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Developments in observing system technologies and ocean data assimilation (DA) are
symbiotic. New observation types lead to new DA methods and new DA methods,
such as coupled DA, can change the value of existing observations or indicate where
new observations can have greater utility for monitoring and prediction. Practitioners
of DA are encouraged to make better use of observations that are already available,
for example, taking advantage of strongly coupled DA so that ocean observations
can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are
useful for the analysis of climate as well as the initialization of operational long-range
prediction models. There are many remaining challenges for ocean reanalyses due to
biases and abrupt changes in the ocean-observing system throughout its history, the
presence of biases and drifts in models, and the simplifying assumptions made in
DA solution methods. From a governance point of view, more support is needed to
bring the ocean-observing and DA communities together. For prediction applications,
there is wide agreement that protocols are needed for rapid communication of ocean-
observing data on numerical weather prediction (NWP) timescales. There is potential
for new observation types to enhance the observing system by supporting prediction
on multiple timescales, ranging from the typical timescale of NWP, covering hours to
weeks, out to multiple decades. Better communication between DA and observation
communities is encouraged in order to allow operational prediction centers the ability to
provide guidance for the design of a sustained and adaptive observing network.

Keywords: data assimilation, reanalysis, coupled data assimilation, S2S prediction, decadal prediction, ocean
observation network, ocean data assimilation, ocean reanalysis
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INTRODUCTION

Sustained high-quality observations are essential for improving
our understanding of the ocean and its interactions with the
atmosphere and the overall Earth system. An important tool to
study the Earth system is the production of historically accurate
four-dimensional reconstructions of quantities that characterize
the ocean state (such as temperature, salinity, and currents).
Mathematical methods from the field of Data Assimilation (DA)
allow information provided from observations to be propagated
in time and space to unobserved areas using the dynamical
and physical constraints imposed by numerical models. When
these methods are applied to form the aforementioned historical
reconstructions, this procedure is called a retrospective analysis,
or “reanalysis” (Kalnay et al., 1996; Dee et al., 2014). In addition to
aiding in the study of the ocean itself, such reanalyses can also be
used to initialize the ocean component of coupled Earth system
models in order to produce long-term forecasts that may provide
guidance from a few weeks out to a decade or longer (Meehl et al.,
2014; Balmaseda, 2017). Here, we review the current state-of-
the-art of DA applied to the ocean and collectively look forward
over the next decade to make our own predictions about what
kind of complementary in situ and satellite observations will be
required to advance reanalysis and prediction, address end-user
engagement, identify opportunities for integration, and connect
to many of the themes of OceanObs’19.

METHODOLOGICAL DEVELOPMENTS IN
OCEAN DATA ASSIMILATION

Data assimilation is essentially an automation of the scientific
method. A hypothesis is made and encoded in a numerical
model. This model is then used to make predictions that
can be tested against new observations. Prediction accuracy is
then examined and provided as feedback to modify the model
and methods, and the process repeats. The development and
application of DA serves fundamental Earth science goals such
as to: (1) fill gaps between sparse measurements to form a
complete picture of the Earth system, (2) utilize the observing
network to initialize forecast models, (3) characterize errors
in the modeling and observing systems, and (4) identify areas
of high uncertainty where observations can illuminate poorly
understood phenomena, help target observing campaigns, and
improve numerical models and forecasts. Here, we address the
current state-of-the-art and limitations of ocean and coupled DA
and propose paths forward.

CONNECTING OCEAN DATA
ASSIMILATION WITH OCEAN
OBSERVING EFFORTS

Although the growing constellation of satellite observing
platforms continues to provide a much more coherent view
of the ocean surface, there are limitations that remain in the
integrated ocean-observing system that prevent the accurate

estimation of the full state of the ocean based on observations
alone. In situ measurements are quite sparse, while small-scale
processes important to air-sea interaction and the deep ocean
remain largely unobserved. In order to acquire a complete
picture of the ocean state while appropriately characterizing our
uncertainty of this picture, the gaps in coverage must be bridged
in space and time using rigorous mathematical methods. This
is a primary activity of the DA community and requires close
collaborations between theorists in academia and practitioners at
operational centers.

Ocean DA has become routine practice at many operational
prediction centers, both for ocean forecasting and for initializing
coupled Earth system models (Edwards et al., 2015; Martin
et al., 2015). The regular application of ocean DA either through
operational forecasts or using retrospective analyses (reanalyses)
is valuable for assessing the completeness and accuracy of the
ocean-observing system. A variety of tools are available to assess
the value of specific observing platforms, some that follow the
methodologies of Observing System Experiments (OSEs) and
Observing System Simulation Experiments (OSSEs), or Optimal
Experimental Design (OED), while others are linked to the DA
cycle itself, such as Forecast Sensitivity to Observation Impacts
(FSOI) and estimating the effective degrees of freedom of the
observing system (e.g., Oke et al., 2015a,b).

Advances in DA methods have been and will continue to
be driven by new observing technologies. We mention two
notable features of upcoming observing technologies that deserve
attention. First, amongst recent and planned satellite missions are
increasingly high-resolution datasets covering the ocean surface.
The development of instrumentation such as VIIRS, SLSTR on
board Sentinel-3 (A and B), and platforms such as the Surface
Water and Ocean Topography (SWOT) mission indicate there
will be large volumes of data available for assimilation.

At present, the fidelity of these data products is far higher than
many operational ocean models are capable of resolving. Ocean
DA faces a challenge due to computational limitations: there is a
need to either increase the resolution of ocean models in order
to take full advantage of new data sources using conventional
DA approaches or design new methods to extract more
information from these observations without resorting to high-
resolution modeling (e.g., by using machine learning methods
applied to high-resolution observations to produce dynamic
parameterizations at the subgrid-scale – see for example Bolton
and Zanna, 2019). The accurate specification of observation error
correlations becomes more important as higher resolutions are
used (e.g., Mazloff et al., 2018), making it more difficult to
accurately assimilate new higher resolution observations.

Amongst in situ observing systems, there is a trend toward
mobile and adaptive platforms and new DA methods will be
needed to use the full breadth of information provided by these
platforms. As technology improves, there is also an opportunity
to explore potential feedback between operational ocean DA
systems and observing system guidance in near real-time that
redirects the observing system to increase sampling in areas
where the forecasts have greatest sensitivity. Ocean-observing
technologies in the form of gliders, autonomous underwater
vehicles, high-frequency radars, profiling floats, drifters, tagged
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marine mammals (and other pelagic apex predators), and
acoustic instruments continue to undergo rapid development,
and data volumes from these platforms are growing rapidly,
particularly in coastal regions. Quality assurance and quality
control (QA/QC) protocols are necessary, especially for new
types of observations. Operational centers should improve their
capability to provide feedback in near real-time regarding the QC
classifications of individual observations based on forecasts made
using those observations.

