Achieving room-temperature M2-phase VO₂ nanowires for superior actuation ability
Yong-Qiang Zhang, Kai Chen, Hao Shen, Yue-Cun Wang, Mohamed Nejib Hedhili, Xixiang Zhang, Ju Li*, Zhi-Wei Shan*
Xi’an JiaoTong University, China

High-yield M2-phase single-crystalline VO₂ NWs are synthesized and the actuation stress is significantly improved compared to the M1-phase VO₂-based actuators. Our findings open new avenues towards enhancing the performance of VO₂-based actuators by using M2-R transition.
Achieving room-temperature M2-phase VO₂ nanowires for superior actuation ability

Yong-Qiang Zhang¹, ‡, Kai Chen¹, ‡, Hao Shen¹, Yue-Cun Wang¹, Mohamed Nejib Hedhili², Xixiang Zhang¹, Ju Li²(✉), Zhi-Wei Shan¹

¹ Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China.

² Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

³ Departments of Nuclear Science and Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Received: day month year / Revised: day month year / Accepted: day month year (automatically inserted by the publisher)

ABSTRACT

Vanadium dioxide (VO₂) has emerged as a promising micro-actuator material for its large amplitude and high work density across the transition between the insulating (M1 and M2) and metallic (R) phase. Even though M2-R transition offers about 70% higher transformation stress than M1-R structural phase transition, the application of the M2 phase in the micro-actuators is hindered by the fact that previously, M2 phase can only stay stable under tensile stress. In this work, we propose and verify that by synthesizing the VO₂ nanowires under optimized oxygen-rich conditions, stoichiometry change can be introduced into the nanowires (NWs) which in turn yield a large number free-standing single-crystalline M2-phase NWs stable at room temperature. In addition, we demonstrate that the output stress of the M2 phase NWs is about 65% higher than that of the M1-phase NWs during their transition to R phase, quite close to the theoretical prediction. Our findings open new avenues towards enhancing the performance of VO₂-based actuators by using M2-R transition.

KEYWORDS

single crystalline VO₂ nanowires, metal-insulator transition, room-temperature M2 phase, micro-actuator, martensitic transformation, transformation strain

1 Introduction

Micro-actuators with high actuation amplitude and high work density have been an everlasting and challenging target which are of vital importance for the applications in microelectromechanical systems (MEMS), microrobotics, and medical devices [1-3]. Vanadium dioxide (VO₂) stands out among various competing actuation materials [4], benefiting from its high Young’s modulus (~140 GPa) [5-7] and easy-to-access metal-insulator transition (MIT) at 68 °C [8, 9]. Across the MIT, the low-temperature insulating M1 or M2 phase transforms into the high-temperature R phase, accompanied with a significant lattice shrinkage (the so-called transformation strain) of 1% or higher along the c-axis of the R phase, which provides the driving force for the VO₂-based actuators. The transformation strain achieved is ~0.3% in the M1-phase polycrystalline VO₂-film-based bimorph structures [4, 10-13], and then promoted to ~1% by using the single-crystalline M1-phase nanowires (NWs), close to the theoretical value [14-16]. These provide the clue that higher actuation is accomplishable by replacing the starting material with the M2-phase single crystals, which possess higher shrinkage transformation strain (~1.7%) than the M1 phase (~1%) [5, 9, 17] (Figure 1).

On the other hand, room-temperature-stable stress-free single-crystalline M2-phase NWs are difficult to synthesize. Although M2-phase polycrystalline thin films and single-crystalline microbelts have been prepared by cation dopants with lower valence such as Al³⁺ and Cr³⁺ [18, 19], no success has been reported on uniform M2-phase NWs fabrication due to the unevenly distributed dopants and the consequent inhomogeneous phase distribution [20]. Alternatively, tuning the VO₂ stoichiometric ratio is also proposed to modulate the phase. Deduced from the phenomenon of Cr-doping, the increase of V⁺⁺/V⁺⁺⁺ ratio is believed to favor the formation of the M2 phase [11, 19, 21]. By introducing an oxidative atmosphere at the early stage of a multi-step growth process, M2-phase NWs are synthesized, although no direct stoichiometry evidence is provided [22]. It is noted that introducing oxygen in the growth process may easily turn the NWs into oxygen-excess phases (V₂O₅ and V₂O₁₃ for example) [23] and lower the yield of M2 phase [24]. What is more, the actuation ability achieved by the room-temperature-stabilized M2-phase NWs is still unrevealed. As a result, a more reliable and high-yield strategy is needed to modulate the stoichiometry and phase of NWs, and their actuation ability needs to be quantified.

