisfying the isotropic wave
equation, which is given by

ω2mn0 p0 + ∂2 p0

∂x2
+ ∂2 p0

∂y2
+ ∂2 p0

∂z2
= s, (3)

where mn0 = 1/v2
n0 represents the squared slowness corresponding

to the background model, which we set to be infinite isotropic ho-
mogeneous for simplicity. The background anisotropic parameters
η0 and δ0 are zero. In an isotropic acoustic medium, the auxiliary
function q equals zero. The 3-D isotropic acoustic wave equation
for a constant velocity and a point source located at xs allows an
analytical solution , which is given by

p0(x) = eiω
√

mn0|x−xs|

|x − xs| , (4)

where x = {x, y, z} defines the spatial coordinates in the Euclidean
space. For the 2-D case, the analytical solution for the isotropic
acoustic wave equation for a point source is expressed as

p0(x) = iH (1)
0 (ω

√
mn0 |x − xs|), (5)

where H (1)
0 is the Hankel function of the first kind and order 0

(Engquist & Zhao 2018). Eqs (4) and (5) are the analytical solutions
to the Helmholtz equation corresponding to infinite homogeneous
isotropic media. If we insert p = p0 + δp into eq. (1), we obtain a
relation between p0, δp and q, as shown:

ω2mn(p0 + δp) + ∂2(p0 + δp + q)

∂x2
+ ∂2(p0 + δp + q)

∂y2

+ 1

1 + 2δ

∂2(p0 + δp)

∂z2
= s,

ω2mnq + 2η
∂2(p0 + δp + q)

∂x2
= ∂2(p0 + δp + q)

∂y2
. (6)

We define the squared slowness perturbation as δmn = 1
v2

n
− 1

v2
n0

.

We subtract eq. (3) from the first equation in system (6), and the

scattered wavefield δp in acoustic VTI media then satisfies

ω2mnδp + ∂2(δp + q)

∂x2
+ ∂2(δp + q)

∂y2
+ 1

1 + 2δ

∂2δp

∂z2

= −ω2δmn p0 −
(

1

1 + 2δ
− 1

)
∂2 p0

∂z2
,

ω2mnq + 2η
∂2(δp + q)

∂x2
− ∂2(δp + q)

∂y2
= −2η

∂2 p0

∂x2
+ ∂2 p0

∂y2
. (7)

In this case, the right-hand side source functions are not given by
the original source function, which is often a point source. On the
contrary, it is related to the model perturbation and the background
wavefield, which act as a secondary source possibly spanning the
full space domain. This is the Lippmann Schwinger form of the
acoustic VTI wave equation (Lippmann & Schwinger 1950), which
is exact, not a Born approximation.

2.2 The PINNs

We use a fully connected deep neural network (NN), and the in-
put data to the NN are spatial coordinate values. The target out-
put parameters of the network are the real and imaginary parts of
the complex scattered wavefield δp(x, ω) and auxiliary wavefield
q(x, ω) corresponding to eq. (6) for a desired angular frequency ω.
The activation function between layers in the neural network is an
inverse tangent function, whereas the last layer is linear. With the
help of the concept of automatic differentiation (Baydin et al. 2017),
the second-order derivatives with respect to spatial coordinates can
be easily calculated. Thus, to train the network, we use the following
loss function:

f = 1

N

N∑
i=1

|ω2m(i)
n δp(i) + ∂2(δp(i)) + q (i))

∂x2
+ ∂2(δp(i) + q (i))

∂y2

+ 1

1 + 2δ(i)

∂2δp(i)

∂z2
+ ω2δm(i)

n p(i)
0 +

(
1

1 + 2δ(i)
− 1

)

× ∂2 p(i)
0

∂z2
|2
2

1

N

N∑
i=1

|ω2m(i)
n q (i) + 2η(i) ∂2(δp(i) + q (i) + p(i)

0 )

∂x2

−∂2(δp(i) + q (i) + p(i)
0 )

∂y2
|2
2, (8)

which aims at minimizing the physics-constrained mean squared
error. The loss function above is derived by combining the two equa-
tions in eq. (7) into a minimization form. N is the number of training
points. A number of random points within the domain of interest are
selected, and their corresponding spatial coordinates x = {x, y, z}
are used as input data to feed to the network. The background wave-
field p0 corresponding to the selected random points are calculated
analytically. The true (mn) NMO squared slowness, and anisotropic
parameters η and δ corresponding to the selected uniformly dis-
tributed random points are calculated by linear interpolation from
the regular grid they are defined at. These parameters, including
the background wavefield, true and background model information,
are implicit variables used to evaluate the loss function in eq. (8),
and their ordering must be consistent with the input coordinates.
We choose to optimize the loss function using an Adam optimizer
with a stochastic gradient descent method (Kingma & Ba 2014) and
a follow-up Limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (LBFGS) optimization, a quasi-Newton approach, full-
batch gradient-based optimization algorithm (Liu & Nocedal 1989).
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The learning rate for all the examples is 0.001. This training set-
up is used and suggested in the original PINN paper (Raissi et al.
2019), and it is effective and efficient based on our experiments.