From a fundamental standpoint, most of the approaches
used for characterizing uncertainty in Ocean DA methods are
predicated on the principles of Bayes’ theorem (Hoteit et al.,
2018). A common assumption is that errors are Gaussian-
distributed and that the time evolution of the errors is linear.
As such, there are common limitations to all currently used DA
methods and a primary goal for improving the accuracy and
applicability of DA in the coming decade will be to relax these
limiting constraints (see Martin et al., 2019; Moore et al., 2019,
this issue). This has relevance to future ocean-observing system
design, as it may change requirements on the observing system
either to test and design new methods or to take advantage of
new capabilities afforded by the methods.

In recent years, the Global Ocean Data Assimilation
Experiment (GODAE) and its offshoot, GODAE OceanView
(GOV) have been active in galvanizing ocean DA activities by
providing a platform for promoting ocean DA and forging
international collaborations (Bell et al., 2015). These activities will
continue under the new guise of OceanPredict. Going forward,
we recommend that this activity expand to further interface with
the academic and operational ocean-observing, ocean modeling,
and ocean DA communities.

THE ADVENT OF COUPLED DATA
ASSIMILATION

The components of the Earth system have traditionally been
analyzed independently. However, modeling improvements and
increases in computing power are now enabling the analysis of
the Earth system as a whole (Saha et al., 2010, 2014; Lea et al.,
2015). Observation-model synthesis activities that incorporate
observational data into coupled Earth system models have
led to the emergence of a new research area called Coupled
Data Assimilation (CDA; Penny et al., 2017). While traditional
methods have generally focused on a single scale of motion
within any given DA system, an essential characteristic of CDA
is the need to account for the multiple spatiotemporal scales
present in the error dynamics of the coupled system. The
most basic application of DA to coupled models has been the
application of legacy DA systems to each component separately,
which is called weakly coupled data assimilation (WCDA). In
order to allow any observation to directly affect the analysis
of multiple model components across their interface, the DA
itself must also be coupled; this is called strongly coupled data
assimilation (SCDA). For most modern DA methods, SCDA
requires that the forecast error covariance matrix be produced
for the coupled state. Efforts are underway to develop effective

approaches for SCDA, though additional work is still needed to
understand the complexities of this problem (Penny et al., 2019).

By isolating systematic errors in prediction systems, CDA
may help identify new transformative directions in ocean-
observing strategies targeted at eliminating these errors. Because
CDA allows ocean observations to directly inform atmospheric
state estimates and vice versa (Sluka et al., 2016; Sluka, 2018),
the relevance of existing observations for state estimation and
prediction must be clarified as the ocean-observing network
evolves. CDA developments involve a necessary reevaluation
of requirements for ocean-observing capabilities, either by
reducing the presence of redundant information or by using
such redundant information to calibrate multiple observing
platforms. CDA can effectively leverage multidisciplinary,
sustained, collocated observations, and may require more
information in new geographic locations, or of new previously
unmeasured quantities, to better understand the structure of
the cross-domain error covariance. Over the next decade, those
designing components of the Earth-observing system should pay
close attention to developments in CDA.

Operational centers are now developing CDA methods for
NWP and reanalysis applications that include components
such as the ocean, sea ice, land, and atmosphere (Brassington
et al., 2015). One of the original motivations for improving
CDA methods was to ensure consistency between the different
components of the Earth system. The use of coupled Earth
system models for operational prediction provides the potential
to produce forecasts that target multiple prediction timescales.
At NWP timescales, the diurnal cycle has a large influence on
coupled processes in the boundary layers of the atmosphere and
ocean. Mesoscale interactions between sea surface temperature
(SST) fronts and near-surface winds (Chelton and Xie, 2010)
may have significance to winds throughout the troposphere.
Potential sources of predictability for Subseasonal-to-Seasonal
(S2S) timescales include establishing teleconnections associated
with the Madden–Julian oscillation (MJO), the evolution of
the El-Niño Southern Oscillation (ENSO), soil moisture, snow
cover and sea ice, stratosphere–troposphere interactions, upper
ocean conditions, and tropical-extratropical teleconnections
(Vitart et al., 2015). At decadal prediction timescales, accounting
for coupled oscillations such as the Atlantic Multidecadal
Oscillation (AMO) and the Pacific Decadal Oscillation
(PDO) (d’Orgeville and Peltier, 2007) may be of greater
importance for CDA.

Beyond coupled atmosphere-ocean interactions, the
application of CDA is also important to better understand
other coupled processes in more detail. For example, DA in
coupled ocean-sea ice models (Fenty and Heimbach, 2013;
Bertino and Holland, 2017; Kimmritz et al., 2018) and coupled
physical-biogeochemical models (Brasseur et al., 2009; Song
et al., 2016; Verdy and Mazloff, 2017) at both regional and
global scales are currently active areas of research, driven by
improvements in remote-sensing observing platforms (e.g.,
sea ice concentration and thickness and ocean color) or new
capabilities (e.g., biogeochemical Argo floats and airborne
hyperspectral imagers). There have been few studies to date
exploring DA applied to coupled land-ocean processes.
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Focus on biological activity highlights the importance of
physical variables often ignored in conventional ocean DA, such
as upper-ocean vertical fluxes (Brasseur et al., 2009). Large-
scale assimilation of marine biogeochemistry is limited by the
lack of regular observations. The only routine observations with
global coverage are satellite ocean color (Ford and Barciela,
2017). Existing DA efforts typically focus on generating products
based purely on biogeochemical measurements independently
of physical oceanographic measurements (e.g., Ciavatta et al.,
2016; Gregg et al., 2017). As CDA begins to mature, it would
be highly beneficial for the physical oceanographic reanalysis
and ocean biogeochemical reanalysis efforts to start integrating
with one another (Rosso et al., 2017). Early interest in moving
in this direction has been indicated, for example, by Perruche
et al. (2017) as part of the ERA-CLIM2 project. Regional ocean
analyses are being used to predict Harmful Algal Blooms (HABs;
Anderson et al., 2016), to understand economically important
marine ecosystems (e.g., Schroeder et al., 2014, 2017) with a
view to management, and to understand the migration habits of
endangered marine species (e.g., Becker et al., 2016), and it is
expected that these applications will be enhanced with CDA.

To date, ECMWF has one of the more mature efforts
developing a CDA system. An implicit coupling approach
has been implemented in their CERA system, where the
atmospheric 4D-Var and oceanic 3D-Var DA systems are
synchronized using multiple outer iterations in the incremental
variational formulation. This outer-loop coupling system is an
approximation of a fully coupled 4D-Var system that tries to find
an approximation to the same optimal solution by setting the
coupled adjoint model and the cross-domain error covariance
at the initial time of the assimilation window to zero (Laloyaux
et al., 2018b). It takes between 6 and 12 h for the outer
loop coupling to synchronize the coupled increments (Laloyaux
et al., 2018a). This finding suggests that a long assimilation
window (at least 12 h) is necessary for CERA to be an effective
strategy for CDA. The outer-loop coupling employed by the
CERA system could in principle be augmented by both the
specification of the initial time coupled covariances and coupled
adjoint. Such an approach could mitigate problems in cases where
the coupled model is not able to synchronize the unbalanced
increments that arise because the assimilation window is too
short, the observations are inconsistent due to biases present in
the observing platforms, or systematic modeling errors prevent
agreement across the interface.