Address correspondence to Z.-W. Shan, zwshan@mail.xjtu.edu.cn; J. Li, liju@mit.edu
In this study, we synthesize the free-standing single-crystalline M2-phase VO₂ NWs stable at room temperature under a unique growth condition. High temperature and low Ar gas carrier flux are controlled to achieve rapid NW growth rate, introduce oxygen interstitial growth defects [25, 26], modify the oxygen stoichiometry, and consequently modulate the phase. No extra oxygen is supplied intentionally during the whole synthetic process to successfully avoid the formation of other vanadium oxides. The oxidation states of the V cations are characterized and compared with the M1-phase NWs, proving the existence of off-stoichiometric defects. Furthermore, the superior actuation ability of the M2-phase NWs over the M1-phase NWs (~65% higher) are demonstrated quantitatively using the in situ transmission electron microscopy (TEM), revealed to be close to the theoretical prediction for the pristine M2 phase.

2 Results and discussions

Figure 1 schematically show the idea of stabilizing the M2 phase to room temperature by tuning the oxygen deficiency. The 3D oxygen deficiency-stress (uniaxial along ck)-temperature phase diagram is adapted from the stress-temperature phase diagram of pure VO₂ [8, 9]. An extra axis of stoichiometric ratio (VO₂x) is added representing the average valence of the V cations. As illustrated in Figure 1, just the right amount of oxygen excess in VO₂x, is proposed to stabilize the M2 phase. Intuitively, the phase boundaries in the phase diagram shift as the valence of the V cations varies, similar to the phase modulation effects of temperature and stress. The stress and temperature axes are martensitic, while the VO₂x axis, on the contrary, involves diffusive mass action in growth, strongly depending on the synthetic conditions such as the oxygen partial pressure and growth rate, which inspires this work. The VO₂ NWs are synthesized using the catalyst-free thermal evaporation approach [27], and the setup is displayed schematically in Figure 2a. For safety concern, VO₂ powder is employed as the source, to avoid the use of toxic V₂O₅. In significant contrast to previous study, the unpolished Si substrates, instead of being placed downstream in the carrying tube, are mounted about 5 mm right above the VO₂ source powder, where the temperature and vapor density are higher. The typical morphology and microstructure of the NWs grown at 1000 °C with 50 sccm Ar flow rate are characterized with scanning electron microscope (SEM) and TEM respectively. As shown in the SEM image in Figure 2b, the products are predominated by free-standing, non-epitaxially grown NWs. The dimensions of the NWs span a wide range of 5 to 60 µm in length and the aspect ratio ranges from 20 to 120 (Figure S1 in the Electrical Supplementary Material, ESM). The inset in Figure 2b shows the NWs with rectangular cross-section possess smooth and well-faceted surface. From X-ray energy dispersive spectroscopy study (EDS, See Figure S2 in the ESM), no impurity elements besides V and O are detected.

The existence of room-temperature-stabilized M2-phase NWs is proved by the crystal structure characterization with TEM as shown in Figure 2c. The uniform contrast in the bright-field image evidences high crystalline quality. In the corresponding selected area diffraction patterns (SADP) in the inset, the M2 phase is identified and distinguished from the M1 phase by the characteristic {110}M2 and {200}M2 diffraction spots which do not exist in the M1 phase (The differences between the SADP for the M2 and M1 phase are discussed in Figure S3 in the ESM). The SADP does not change when the electron beam is moved along the NW, indicating the NW is single-crystalline and single-phase. Analysis of the SADP from multiple individual NWs shows the M2-phase NW grows along [010]M2, corresponding to the c-axis of the R phase [8, 9], in which direction the transformation strain is the highest.