3 N U M E R I C A L T E S T

We now share the results from implementing this approach on an
anomaly model and a layered model. We compare PINN-predicted
results with the numerical wavefield solutions from a nine-point
finite-difference wave equation operator. Finally, we test the pro-
posed method on a modified 3-D Overthrust model. The source
function we use for all the examples in this paper is a delta function
in space. The networks are trained using a Quadro RTX 8000 GPU
with 48 GB of memory.

3.1 A VTI anomaly model

We first test the proposed method on parameter anomalies in the
model. We show the true velocity, δ and η models in Figs 1(a)–
(c). The anomalies are located at different locations laterally in a
homogeneous isotropic background model. Thus, the background
of δ and η models is zero. The size of the models is 101 × 101 with
a grid interval of 20 m in both vertical and horizontal directions. We
refer to the meshing grid points representing the models as regular
grid points.

We consider a point source on the surface of the model located
at 1 km along the horizontal axis. The real part of the background
wavefield solved analytically corresponding to the background ve-
locity is shown in Fig. 2(a). Using the same frequency and source
function, the real part of the pressure wavefield at 6 Hz using a
finite-difference method is shown in Fig. 2(a). Using the same fre-
quency and source function, the real part of the background wave-
field solved analytically corresponding to the background velocity
is shown in Fig. 2. We subtract the two wavefields in Figs 2(a)
and (b) to obtain the real part of the reference scattered wave-
field, as shown in Fig. 4(a). As the anomalies are smooth, most of
the perturbed (scattered) wavefield correspond to transmission. For
transmission, Alkhalifah (2016) showed that η perturbations have
a mild effect on the transmission energy in the vertical direction,
while the other parameters do. The strong δ perturbation based en-
ergy is caused by the vertically oriented transmission wave path and
the relative size of the perturbation, compared to the velocity (effec-
tively >20 per cent compared to 10 per cent). The numerical results
are consistent with the analytical predictions based on the previous
research work (Alkhalifah 2016), so let us observe whether PINNs
can be trained to do so.

For this example, we use a fully connected eight-layer deep neural
network, and each layer has 40 neurons, as shown in Fig. 3(a). Half of
the regular grid points are randomly fed to the network. After 20 000
epochs of Adam optimizer training and 30 000 LBFGS updates, we
show the loss function curve in Fig. 3(b). In the loss curve, we can
see that the training loss decreases very fast at the beginning of
the Adam optimizing, then, it stops decreasing. When the network
training reaches the transition from Adam to LBFGS, there is a
sudden increase, which the red arrow points to in Fig. 3(b). After
20000 training epochs using the Adam optimizer, the training loss
decreases smoothly using the LBFGS optimization. The runtimes
for each epoch of Adam training and each iteration of LBFGS
optimization are 0.095 and 0.075 s, respectively. By inputting all
the regular grid points into the trained network, the real part of the
predicted scattered wavefield is shown in Fig. 4(b). It is difficult

to distinguish the difference between the numerical solution and
PINN-predicted solution. We subtract the two solutions, and show
the difference plotted at the same scale in Fig. 4(c). The difference
is mainly focusing on the amplitude and not on the phase. Using
the same PINN architecture and training set-up, we try to predict
the whole wavefield directly by using eq. (1) as a loss function. The
real part of the predicted wavefield is shown in Fig. 2(c). Clearly, it
is not a correct solution as we are suffering from the point-source
singularity in the training.

3.2 A layered VTI model

Next, we consider a simple layered model, which is extracted
from the left side of the anisotropic Marmousi model and slightly
smoothed. We set a shallow water layer on the top of the model.
The true velocity is shown in Fig. 5(a). We use the same model for
δ and η, given in Fig. 5(b). The model has 100 samples in both the
horizontal and vertical directions with a grid interval of 25 m.

We again place the source on the surface at location 1.25 km,
which corresponds to an isotropic water layer. The real part of the
numerical wavefield solution for 5 Hz is shown in Fig. 6(a). We solve
the background wavefield analytically with a homogeneous velocity
of 1.5 km s−1 and show the real part in Fig. 6(b). The difference
between the numerical and background wavefields is considered as
the reference solution for the scattered wavefield, which is shown
in Fig. 7(a).