AN EXAMPLE APPLICATION OF CDA:
THE DIRECT ASSIMILATION OF
SATELLITE RADIANCES FOR
ESTIMATING SST

The air-sea interface is one of the prime focus areas for early
explorations of CDA. In addition to requiring a rethinking
of DA algorithms and solution approaches, CDA affords
the opportunity to improve the methods used to map
the modeled state to a simulated “model equivalent” for

each observation that can then be compared directly with
observations. One of the most obvious places to start is improving
the inputs provided to radiative transfer models. CDA provides
a new capability to assimilate observed brightness temperature
(BT) instead of relying on retrieval products such as proxy
measurements for SST.

Current state-of-the-art coupled forecasting systems do not
analyze interface states such as SST, sea surface salinity (SSS),
or sea ice in a self-consistent manner. For example, many
atmospheric and oceanic DA systems typically nudge toward
SST retrieval products. However, this approach typically ignores
caveats in the empirical methods used to convert satellite-
measured radiances into SST retrieval data products (Donlon
et al., 2007). Among the most serious are errors in model
calibration at high latitudes as well as challenges in using skin
SST estimates to constrain bulk temperature (Donlon et al.,
2002). Diurnal variations of SST and near-surface cooling in
the microlayer are processes that are well observed and studied
(Kawai and Wada, 2007) but not very well represented in coupled
atmosphere- ocean general circulation models (Brunke et al.,
2008), in which reproducing SST variability remains a challenge
(Lea et al., 2015).

There are numerous definitions for SST; for example, see
Figure 1 of Donlon et al. (2007) or definitions established
by the Group for High Resolution Sea Surface Temperature
(GHRSST). Some of these definitions are conceptual (e.g.,
the interface SST) while others are derived from the method
of measurement (e.g., infrared vs. microwave). Satellites have
provided continuous infrared observations that sample in the
upper 10–20 µm (the skin temperature) since the early 1980s and
microwave observations (spatially less accurate than infrared, but
insensitive to cloud cover and aerosols) that observe the upper
few millimeters (the subskin temperature) since the late-1990s
(Reynolds et al., 2007). In situ measurements of SST are sparser
and typically comprised of top-level (1–2 m) moored buoys,
drifting buoys (about 20–30 cm), and ship intake measurements
(Castro et al., 2012; Legler et al., 2015) that are known to have
large errors (Folland and Parker, 1995; Kennedy, 2014).

Satellite-based measurements of SST are inherently coupled
due to influences from not only the sea surface but also the
full atmospheric column above it. The measured SST is highly
influenced by both atmosphere and ocean boundary layers as well
as the strength of upward longwave radiation and turbulent heat
flux exchanges. To avoid dealing with the complex calibration
issues associated with satellite radiances, current prototype
CDA systems typically rely on SST data products produced by
specialists and assimilate either along-track (L2) SST estimates
or gridded (L3 or L4) SST products such as Pathfinder (Casey
et al., 2010), OSTIA (Stark et al., 2007), or ACSPO (Ignatov
et al., 2016). See Martin et al. (2012) for a review of available
L3 and L4 SST products. One of the main recommendations
of a recent ECMWF workshop (Balmaseda et al., 2018) was
to directly assimilate satellite radiances to constrain SST and
sea ice, just as is done in NWP for atmospheric quantities.
CDA offers an opportunity to treat the interfaces within the
coupled model in a self-consistent manner, particularly when the
forward model that is used to evaluate the “model equivalent”

Frontiers in Marine Science | www.frontiersin.org 4 July 2019 | Volume 6 | Article 391

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00391 July 11, 2019 Time: 16:4 # 5

Penny et al. Ocean and Coupled Data Assimilation

to the observation, H(x), depends on state information from
multiple domains.

Both the NASA Global Modeling and Assimilation Office
(GMAO) (Akella et al., 2017) and the National Oceanographic
and Atmospheric Administration (NOAA) National Centers
for Environmental Prediction (NCEP) Environmental Modeling
Center (EMC) (Derber and Li, 2018) have already implemented
methods to directly assimilate radiances in order to compute
SST analyses. The NASA GMAO procedure followed Takaya
et al. (2010) allows the SST diurnal cycle to be resolved in the
model, which provides a near-surface temperature profile as
a function of depth. Using the forecasted SST along with the
forecasted atmospheric state as inputs to the radiative transfer
model, the resulting forecast BT can be compared with observed
BT. The difference between observed and forecasted BT is
used by the DA method to form a consistent analysis of the
combined atmospheric state and SST. In order to effectively
constrain SST, observations that are sensitive to SST, such as
infrared satellite radiance measurements onboard operational
polar orbiting satellites, were added to the observing system (see
Akella et al., 2017 for details and Gentemann and Akella, 2018
for a comparison/evaluation of their results with other diurnal-
SST retrievals). The capability to assimilate satellite radiances in
coupled forecasting systems has improved the predictability of
the GMAO system, most notably near the surface. The BTs are
atmospheric column-weighted measurements. Because infrared
satellite measurements are sensitive to water vapor, improved
resolution and assimilation of SST-sensitive BTs translated
into improved observational innovation statistics for many
satellite channels that contain information about tropospheric
temperature and water vapor.

The advantages of combining infrared and microwave
radiometric measurements of SST are already well established
(Chelton and Wentz, 2005). A microwave satellite radiometer
beyond the currently operational Global Precipitation
Measurement – GPM Microwave Imager (Skofronick-Jackson
et al., 2018) and Advanced Microwave Scanning Radiometer-2
(Kazumori et al., 2016) missions would provide the ability to
maintain and further improve CDA at the air-sea interface. There
is an immediate need to plan for a satellite salinity measurement
mission beyond the 2020–2025 time frame (Durack et al.,
2016; Vinogradova et al., 2017 this issue). Bearing in mind the
collaborative nature of satellite missions, further coordination is
needed for planning the next generation of NOAA satellites that
follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2
missions (Volz et al., 2016).

Field campaigns and in situ measurements aid in the
improvement of modeled near-surface temperature and salinity
variations, and mixing processes. The existing network of drifting
buoys [Figure 3 of Legler et al. (2015)] routinely reports near-
surface (about 20 cm) measurements of SST, sea level pressure
(SLP). The measured SLP is routinely assimilated into the NWP
forecast models, and SST are used for calibration/validation of
SST retrieval products. However, one cannot measure vertical
SST variability and mixing with a single sensor (e.g., at 20 cm).
Dedicated cruise campaigns such as those reported by Dong
et al. (2017) suggest that adding one more temperature sensor

and salinity sensor to the drifting buoy network can provide
valuable measurements of SST/SSS near-surface variations. Such
measurements would help with calibration and evaluation of
observations as well as improve the representation of the
diurnal cycle, the feedbacks between SST and surface salinity
variations (Bellenger et al., 2017), and buoyancy-driven density
variations in general.