The achievement of the free-standing M2 phase NWs is further confirmed with Raman spectroscopy. A micro-focused HeNe laser (λ=632.8 nm) is employed, and the laser power is limited within 0.2 mW to minimize the sample heating. Figure 3a shows the typical Raman spectrum of the individual M2-phase (red) NW grown at 1000 °C with 50 sccm Ar flow rate. The spectrum of the M1- (blue) phase NW is also shown for comparison. The M2 phase is identified by the dominant 654 cm⁻¹ phonon frequency, agreeing with its c²₃₉ space group [28] and previous Raman measurements [29-31]. In contrast, the dominate peak of M1 phase appears at 610 cm⁻¹. No peaks related to other vanadium oxides such as V₂O₅ or V₂O₃ [32] are observed. Raman mapping is conducted on individual M2-phase NWs to verify the phase distribution inside the NW. A series of Raman spectra along the NW is displayed in Figure S4 in the ESM. The dominated peak appears at about 650 cm⁻¹ in all spectra. In the meanwhile, the feature peak for the M1 phase, which appears at about 610 cm⁻¹, is not observed, indicating the whole NW is in the M2 phase. By extracting the Raman intensity of the characteristic dominant peak at 650 cm⁻¹, the Raman image of the M2-phase NW is obtained and displayed in Figure 3b. The dimension and the boundary of the NW are clearly shown, which are in consistence with the observation in the optical image in the inset. The contrast inside the NW is quite uniform, indicating the homogeneous Raman peak intensity and crystal structure. Raman mapping conducted on other NWs displayed in Figure S5 in the ESM show similar results. These Raman images prove that the whole M2-phase NWs are occupied by pure M2 phase, without M1-phase domains. Besides, the single-phase nature of the M2-phase NW is also supported by the results of uniaxial tensile test in the TEM (Figure S6 in the ESM).

The yield of M2-phase NWs is sensitive to the growth temperature and Ar flow rate. Figure 3c and d show the population proportion of the M2-phase NWs under different growth temperature and Ar flow rate. For each batch, about 20 individual single-phase single-crystalline NWs are randomly selected and their phase is identified one-by-one with micro-Raman spectroscopic. It is clearly shown that the NWs obtained at 700 °C with the gas flow rate of 50 sccm are all in the M1 phase. With the increase of the growth temperature or the decrease of the gas flux, the yield of the M2 phase increases dramatically. The highest M2-phase fraction of 88% is obtained at 1000 °C with gas flux of 50 sccm.

It is noticed that the oxidation states of the V cations in the NWs grown at different conditions are significantly different. X-ray photoelectron spectroscopy (XPS) study is performed on the freshly prepared NWs grown at 1000 °C with 50 sccm gas flux (M2 phase dominated, indicated by the red ball in Figure 3c) and the M1-phase ones synthesized at 700 °C with 50 sccm gas flux (indicated by the blue ball in Figure 3c), respectively. The sampling area is about 0.8 mm in diameter, thus a large number
of NWs are probed in the measurements and the spectra represent the overall oxidation conditions of the NW surfaces. The experimentally collected XPS spectra of these two samples are demonstrated as black dotted curves in Figure 3e. Sharp contrast is observed in terms of the position and shape of the core-level peaks (2p_{2/3} and 2p_{3/2}) of the V cations. The profile of these two peaks are fitted by the linear combination of V^{4+} and V^{5+} valence states, as illustrated by the orange and green curves, respectively. The summed intensity from these two valence states fits the experimental data well, as illustrated with the blue (M1 phase grown at 700 °C, upper panel) and red (M2 phase dominated grown at 1000 °C, lower panel) curves, respectively. The V^{4+} peaks show up in both samples, indicating oxygen excess in the surface layers of both specimens, which has been discussed in the previous reports about VO_{2} nanostructures [33]. The dominant contribution to the V 2p_{3/2} peak evolves from the V^{4+} peak in the M1-phase to the V^{5+} peak in the M2-phase dominated sample. The integrated intensity of the V^{4+} peak increases from 42% in the M1-phase sample to 57% in the M2-dominated sample. Consequently, the stoichiometry is calculated to be VO_{2.29} and VO_{2.21} for the M2 and M1 phase, respectively (Details are shown in Table S1 in the ESM). It is clear that the oxidation states of the V cations in the M2 phase is on average higher than those in the M1 phase, the origin and impact of which will be discussed later.