We use the same PINN architecture as in the previous example.
In this case, we only use 2000 random training points, which is
one fifth of the regular grid points, to train the network. Using a
small number of training points reduces the training cost, which
can make the proposed method computationally practical. We use
100 000 epochs of Adam optimizer and 15 000 iterations of LBFGS
to update the parameters in the network and show the loss function
curve in Fig. 6(c). For this example, the runtimes for each epoch
of Adam training and each iteration of LBFGS optimization are
0.088 and 0.06 s, respectively. By inputting the spatial coordinate
values of the regular grid points, used in the numerical solutions,
to the network, the real part of the predicted scattered wavefield is
shown in Fig. 7(b). We observe that the general shape of the scat-
tered wavefield from numerical and the PINN-predicted solutions
are very close, though the PINN-predicted scattered wavefield is
smoother and lacks mild scattered information. Again, we show
the difference between the numerical and PINN-predicted scattered
wavefields in Fig. 7(c). Note that in most of the areas, the scattered
wavefield differences between the two methods are quite small, and
the differences are mainly from the missing scattered components.
The l2 norm of the scattered wavefield difference is 0.48.

To show the influence of the network architecture on output re-
sults, we use a smaller network than before, which has 8 layers
and 20 neurons in each layer, and train it using the same training
set-up. The real part of the predicted scattered wavefield is shown
in Fig. 8(b). We show the reference solution using the numerical
method in Fig. 8(a) for an easier comparison. We can see that the
PINN-predicted wavefield using the smaller network is smoother
than the one predicted in Fig. 7(b), which used the larger network.
In this case, the scattered wavefield difference between the PINN
and numerical solutions is shown in Fig. 8(c). Clearly, the differ-
ence is large, which indicates the lack of expressivity of the network.
For this case, the l2 norm of the scattered wavefield difference is
1.73, which is a lot larger than the previous case. Then, we use
a smaller number of random training points, which is 1000, and
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Figure 1. (a) The true velocity, (b) δ and (c) η for the VTI anomaly model.

Figure 2. The real part of (a) a 6 Hz background wavefield corresponding to a homogeneous isotropic background model calculated analytically, (b) the true
wavefield corresponding to the anomaly model in Figs 1(a)–(c) calculated numerically and (c) the PINN-predicted wavefield corresponding to the anomaly
model.

Figure 3. (a) The PINN architecture with the input data being spatial coordinates and outputs being the real and imaginary parts of the scattered wavefield δp
and the auxiliary function q, and (b) the corresponding loss function curve for the training of the NN using Adam and LBFGS optimizers.

Figure 4. The real part of (a) the perturbed (scattered) wavefield given by the difference between the wavefields in Figs 2(a) and (b), (b) a 6 Hz scattered
wavefield corresponding to the anomaly model using PINN and (c) scattered wavefield difference between the numerical solution and PINN-predicted solution.

train the network in Fig. 3(a) using the same training set-up. The
output PINN-predicted scattered wavefield is shown in Fig. 9(b).
Though we just use one tenth of the regular grid point number
and there cannot be enough grid points within each wavelength to

satisfy the Courant−Friedrichs−Lewy (CFL) condition (De Moura
& Kubrusly 2013), we do not have numerical dispersion errors.
However, the resulting resolution in the PINN-predicted wavefield
is low due to the insufficiency of the training points. In this case,
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Figure 5. (a) The true velocity (b) δ and η of a layered models.

Figure 6. The real part of (a) a 5 Hz true wavefield using a numerical method, (b) the background wavefield solved analytically and (c) the loss function curve
for the training of the NN using Adam and LBFGS optimizers.

Figure 7. (a) The scattered wavefield given calculated from the difference between Figs 6(a) and (b), (b) the PINN-predicted scattered wavefield and (c) the
scattered wavefield difference between (a) and (b).

Figure 8. (a) The scattered wavefield given by the difference between Figs 6(a) and (b), (b) the PINN-predicted scattered wavefield with a smaller network
and (c) the scattered wavefield difference between (a) and (b).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/846/6081098 by King Abdullah U

niversity of Science and Technology user on 26 April 2021



D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/846/6081098 by King Abdullah U

niversity of Science and Technology user on 26 April 2021



D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/846/6081098 by King Abdullah U

niversity of Science and Technology user on 26 April 2021



D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/846/6081098 by King Abdullah U

niversity of Science and Technology user on 26 April 2021



D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/225/2/846/6081098 by King Abdullah U

niversity of Science and Technology user on 26 April 2021