OCEAN AND COUPLED EARTH SYSTEM
REANALYSIS

An important application for DA is to develop historical
reconstructions of the Earth system based on the observational
record. Numerical models fulfill the basic large-scale equations of
motion and satisfy conservation laws, but may have systematic
errors. While this type of numerical modeling can provide
insights into the mechanisms driving long-term variability (Haid
et al., 2017), the systematic errors that arise can cause long-term
drift in the modeled climate compared to the real Earth system.
In contrast, statistical observational analyses (e.g., Abraham et al.,
2013) can be applied to observed data to produce a full field
reconstruction that closely agrees with the observational record.
However, this approach does not typically ensure conservation
laws are enforced, meaning there are known errors that are
unaccounted for, and is not able to recover unobserved quantities.
Retrospective analyses, or reanalyses, combine the advantages
of both numerical modeling and statistical observation analyses
to fulfill the conservation laws over discrete periods while
also incorporating observed data and subsequently estimating
unobserved quantities. Reanalyses can be used to study the
evolution of the Earth’s climate during any time period for
which we have an observational record. They are also useful
for initializing “reforecasts” that can be used to calibrate bias-
correction schemes for seasonal forecasts. Next, we document
recent advances from the ocean reanalysis community and
discuss unresolved challenges that require sustained activities for
maximizing the utility of information content from observations,
supporting data rescue, and advancing specific research and
development requirements for reanalyses.

ADVANCES AND UNSOLVED
CHALLENGES IN PRODUCING OCEAN
REANALYSES

The original interest in developing ocean reanalyses arose largely
from a desire to examine long-range climate-scale signals. Ocean
reanalyses can be studied to enhance understanding of processes
driving observed changes. They are also useful for studying
recent changes in the climate for quantities that are difficult to
observe continuously, such as transports (Mignac et al., 2018),
or those that require consistent spatial data coverage at depth,
such as ocean heat content (Balmaseda et al., 2013; Wunsch and
Heimbach, 2014). To be able to draw robust conclusions, one
must be confident that inhomogeneous time series or abrupt
regime changes are caused by physically consistent processes –
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not artifacts associated with changes in the historical observing
network. During much of the early history of ocean reanalysis
development, there have been significant disagreements between
estimates produced by different reanalysis approaches. This was
due in large part to the scarcity of observational data, differences
in model configurations, and discrepancies in DA methods.

However, due to advances in the ocean observing system,
improvements in modeling, and advances in DA methods, ocean
reanalysis products have been slowly converging.

To date, ocean reanalyses have been produced by many
operational centers and research institutes (Carton and Giese,
2008; Sugiura et al., 2008; Xue et al., 2011; Chang et al., 2013;
Wunsch and Heimbach, 2013; Blockley et al., 2014; Valdivieso
et al., 2014; Köhl, 2015; Forget et al., 2015; Penny et al., 2015;
Toyoda et al., 2016; Storto and Masina, 2016; Palmer et al., 2017;
Zuo et al., 2017b). Balmaseda et al. (2015) provide a recent
intercomparison study of about 20 reanalysis products. The
extent to which reanalyses provide robust answers to questions
about climate change and variability relies on many factors,
including the fidelity of the numerical models, the accuracy
of forcing fields, biases in observing platforms, uncertainties
attributed to the observations and the background state (priors),
and the sophistication of the DA schemes. Many of these
considerations are highlighted in a recent study by Carton et al.
(2019) comparing leading ocean reanalysis products (SODA3,
ECCO4r3, and ORAS5).

Given the availability of ocean reanalysis products from
multiple groups worldwide, we recommend that climate studies
include the evaluation of as many products as possible to
sample the range of uncertainty in the historical ocean state
and disentangle possible inconsistencies that arise due to
choices made in their construction. Uncertainties in ocean
reanalysis state estimates result from accumulated errors from all
system components (ocean model, boundary condition forcing,
observations, and DA method). Uncertainty in ocean reanalyses
as a whole can be studied using a multi-reanalysis ensemble
approach (Balmaseda et al., 2015; Masina et al., 2017; Xue et al.,
2017), which provides a way to not only investigate the accuracy
of ocean reanalyses but also disentangle sources of uncertainty.
A rough estimate can be achieved by comparing the consistency
of the reanalyses (ensemble spread), interpreted as noise, with the
natural variability (variance in time), interpreted as the signal.

Uncertainties in an individual system can also be assessed by
accounting for errors explicitly in different system components,
for example by using ensemble forecasts, by introducing
stochastic perturbations in the model (Brankart et al., 2015), by
estimating representativeness errors associated with observations
in relation to the model resolution, and by estimating
analysis/structure errors in forcing fields (Penny et al., 2015;
Zuo et al., 2017a).

Surface forcing derived from atmospheric reanalyses induces
systematic errors. Multi-forcing reanalyses may be performed
to better estimate the impacts of these errors (Chaudhuri
et al., 2013, 2016; Storto et al., 2016b; Carton et al., 2018;
Yang et al., 2018). Recently, Zuo et al. (2017a) introduced a
stochastic perturbation for the atmospheric forcing by taking into
account both uncertainty from different atmospheric analysis

data sets and uncertainty from the same analysis method with
multiple ensemble members. Another method for adjusting
uncertain atmospheric fields is by employing control methods,
where adjustments to atmospheric surface forcing data are
part of a formal inversion, assuming relatively accurate oceanic
observations (e.g., Stammer et al., 2004; Liang and Yu, 2016).
Uncertainty in initial conditions can also be evaluated using an
ensemble approach, by performing several spin-up integrations
with different DA system configurations (Zuo et al., 2018).
Chevallier et al. (2017) showed that for coupled ocean-sea ice
models driven by prescribed atmospheric forcing, part of the
variability across ocean reanalyses is the result of differences in
the atmospheric reanalyses used to force these systems, which
is large in the polar regions (Lindsay et al., 2014). Part of
the discrepancy in the atmospheric reanalyses is due to the
treatment of the prescribed boundary conditions (e.g., sea ice),
giving an example of a weaknesses in the “uncoupled” approach.
Generally, both coupled climate models and ocean-ice models,
driven by prescribed atmospheric forcing, cannot adequately
represent the observed polar trends, whereas ocean reanalyses
have proven quite adequate to capture these trends when
observations are available to constrain the system (Chevallier
et al., 2017; Uotila et al., 2018).

With the exception of smoother-based reanalyses generated
by the Consortium for Estimating the Circulation and climate
of the Ocean (ECCO; Wunsch and Heimbach, 2013; Köhl, 2015;
Forget et al., 2015; Heimbach et al., 2019), most of the DA
systems developed under GODAE and GODAE OceanView use
some form of sequential DA (Martin et al., 2015). Some of the
systems based on simplified assumptions about the forecast error
characteristics suffer from problems with initialization, where the
updates applied to the model at each assimilation step are not
dynamically consistent. To date, many developers have attempted
to minimize the negative impacts of these dynamical imbalances
by ad hoc techniques such as nudging with incremental updates
(Bloom et al., 1996). Some problems have been identified in
the Equatorial region within a number of ocean reanalyses,
in which the assimilation can induce spurious variability that
has been damped by following several bias correction strategies
(Waters et al., 2017).