To confirm the actuation capability of the stoichiometry-tuned M2-phase NWs and quantitatively compare with the M1 phase, a prototype micro-actuator driven by individual NWs is designed and the output force across the MIT is measured in real time in the TEM (schematically demonstrated in Figure 4a and b). The individual VO_{2} NW is transferred and bonded to a Si-based MEMS electrical-contact-resistance push-to-pull (ePTP) device (Hysitron, Inc) [5, 34] in the dual beam focused ion beam system (FIB). The details are displayed in Figure S7 in the ESM, as well as in our previous work [5, 35]. Originally, the ePTP device is designed to impose tensile force onto the individual NW bridging the sample trench by pushing the moving part of the ePTP at the semicircular end with a punch, and the electrical signals can be measured simultaneously [35]. In this study, however, the ePTP is employed for actuation capability measurement. A tungsten punch (Hysitron PicoIndenter) is carefully placed at the semicircular end of the moving part with a minimum contacting force F (~0.3 μN), ensuring that the NW is almost strain free before the MIT (Figure 4a). The tungsten punch is connected with an accurate force transducer with sub-micro-newton precision. As the electric current passes through the VO_{2} NW, the joule heating triggers the insulator-to-metal phase transition and causes the shortening of the crystal lattice along the NW (i.e. along the crystalline c-axis of the R phase). Thereby the NW tends to shrink and pushes the moving part of the ePTP. However, the punch is kept at its position under the displacement-controlled mode, which impedes the movement of the moving part and stretches the NW, keeping the NW at its original length (Figure 4b). The recorded F is identical to the stretching force on the NW F_{SW}, which represents the force generated by the MIT. Thus the corresponding stress \(\sigma = F/s \) is defined as the actuation stress, where s is the cross-sectional area of the NW measured in FIB.

The stress evolution of a 17.0 μm long M2-phase NW with the cross-sectional area of 0.043 μm² during the joule-heating-induced MIT is investigated by simultaneously recording the force. The structure evolution is monitored by an in situ movie of the dark field TEM images (the g vector is [111] of the M2 phase, see the supplementary movie S1 in the ESM). The volumetric electric power density is defined as \(P = I U/V \) to quantitatively compare the power needed to generate the actuation, where I, U, and V are the applied current, the corresponding voltage, and the volume of the NW between the two Pt patches. Three typical TEM dark field images from the movie are displayed in Figure 4c, d, and e. At the initial stage when the joule heating generated by the electric current/power is not high enough to elevate the NW temperature above the phase transition temperature (\(T_{\text{MIT}} \)), the entire NW stays in the M2 phase, and thus uniform contrast is observed and no output strain is detected. As the temperature is further elevated by higher electric current, a sudden contrast change is observed on the left side of the view with a curvy phase boundary while the right side remains as it was. This phenomenon indicates the appearance of the R phase and incomplete MIT. The respond time is within hundreds of milliseconds (More details shown in Figure S8 in the ESM). From Figure 4f, the onset of the MIT observed in Figure 4c occurs at the electric power of 7.1 μW/μm² with an abrupt \(\sigma \) jump to 0.14 GPa. As the joule heating power keeps ramping up, the NW temperature is elevated progressively. Simultaneously, heat dissipation is promoted due to the increased temperature gradient between the NW and the substrate. An equilibrium state for the M2/R phase fraction and distribution, as well as the strain and stress of the NW is achieved once the joule heating is balanced by the heat dissipation. In this process, no new nucleation sites (Figure S9 in the ESM) or abrupt strain jump is observed. Instead, the R phase domain expands unidirectionally along the NW, and the M2-R phase boundary moves smoothly towards the M2 phase, as shown in Figure 4d. The output stress increases continuously as more and more M2 phase converts into the R phase. The peak stress of 2.11 GPa is obtained at 82.6 μW/μm² when the M2-to-R phase transition is fully accomplished, evidenced by the uniform contrast in Figure 4e. Afterwards the strain drops gradually at higher electric power.