An application of the 4D variational method in ocean DA has
been developed with an emphasis on reconstructing the ocean
on climate time scales (Stammer et al., 2016). Motivating these
approaches were the goals of (i) using information contained
in observations backward in time, (ii) enlarging the control
space to include uncertain boundary conditions and model
parameters, and (iii) deriving estimates with closed property
budgets enforced by the equations of motion (e.g., Buckley et al.,
2015; Piecuch et al., 2017). However, this approach also has
potential limitations. For instance, increasing the control space
also increases the dimension of the problem, which in turns
makes the method very expensive for high-resolution global
applications. There may also be challenges with relying on the
accuracy of a linearization over long time windows.

Other difficulties are connected with the irregular observing
network. This often causes spurious variability in reanalysis
products, especially in multi-decadal reanalyses covering
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historical periods with highly varying observing systems ranging
from the sparse pre-satellite era to present. This has been the
subject of many investigations aiming to include bias-correction
schemes within the reanalysis (Balmaseda et al., 2007; Lea et al.,
2008; Storto et al., 2016a). However, this creates the additional
challenge of estimating these biases while having only a limited
number of “anchoring” (i.e., unbiased) observations. Before the
deployment of the Argo network, the sampling of observations
used by ocean reanalyses is generally sparse, which has
implications for the reliability of quantities such as global ocean
heat content before the 2000s. However, several studies showed
that beginning in the early 1980s, the observing system is able to
reasonably constrain the global ocean heat content (Storto et al.,
2016b). There is growing interest amongst the ocean reanalysis
community in the deep Argo program (Zilberman, 2017), with
the hope that this will gradually fill the gap in knowledge of the
ocean state below 2000 m and allow the deep ocean warming
contribution to be assessed with greater precision. Care is also
being taken in ocean reanalyses to synergistically exploit a large
number of data sources (altimetry, gravimetry, Argo, tide-gauges,
etc.) to create a reliable representation of freshwater and mass
balances. Data used for evaluation, not necessarily assimilated
(e.g., buoys, drifters, tide-gauges, RAPID and OSNAP arrays,
SAMOC and SOCCOM programs, ADCP data, etc.) are also
crucial for assessing uncertainty in reanalyses and improving
process representation in models.

Within historical data records, the accuracy of the
observations assimilated is often unknown or underestimated
due to lack of metadata. This also prevents effective bias-
correction procedures from being implemented and may lead
to the erroneous specification of instrumental errors. For the
historical ocean subsurface temperature record, the situation is
improving through an internationally coordinated community
effort (Domingues and Palmer, 2015)1, focusing on recovery
of data and metadata, development of intelligent metadata,
coordinated quality control (automated and expert), and
assignment of uncertainties. Their overall goal is to produce
a long-term climate quality global ocean subsurface database
that can be used with greater confidence by the ocean reanalysis
community and other users. The first interim IQuOD database
product is available from The IQuOD Team (2018).

Reanalyses will continue to extend further backward in
time to cover longer historical periods, following the trend set
by Compo et al. (2011) and ECMWF’s ERA-20C, and later
followed by comparable century-long ocean reanalyses (Giese
et al., 2016; Yang et al., 2017) and the coupled reanalysis
CERA-20C (Laloyaux et al., 2018a). This will require improved
methods to handle sparse observations, discontinuities in the
observation network, and correction of large-scale biases, as
well as continuous efforts on data rescue. With the recent
emergence of coupled Earth system reanalyses, non- oceanic data
will also play an important role, particularly in time periods
where ocean observations are extremely sparse or non-existent.
Ocean background errors are expected to evolve significantly
during the reanalysis period due to the ever-changing observing

1www.iquod.org

network. The development of time dependent background error
covariance estimates has proved beneficial (Penny et al., 2015;
Penny, 2017; Yang et al., 2017). The full introduction of flow-
dependent background errors involves estimating the ocean
background error covariances from the ensemble and developing
methods to deal with sampling limitations. Such ensemble-based
error covariance information can account for anisotropic and
inhomogeneous correlations that are difficult to estimate with
traditional methods. An Ensemble of Data Assimilation systems
(EDA) showed some benefits in the atmosphere by dynamically
changing the weight given to the background depending on the
observation density (Poli et al., 2013) and such methods may be
useful for the ocean as well.

In addition to climate investigations, ocean reanalyses using
higher resolution eddy-permitting models have a long history
among the members of the Global Ocean Data Assimilation
Experiment (GODAE) and the follow-on GODAE OceanView.
The production of high-resolution ocean reanalyses started
naturally as a historical extension of operational analysis
experiments, with a series of products disseminated by Mercator
Ocean (Ferry et al., 2007, 2010; Garric et al., 2018), by CSIRO
and the Bureau of Meteorology (Bluelink) (Oke et al., 2005, 2008,
2013), by NERSC (Sakov et al., 2012), and by JMA and JAMSTEC
(Usui et al., 2017). These products have proved instructive for
global and regional investigations of ocean variability (Schiller
and Oke, 2015; Feng et al., 2016), ocean processes (Oke and
Griffin, 2011), and for studies of the ocean-observing system
(Lea et al., 2013; Fujii et al., 2015). Going forward, it is expected
that the resolution of ocean reanalyses will increase to allow
representation of eddy dynamics and to fully include mesoscale
and coastal ocean dynamics. This requires the improvement of
small-scale ocean dynamics in models and the development of
DA methods that are capable of assimilating rapidly changing,
strongly non-linear, and non-Gaussian observational constraints.

ADVANCES AND UNSOLVED
CHALLENGES IN PRODUCING
COUPLED REANALYSES

Coupled model integrations with prescribed radiative forcing
have been the backbone of the coordinated experiments for
the World Climate Research Programme (WCRP) Coupled
Model Intercomparison Project (CMIP) that were designed for
contributing to the Intergovernmental Panel on Climate Change
(IPCC). Century-long coupled reanalyses go a step further by
assimilating information about the actual observed state of the
Earth system, without deteriorating the model representation of
low-frequency variability and change. While this is a tremendous
challenge, it is essential in order to advance our understanding of
climate variability and change and to identify the broader impacts
on global communities.

Key benefits expected from a coupled reanalysis are: a more
consistent treatment of the interfaces between different model
components, better use of observations near these interfaces,
and improved representation of global budgets of conserved
quantities. In principle, the use of a coupled model as the
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forecast component within a DA system makes it possible to fully
account for ocean-atmosphere, ocean- ice-atmosphere, and land-
atmosphere feedbacks. This can only be achieved, however, if the
assimilation of near-surface observations respects the consistency
at the boundaries as imposed by the model and if the modeled
dynamics at the boundary are consistent with observations.