The dynamic response of the actuator is studied by employing a 17.9 μm long M2-phase NW with the cross-sectional area of 0.043 μm². The experimental setup is also ePTP based, similar to the one shown in Figure 4a. A square-wave voltage is applied to tune the temperature of the NW, which consequently modulate the phase distribution and drive the motion of the ePTP device. Figure 5a shows the motion of the ePTP driven by the square-wave voltage alternating between 0.8 V and 0.6 V at the frequency of 40 Hz in the TEM. The edge of the moving part of the ePTP is clear and sharp before the voltage is applied (left panel). When the 40 Hz square-wave voltage is applied, the oscillation of the moving part makes the edge blurry (right panel) due to the low movie capture frequency (10 frames/s) compared to the oscillation frequency. The oscillation of the ePTP can be interpreted by the joule-heating-controlled MIT of the M2-phase NW. When the high voltage is applied, the M2-phase VO_{2} NW is heated by joule heating and transforms into the R phase. The crystal lattice shrinkage along the NW drives the backward movement of the punch, indicated by the force
jump and displacement drop in Figure 5b and d (The force contribution from the ePTP has already been extracted). When the low voltage is applied, the NW transforms back to the M2 phase, correspondingly the force drops and the displacement increases (more details are shown in Figure S10 in the ESM). The oscillation amplitude of the moving part of ePTP stays almost the same for the over 500 M2-R phase transition cycles. The NW remains in the M2 phase as indicated by the SADP after the cycles (Figure S11 in the ESM). These results indicate the MIT in the M2-phase NW is fully reversible, and the M2-phase NW is stable and robust during the phase transition cycles.

Similar to previous report, the NWs growth follows the vapor-solid mechanism [36]. The \(\text{VO}_2 \) (\(T_{\text{m}} = 1767 \) °C) powder first evaporates and decomposes into low-melting-point vanadia vapor (e.g. \(\text{V}_2\text{O}_3 \ T_{\text{m}} = 690 \) °C, and \(\text{V}_2\text{O}_5 \ T_{\text{m}} = 708 \) °C) [37], where the high-valence \(\text{V}^{5+} \) is introduced into the system. The vanadia precursors then form super-cooled liquid \(\text{V}_2\text{O}_3 \) nanodroplets, which act as the growth sites for \(\text{VO}_2 \) crystal [38]. Elevating the temperature increases the theoretical saturation pressure and actual partial pressure of the vanadia vapor. Decreasing the gas flow slows down the gas flow rate and thus increases the partial pressure of the vanadia vapor. With the elevated partial pressure of vanadia vapor, the precursors with high-valence V are supposed to deposit more rapidly on the substrate under the non-equilibrium state, which may enter and stay in the NW before fully decomposition and introduces oxygen off-stoichiometry (most likely oxygen interstitials from theoretical calculations [39]) into the NWs, as supported by the XPS results. Such rapid-growth-induced point defects have also been reported in ZnO [35, 40], quartz [41] and other semiconductors [42, 43]. The slight oxygen excess can lead to the stabilization of the M2 phase. As proposed by Pouget et al., the \(\text{V}^{5+} \) cations may rise in the neighborhood of the Cr cations for charge compensation in Cr-doped \(\text{VO}_2 \), and their ordering on one of the sublattices can stabilize the M2 phase [21]. Here in our work, the increase of \(\text{V}^{5+}/\text{V}^{4+} \) ratio is supposed to play a similar role which has shifted the phase stability between the M1 and M2 phase at ambient conditions. It is noticed that the growth of M2-phase NW has rarely been reported using the similar synthesis method in previous reports. This may be related to the differences in the vapor density and the deposition temperature due to the specific experimental setup. The power source are usually placed in open-top boat in previous work, whereas a 15 mm tube is employed in our work, thus high-density vanadia vapor is confined inside the small tube. The substrate is placed right above the source rather than being placed downstream, thus the deposition temperature is elevated to near the evaporating temperature.

To compare the actuation ability of M2- and M1-phase NWs, a M1-phase NW with 16 \(\mu \)m in length and 0.075 \(\mu \)m\(^2 \) in cross-sectional area is tested with the same experimental setup as shown in Figure 4a and b, and the stress-volumetric power curve is also plotted in Figure 4f. Theoretically, the phase transition strain for the M2- and M1-phase NWs are 1.7% and 1%, respectively [9]. According to the Hooke’s law, \(\sigma = E \varepsilon \), the theoretical phase transition stress is 2.38 GPa and 1.40 GPa, respectively, taking the Young’s moduli \(E \) of all the M1, M2 and R phases as 140 GPa [5, 6, 16]. In our experiments, the joule heating induced MIT in the M2 and M1 NWs shown in Figure 4f are repeated for several times, and the averaged maximum transition stress for the M2 and M1 phase are listed in Table 1. The measured values of the maximum stress are 2.09 GPa and 1.25 GPa for the M2 and M1 phase, respectively. These values are higher than the stresses reported in VO\(_2\)-film based bimorph actuators (0.5 to 1 GPa) [44, 45]. The strain change is calculated to be 1.5% for the M2-phase NW. This value is not only by far higher than the \(-0.3\%\) strain change in bimorph actuators [44-46], but also higher than the value in M1-phase single-crystalline actuator (\(-1\%\)) [16] and the M1-phase NW (0.9%) measured in our work. The volumetric work density representing the maximum mechanical work output per unit volume is calculated by \(\sigma \varepsilon^2/3 \). The theoretical volumetric work density for the M2 phase can be calculated to be 20.2 J/cm\(^3 \). The measured value in the M2-phase NW is 15.9 J/cm\(^3 \), which is higher than the reported value for bimorph actuators (\(-0.8\) J/cm\(^3 \)) [4, 44, 45] and the theoretical value for the M1 phase (\(-7\) J/cm\(^3 \)) [4, 16].

Our measured values are reasonably consistent with the theoretical expectations. The discrepancy may arise from three reasons. Firstly the lattice change in the nonstoichiometric M2-phase NWs may be slightly different from the pristine ones. Secondly the thermal expansion of the NWs at elevated temperature cancels out a portion of the tensile stress (the temperature distribution is further discussed Figure S12 in the ESM). Finally there are possible errors in the experiment such as misalignment of the NWs with respect to the trench. It is noticed that as listed in Table 1, less volumetric power is required to trigger the M2-R transition than the M1-R transition. In pure VO\(_2\), \(T_{\text{MTT}} \) for the M2 phase is higher than that of the M1 phase. However, when the M2 phase is stabilized to room temperature by tuning the stoichiometry, the bias of the \(T_{\text{MTT}} \) for the M2 phase from the \(T_{\text{MTT}} \) for the M1 phase is insignificant compared to the stress effect (Figure S13 in the ESM). In our samples, the M2-phase NWs contain more oxygen interstitials (as discussed in Figure 3e) with respect to the M1 phase. These oxygen interstitials in the M2 phase can scatter the phonons and consequently decrease the thermal conductivity of the M2 phase. Hence the thermal conduction to the substrate can be less sufficient in the M2-phase NW than that in the M1-phase NW, which costs less MIT triggering power. Moreover, measurement error can be introduced by the microscopic dissipation conditions (such as the length of the NW, the contact area of the NW with the substrate).

3 Conclusions

In conclusion, we have successfully synthesized free-standing single-crystalline M2-phase VO\(_2\) NWs via a simple thermal evaporation method. The high-yield M2-phase NWs are achieved at higher temperature and lower carrier gas flux rate. XPS study confirms that under such condition the oxidation state of the V cations is higher than those with M1-phase, proving that the phase of VO\(_2\) NWs is modulated using the stoichiometric method, which is non-martensitic and easy-to-access via synthetic condition control. Higher oxygen sufficiency favors the stability of the M2 phase. In situ electrical-force coupled testing approach is applied to investigate quantitatively the actuation stress of the micro-actuator driven by VO\(_2\) NWs, which confirms that the M2 phase outputs 65% higher stress than the M1 phase. Our study has
demonstrated and realized, from materials synthesis to actuation stress measurement, the individual M2-phase VO₂-NW-based micro-actuators that exhibit significantly superior actuation capability.

Methods

Controllable Synthesis of VO₂ NWs: Commercial VO₂ powder (purity 99%, Alfa Aesar) is placed in a carrying quartz tube in the center of a horizontal tube furnace. Unpolished (rough) silicon substrates are placed about 5 mm above the source for higher vapor density and deposition temperature. The furnace tube is first evacuated to the base pressure of ~10⁻³ Torr and purged with Ar for several times. The temperature is then ramped up at the rate of 15 °C/min and kept at the target temperature for ~5 h. The pressure is maintained at approximately 10 Torr during the whole process. A wide range of growth temperature (from 700 to 1000 °C) and the Ar flow rate (50 to 400 sccm) are tuned to optimize the growth conditions for the M2 phase. The morphology, the length and diameter distribution, the crystal quality and the as-grown phase are characterized with the SEM (Hitachi S6600), TEM (JEOL 2100F, 200 kV) and confocal micro-Raman spectra.