In the 20th-century coupled reanalysis (CERA-20C) produced
at ECMWF, the ocean and the atmosphere communicate hourly
through air-sea coupling at the outer-loop level of the variational
method. In this system, changes in the state of the atmosphere
indirectly impact the ocean properties, and vice-versa, and both
systems adjust to each other during each analysis cycle. There
is a more consistent energy balance in CERA-20C, with the net
heat fluxes at the air-sea interface (0.15 ± 1.1 W/m2) and ocean
temperature increments (−0.11 ± 1.9 W/m2) averaging close to
zero over the century, compared to the forced ocean reanalysis
ORA-20C (−1.62 ± 1.89 W/m2 and 1.66 ± 2.32 W/m2).
However, given that the SST in the ocean component of
CERA-20C was nudged toward an external data product, this
suggests that there is further room for improvement. While
midlatitude storms, heat waves, or cold-air outbreaks are often
well-represented in regions with dense observational coverage,
this is not always the case for tropical cyclones, which are difficult
to model and not well-constrained by observations. CERA-20C
struggles to correctly represent several tropical cyclones at the
beginning of the 20th century (Laloyaux et al., 2018a). More work
is needed to quality control observations from the International
Best Track Archive for Climate Stewardship (IBTrACS). This is
expected to improve the ability of historical reanalyses to facilitate
the study of weather extremes. Based on the development of
CERA at ECMWF, which implements the Copernicus Climate
Change Service2 on behalf of the European Union, there are
ambitions to produce a moderate-resolution global coupled
centennial reanalysis by 2022, allowing a better representation of
long-term trends in the climate system.

Beyond CERA-20C, ECMWF’s reanalysis portfolio has
recently been extended to include CERA-SAT (Schepers et al.,
2018), a pilot reanalysis for coupled DA using the full modern
atmospheric and ocean-observing systems. CERA-SAT was
produced using ECMWF’s CERA coupled assimilation system
and constitutes a 10-member EDA available for a 9-year
period from January 1, 2008 to December 31, 2016. CERA-
SAT serves as a proof-of-concept for CDA in the context of
modern NWP-observing systems. Preliminary assessments have
shown ocean-atmosphere coupling to be beneficial in tropical
regions, while degradation is evident in the extra tropics, when
comparing the coupled CERA-SAT system using SST nudged to
OSTIA to an atmosphere-only reanalysis of the same setup but
forced with OSTIA SST.

Centers that routinely produce reanalyses are often also
engaged in other activities (for instance, operational prediction,
mission support, and ocean monitoring). In order to carry
out all of these missions, and to successfully transition
the currently in-production uncoupled reanalyses to future
coupled reanalyses requires careful planning for appropriate

2climate.copernicus.eu

computational and storage resources. We highly recommend
that funding agencies plan for such upcoming future needs in
order to dedicate sufficient resources to support, within the next
decade, not only coupled ocean-atmosphere reanalyses but also
the inclusion of additional components, such as atmospheric
constituents, chemistry, and ocean biogeochemistry. Such efforts
are underway in the United States as detailed in NOAA’s strategic
implementation plan (SIPv4, 2017), which is a partnership among
NASA, NOAA, the Department of Defense (DoD), and the Joint
Center for Satellite Data Assimilation (JCSDA) and contributing
external and international agencies.

USING OCEAN OBSERVATIONS TO
IMPROVE PREDICTION

We next describe the existing observing system and gaps in
observational coverage and recommend designs of observational
and modeling experiments to evaluate the impact of ocean
observations on forecast skill. The advances and enhanced spatial
and temporal resolution obtained over the last 10 years in both
satellite and in situ observations have enabled the use of DA to
constrain coupled Earth system models for the first time to a
realistic representation of the large-scale upper ocean thermal
structure (upper 1000 m). However, there are still components
of the coupled system that remain unconstrained. For example,
the lack of air-sea flux measurements with global coverage poses
a challenge to constraining the atmosphere-ocean exchanges
without adequate observational sampling. This type of observing
network should be enhanced in the future as they are not
only crucial in the context of CDA and its applications to S2S
and decadal prediction but also for the evaluation of climate
simulations. In particular, we recommend the development of
air-sea-flux-observing satellite missions.

We emphasize the need for continuous long observational
records to enhance prediction capabilities. Ocean reanalysis
systems naturally extend to the initialization of seasonal,
interannual, and decadal prediction systems, where the role of
subsurface ocean initialization has been recognized as crucial
(Balmaseda et al., 2009). S2S and decadal forecasting typically
rely on the existence of reforecasts covering several decades in
order to calibrate the model output and for skill assessment.
These reforecasts are initialized by ocean or coupled reanalyses
(Balmaseda, 2017). The length of the reforecast record adds
value to the forecast. For this purpose, sustained data rescue
activities are recommended as well as maintaining stability of
the existing observing system. Recently, ocean reanalyses used
to initialize seasonal prediction systems (reforecasts and near
real-time reanalyses) have become publicly available via the EU-
funded Copernicus Programme and are being used to evaluate
subsequent forecasts (Juricke et al., 2018).

Measurements from observing platforms such as satellites,
moored surface and subsurface buoys, drifters, floats, dedicated
manned and unmanned vehicles, research ships, and vessels
of opportunity are collected and distributed with various time
lags. Operational predictions rely on observational platforms
equipped with the capability for distribution in real-time or

Frontiers in Marine Science | www.frontiersin.org 8 July 2019 | Volume 6 | Article 391

http://climate.copernicus.eu
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00391 July 11, 2019 Time: 16:4 # 9

Penny et al. Ocean and Coupled Data Assimilation

near real-time. Some observation types are used primarily
as independent measurements for evaluation because they
cannot be assimilated due to time delays or other technical
complications. These include ocean current profilers, satellite-
derived ocean surface currents, and a suite of biogeochemical
observations such as carbon, oxygen, nutrients, ocean color,
and phytoplankton.

Overall, a lack of uniformity in data management
infrastructures imposes problems for the effective and efficient
use of the global observing system in prediction efforts.
These issues include, but are not limited to, delayed and
duplicate data receipts, versioning issues, missing data and
metadata, and non-documented data processing procedures.
In order to advance the deployment of effective ocean-
observing systems, modern data management infrastructures
are needed such that all activities along the data flow pipeline,
from data collection through assembly and preservation,
are more automated and fault-tolerant and progressively
advance the systems toward interoperability. Building strong
collaboration amongst the observing networks, data managers,
and decadal forecasting centers will lead to improved access and
uptake of data and to efficiencies that will eventually lead to
improvements both in the observing networks and the decadal
prediction system.

The future ocean observational requirements for the decadal
prediction system include sustained and reliable data streams
that have global sampling and are continuous in time, subject
to regular quality control and calibration procedures, and
encompass several spatial and temporal scales (e.g., National
Academies of Sciences, Engineering, and Medicine [NASEM],
2017). To this end, there is great value to centralized data centers
that collate observations from individual observing platforms
in order to provide timely access to data and a consistent data
format for ease of integration into DA systems.

PREDICTION AT SUBSEASONAL TO
SEASONAL TIMESCALES

Many operational prediction centers are currently undertaking a
transition from atmospheric NWP on a time range of 0–2 weeks
to seamless forecasts that bridge the gap between medium-
range weather and seasonal forecasts. This transition is driven
by a growing consensus that coupled Earth system modeling
benefits forecasts on a wide range of timescales (Hoskins,
2013; Vitart et al., 2017). The new focus on prediction with
coupled models is highlighted in efforts such as forecasting
the onset of monsoons, characterizing teleconnections of the
MJO, and providing advance warning for extreme weather events
(Vitart and Robertson, 2018).

Subseasonal prediction, focusing on the period transitioning
from NWP to seasonal timescales, stands to gain considerably
from combining the higher model resolutions of NWP with the
coupled modeling approach of seasonal prediction. The MJO is
the dominant mode of intraseasonal variability in the tropics and
is considered a major source of predictability on the subseasonal
time scale (Waliser, 2011). With respect to the ocean, anomalies

in SST affect air-sea heat fluxes and affect atmospheric circulation
(Woolnough et al., 2007).

Vitart et al. (2014) indicated significant gains in prediction
skill after a decade of producing operational forecasts at ECMWF,
pointing to an average gain of about 1 day of MJO prediction
skill per year and improved ability to predict the North Atlantic
Oscillation (NAO) and sudden stratospheric warmings (SSW).
Skill scores improve with increased horizontal resolution and
the addition of new modeling components such as a dynamic
sea ice model. The introduction of new modeling components
also presents the opportunity to assimilate new observational
data not previously utilized for sub-seasonal prediction. Zampieri
et al. (2018) indicate high potential for sea ice prediction in
the sub-seasonal timescales, especially for late summer forecasts,
and advocate the need to reduce systematic seasonally dependent
model biases and develop advanced DA capabilities to constrain
sea ice extent and sea ice thickness.

Zhu et al. (2018) showed that MJO forecast skill can be
improved in the NCEP Global Ensemble Forecast System (GEFS)
from an average of 12.5 days (control) to nearly 22 days by
(1) adding stochastic physical perturbations, (2) considering
ocean impacts by using a two-tiered sea surface temperature
approach (combing an analysis product with a forecast of SST
from a coupled model), and (3) applying a new scale-aware
convection scheme to improve the model physics for tropical
convection. They also showed improved ensemble mean anomaly
correlation of 500-hPa geopotential height in the extratropics
over weeks 3 and 4.

El-Niño Southern Oscillation is an inherently coupled
phenomenon and one of the most studied sources of interannual
variability in the climate system (Wu et al., 2009). Though mostly
associated with the tropical Pacific, ENSO variability impacts
the global climate (Timmermann et al., 2018). Changes in SST
are an indicator of changes in ocean heat storage and transport
and these oceanic processes further interact with changing
atmospheric momentum and heat fluxes. Prediction skill for
the SSTs associated with ENSO have improved over time. At
ECMWF, for example, the skill in predicting SST anomalies
in the NINO3.4 region has consistently improved as the DA
system evolved starting from the S1 system in 1997. If subsurface
ocean and satellite altimeter observations are withheld from the
analysis, there is a severe degradation in skill comparable to
15 years of progress in seasonal forecasting (Figure 1).

The original motivation for the Tropical Atmosphere-
Ocean (TAO) array and Triangle Trans-Ocean Buoy Network
(TRITON) was the 1982–1983 ENSO event (McPhaden, 1995;
Ando and Kuroda, 2002). These moorings have provided surface
meteorological observations, ocean temperatures in the upper
500 m, salinity and current measurements at selected moorings,
and have played a key role in better understanding the ENSO
phenomenon and advancing seasonal forecast systems in the
decades since their implementation (McPhaden et al., 2010). To
support S2S prediction, new observing systems must account for
processes occurring over a much broader range of timescales.

Innovative observing technology in the sub-surface layer
and at the air-sea interface can help to improve understanding
of coupled interactions critical for S2S prediction. Self-sailing
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FIGURE 1 | Lead time in months at which NINO3.4 SST anomaly correlation drops below 0.9 over the period 1987–2002. Results are given for five generations of
seasonal forecasting systems at ECMWF (S1–S5). A version of SEAS5 without ocean data assimilation (SEAS5-NoOobs) is given for reference from
Stockdale et al. (2018).

boats currently exist that can autonomously gather ocean
and atmospheric observations over large areas of the ocean
surface. Such technologies have the potential to precipitously
drop costs of collecting observations of quantities such as
wind, temperature, humidity, salinity, dissolved oxygen, and
fluorescence near the ocean surface. These technologies are
promising for constraining surface flux estimates in CDA, leading
to improved modeling of air-sea interaction and improved
initialization of coupled model forecasts. S2S forecasts for
high latitudes and midlatitudes can be improved with more
numerous and accurate ocean and sea-ice observations in data-
sparse regions.

A redesign of the TAO/TRITON array is currently underway
by the Tropical Pacific Observing System (TPOS-2020)
working group3 that is largely influenced by the volume
of new complementary data provided by a number of
new observing platforms. TPOS-2020 currently plans a
“backbone” design that will support and supplement the
broader observing network, including satellite measurements.
The TPOS-2020 design is likely to include measurements of
the air-sea interface with a vertical and temporal resolution
not possible from remote-sensing platforms. Complementary
observations include satellite measurements of quantities
such as sea level, SST, SSS, wind stress, and precipitation
(Mason et al., 2010; National Academies of Sciences,
Engineering„ and Medicine [NASEM], 2018, Chp. 2) as
well as the in situ Argo profiling float program (see Legler
et al., 2015 for a comprehensive review of operational
observing systems).

The tropical Atlantic and Indian Oceans are also locations of
strong air-sea interaction, exhibiting their own local dominant
modes of interannual variability, such as the Indian Ocean
Dipole (Saji et al., 1999; Webster et al., 1999) and the Atlantic

3http://tpos2020.org/

Niño (Wang, 2005), both of which can modify the timing and
expression of ENSO. To track the evolving state of these oceans
the TAO mooring design has gradually been extended to the
Prediction and Research Moored Array in the Tropical Atlantic
(PIRATA) and more recently the Research Moored Array
for African-Asian-Australian Monsoon Analysis and Prediction
(RAMA) in the tropical Indian Ocean.

The requirements of an observing system change in the Arctic,
where the Argo float network is limited due to seasonal ice cover
and strong stratification and where satellite remote sensing is
limited by heavy cloud cover. These environmental challenges,
along with increasing recognition of the importance of seasonal
changes in Arctic and their impact on weather systems, has led
to rapid development of new instrument types. As regular data
from these new instruments become available, evaluation of their
impact on S2S forecasts will be needed.

Prediction centers have been slow to incorporate SSS data in
ocean DA systems (Maes et al., 2014), though there have been
some indications of potential benefits for upper ocean processes
that could impact S2S and decadal prediction. Hackert et al.
(2011, 2014), Zhu et al. (2014), Tranchant et al. (2018), and
Martin et al. (2019) indicated that improved salinity estimates
have the potential to improve ENSO forecasts. Though, to date,
the impacts shown have been somewhat minor. A number of
other studies showed positive impacts due to the assimilation
of SSS in controlled experiments, including improved upper
ocean salinity (Vernieres et al., 2014), improved surface currents,
mixed-layer depth, and barrier layer thickness (Chakraborty
et al. (2014, 2015), and improved temporal variability of the
vertical distribution of salinity in areas with large freshwater
input (Seelanki et al., 2018). Still, the low temporal frequency of
the data, large uncertainty estimates attributed to instantaneous
observations, and large platform-specific biases (Bao et al., 2019),
make the assimilation of SSS a continuing challenge. A next-
generation technology that could produce SSS observations with
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the frequency, accuracy, and coverage of SST observations would
be a high-impact capability.