Raman Characterization: The as-grown phase of the NWs is characterized with micro-focused HeNe Laser (λ=633 nm) in Horiba Jobin-Yvon LabRam HR800. The laser spot size is around 1 μm. The NWs obtained on the rough silicon is free-standing, ensuring the external strain effect is avoided in the Raman measurement. The acquisition time is ~5 min to achieve good signal-to-noise ratio in the Raman spectra for individual NWs. For Raman mapping, a 50× objective lens with NA=0.95 is used. A piezo stage is used to move the sample with the step of about 1 μm, taking a Raman spectrum at each point with an integration time of 10 s. The spectra are analyzed, and the Raman mappings of the dominant peak (~650 cm⁻¹ and 610 cm⁻¹ for the M2 and M1 phase, respectively) intensity are conducted.

XPS characterizations: XPS studies are carried out on fresh sample surfaces in a Kratos Axis Ultra DLD spectrometer equipped with a monochromatic Al Kα x-ray source (hv =1486.6 eV) operating at 150 W, a multichannel plate and delay line detector under a vacuum of 1×10⁻³ mbar. The survey and high-resolution spectra are collected at fixed analyzer pass energies of 160 eV and 20 eV, respectively. Binding energies are referenced to the C 1s peak (set at 284.4 eV) of the sp2 hybridized (C=C) carbon from the sample.

Individual NWs transfer to the ePTP device: The individual VO₂ on the ePTP is prepared in the dual-beam FIB (FEI Helios 600). The as-grown free-standing VO₂ NWs are first transferred to the copper grid by gently rubbing the grid against the substrate. The difficulty in transferring the NW can be greatly reduced as most NWs are separated from each other and lying on the grid without tilting. By using the Kleindiek micromanipulator, the individual NW is transferred to the specimen trench, well aligned with the motion direction of the tungsten punch to ensure precise force measurements. Both ends of the NW is bonded to the Au electrodes by electron beam induced Pt deposition. The Ga ion is only exposed to the very end of the NW to cut the NW off the probe of the micromanipulator in the whole process, so the Ga ion irradiation as well as the Pt pollution are minimized.

In situ characterization of the joule heating induced MIT in TEM: The uniaxial loading condition is ensured by the careful alignment of the NW and the special design of the dimensions and anisotropy stiffness of the springs in the ePTP. Figure 4, the electric current is applied to the sample in a current control mode at a current ramping rate in the range of 1 to 10 μA/s. It is still under debate whether the MIT in VO₂ is triggered by the electric field or the joule heating. Both the electric field breakdown model and joule heating model are established [47]. In the electric field breakdown model, the MIT occurs when the electron density is increased to the critical value 3×10¹⁸/cm³ by electric field. The value of theoretical electric field E, required to generate such high electron density is 50 V/μm [48]. In all of experiment in our work, the applied electric field is less than 0.075 V/μm, which is 3 orders of magnitude lower than the critical value. So the electric field breakdown model can be safely ignored. The joule heating model is applied, in which the MIT occurs when the temperature of the sample is elevated above Tₘₜ by joule heating [49, 50]. The specimen trench stays in the field of view of the TEM during the whole MIT process. And the dark-field video of the sample, as well as the mechanical response of the NW are recorded in real time. This in situ testing setup can also potentially be applied to the investigation of the microstructure and mechanical behaviors of other phase-transition materials.

Author Contributions

K.C., Z.W.S. and J.L. designed the project. Y.Q.Z. and H.S. conducted the growth, Raman, SEM and TEM experiments. M.N.H. and Y.Q.Z. carried out XPS characterizations, and then analyzed and interpreted the data under the supervision of K.C. and X.Z. The paper was written by Y.Q.Z., K.C., Y.C.W., Z.W.S. and J.L. All authors contributed to discussions of the results. All authors have given approval to the final version of the manuscript. ‡These authors contributed equally.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 91860109, 51671154, and 51621063), the National Key Research and Development Program of China (Nos. 2017YFB0702001 and 2016YFB0700404), 111 Project 2.0 of China (BP2018008), and funding from the Science and Technology Departments of Shaanxi and Xi’an, China (Nos. 2016KTZDGY-04-03, 2016KTZDGY-04-04 and 201805064ZD15CG48). The authors appreciate the helpful discussions and suggestions from Prof. Evan Ma from JHU. Y. Z. acknowledges King Abdullah University of Science & Technology (KAUST) to support his six months research and study at KAUST as an exchange student. We also appreciate the support from the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, and the Collaborative Innovation Center of High-End Manufacturing Equipment at Xi’an Jiaotong University, China. J. L. acknowledges support by NSF CMMI-1922206. Authors declare no competing interests. All data is available in the main text or the Electrical Supplementary Material.

Electronic Supplementary Material: Supplementary Materials (Characterization of the VO₂ NWs, setup for phase transition tests, the Raman spectra of the NW in the Raman image, Raman images of individual VO₂ NWs, strain-stress curves of M2- and M1-phase NWs in uniaxial tension test, temperature distribution of the NWs, the nucleation sites of the R phase, response speed, The in situ movie
for the phase transition of the M2 phase NW) is available in the online version of this article at http://dx.doi.org/10.1007/s12274-**.**.**.***(automatically inserted by the publisher).

References

[37] Kortunova, E. V.; Nikolaeva, N. G.; Chvanski, P. P.; Maltsev, V. V.;

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase transition strain</td>
<td>Theoretical</td>
<td>1.7%</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>1.5%</td>
</tr>
<tr>
<td>Phase transition stress (GPa)</td>
<td>Theoretical</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>2.09±0.03</td>
</tr>
<tr>
<td>Volumetric work density (J/cm³)</td>
<td>15.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Power density to trigger MIT</td>
<td>7.2±1.8 μW/μm³</td>
<td>12.5±3.4 μW/μm³</td>
</tr>
<tr>
<td>Power density to obtain peak stress</td>
<td>79.0±3.2 μW/μm³</td>
<td>96.2±6.1 μW/μm³</td>
</tr>
</tbody>
</table>
Figure 1. The estimated influence of vanadium deficiency in VO$_{2+x}$ on the stress (uniaxial along c_R)-temperature phase diagram. The arrangement of vanadium ions in the M1, M2 and R phase viewing from the b axis of the R phase are shown, indicating the M2 phase possesses higher shrinkage transformation strain than the M1 phase across the MIT.
Figure 2. (a) The schematic of the growth setup and the growing mechanism of the VO$_2$ NWs. (b) The SEM image of VO$_2$ NWs grown at 1000 °C at 50 sccm Ar. Inset is a magnified SEM image showing the surface conditions of the individual NW. The scale bar in the inset is 500 nm. (c) The TEM image of the individual M2-phase NW. Inset shows the corresponding SADP.
Figure 3. Characterization of the M2-phase NWs. (a) Typical Raman spectra of individual M1 (blue) and M2 (red) phase NWs. (b) The Raman image of an individual M2-phase NW by extracting the intensity of the dominate peak at 650 cm$^{-1}$. Inset is the optical image of the NW. The scale bar is 5 μm. (c) and (d) show the dependence of the population proportion of the M2-phase on the growth temperature and Ar flow rate, respectively. The Ar flow rate is set to 50 sccm in (c), and the temperature is set to 1000 °C in (d). (e) The XPS spectra show the valence states of the vanadium cations in the samples grown at 700 °C (the M1 phase, upper panel) and 1000 °C (the M2 phase dominated, lower panel), respectively.
Figure 4. Measurement of the actuation capability of the stoichiometry-tuned M2-phase NWs. The schematics show the measurement of the force applied to the transducer before (a) and during (b) the joule-heating-induced MIT. (c)-(e) show the in situ TEM images of phase evolution of the NW. The inset in (e) shows the SADP of the NW before phase transition. The g vector $\bar{1}11$ for the dark-field images is indicated by the circle. (f) shows the output stress of the M1 phase (blue) and the M2 phase (red).
Figure 5. The actuation behavior of the M2-phase NW upon applying square-wave voltage. (a) The TEM images before (left) and during (right) the square-wave voltage is applied. (b) and (d) show the force and displacement of the M2-phase NW. The input of the square-wave voltage is indicated by the arrow. (c) and (e) show the detailed information about the dashed rectangle part in (b) and (d), respectively.