Observing system experiments conducted with real-time
forecasting systems have found utility in assimilating sea level
observations from multiple altimeters (Lea et al., 2014; Oke et al.,
2015a,b). For example, Lea et al. (2014) showed that withholding
Jason-2 data resulted in a 4% increase in the global RMS SSH
innovations, while withholding all altimeter data resulted in a
16% increase of the global RMS SSH innovations. Verrier et al.
(2017) conducted observing system simulation experiments with
an eddy-permitting model (1/4-degree horizontal resolution)
and found that forecasts of sea level and ocean currents are
continually improved when incrementally increasing the number
of satellite altimeters from one to two (∼30% error reduction)
and from two to three (∼10% additional error reduction).
They also note that when assimilating several altimeters, the
analysis can resolve western boundary current scales closer to
100 km, versus the native model’s capability to resolve scales
around 100–200 km.

Further evaluating observing system impacts on ocean
analyses and S2S forecasts will contribute to an ongoing
discussion in the design of new oceanic observing systems,
such as TPOS-2020 and AtlantOS4. Additionally, new and
upcoming satellite missions such as the Surface Water and
Ocean Topography (SWOT) will provide higher-fidelity
SSH observations than ever before. Coordination between
international groups such as CLIVAR and GODAE OceanView
is needed for significant progress to be made with international
observing efforts (Fuiji, 2019). These international efforts,
together with Global Ocean Observing System (GOOS) and its
expert panels focusing on physics and biogeochemistry need
to work together to build an observing system that recognizes
user priorities.

PREDICTION AT DECADAL CLIMATE
TIMESCALES

Interest in the viability of decadal forecasts is driven by a
recognition that these timescales are of increasing importance
to decision makers both for governmental policy and private
industry (Meehl et al., 2009; Kirtman et al., 2013). Decadal
prediction can encompass timescales between several years to a
few tens of years, with relevant processes interwoven with those
relevant to both S2S forecasts and long- term climate projections.
In the extratropics, for example, distinct climate variability has
been associated with annual changes in the storm tracks and
associated meteorological conditions over the North Pacific and
North Atlantic, such as the Pacific Decadal Oscillation (PDO)
and the North Atlantic Oscillation (NAO) (Scaife et al., 2014).
Decadal prediction is dependent on our ability to forecast not
only internal variability of the Earth’s climate system, such as
the large-scale climate modes (ENSO, NAO, and PDO), but also
how these modes will change under the influence of changes in
external forcing, such as arising from human activity. The World

4https://www.atlantos-h2020.eu

Climate Research Program (WCRP) has recognized near-term
climate prediction as one of its grand challenges. Despite this
recognition, the extent to which decadal climate predictions are
able to provide reliable and useful information to users remains
uncertain (Meehl et al., 2014).

A sufficiently well observed ocean is crucial for the
development of useful decadal predictions (Smith et al., 2012).
In order to predict the evolution of natural climate variability,
coupled models must be initialized with observations informing
the current state of the climate system.

Predictability over these timescales will rely principally on
accurately forecasting the slower modes of the coupled climate
system, which are highly dependent on long-timescale ocean
dynamics. Thus, decadal prediction systems will rely ever more
heavily on a sustained ocean-observing system to initialize
and verify predictions, similarly to what happened for NWP
systems. Sparseness, non-uniformity, and secular changes in
the ocean observing system represent a challenge for the
initialization and evaluation of a decadal prediction system.
Therefore, key factors enabling improved climate prediction
skill are the availability of consistent surface and subsurface
ocean observations over sufficiently long time spans, improved
understanding of processes involved with ocean-atmosphere
coupling, and the ability to track the climate modes of variability
that determine predictability on a given spatiotemporal scale.

During the last decade, satellites and autonomous in situ
platforms have driven a step change in our ability to observe
the ocean in near real-time. The use of remotely sensed and
autonomous in situ platforms has revolutionized the ocean
observing system, and the fast, technological advance on
platforms and sensors will continue to improve the system
(Figure 2). The next decade will expand upon these advances
with new sensors and platforms, coupled with advances in
telecommunications.

Decadal prediction systems generally assimilate or relax
to SST analysis products. However, an increasing number of
systems are also including interior ocean observations, such
as temperature and salinity profiles, and sea ice (Doblas-Reyes
et al., 2011; O’Kane et al., 2018). Decadal prediction systems,
as they focus on seasonal to longer timescales, rely on both
real-time data and delayed-mode quality assurance and quality
control data (QA/QC) for model initialization and evaluation.
Coupled decadal prediction systems often use atmospheric states
sampled either from reanalyses or operational products to
initialize the atmosphere. However, this practice may need to
be revisited and potentially replaced with more sophisticated
methods such as CDA. For example, comparison of these
products with the sparsely available ocean surface meteorological
flux buoys consistently show significant differences both globally
and regionally, indicating imbalances in the surface energy and
freshwater fluxes at the air- sea interface (Yu, 2019). Maintaining
and extending surface flux buoys is vital to understanding the
source of these inconsistencies, to improving coupled models,
and to evaluating decadal prediction systems.

The heterogeneous nature of the in situ ocean-observing
system requires comprehensive metadata, sophisticated data
integration, and organized interpretation activity in order to
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FIGURE 2 | Global availability of in situ temperature profiles by vertical depth from 1978 to 2013.

realize the maximum benefit of the observations. Effective
data management requires a strong collaborative effort across
activities including observation collection, metadata and data
assembly using community accepted standards, QA/QC,
data publication that enables local and interoperable access,
and secure archiving that guarantees long-term preservation
of collected data.

Statistics of the innovations generated within the DA
procedure can be evaluated to identify broad biases in the
differences between model and observations. For example, one
can identify regions where there are large innovations due to the
assimilation of daily, satellite SSH and SST anomalies.

Significant impacts are often found in the dynamically active
regions such as the high-latitude oceans, boundary currents,
and along the Equator. Further, with appropriate DA methods,
regions of large model biases can be accurately estimated
and reduced via direct assimilation of observations (Evensen,
2003). On longer timescales, the sparser in situ observing
network can provide similar guidance for correcting long-
timescale model biases.

There remain many unanswered questions on the
fundamental nature and drivers of ocean variability. Decadal
prediction depends on the presence of “oscillations” that have
the potential to remain coherent on multi-year to multi-decadal
time scales. To the extent that such slowly evolving dynamical
regimes exist (e.g., along which climate anomalies propagate), it
is important that the DA system is capable of maintaining these
lower frequency signals. It is also critical to understand how these
anomalous ocean signals are influenced by the ocean-atmosphere
boundary. Improved dynamical understanding of the ocean,
sea ice, and atmosphere, and their coupled interfaces and
teleconnections, will lead to more reliable and skillful multi-year
to decadal climate forecasts.

There is a need for full-depth observations that provide
measurements able to resolve the dominant temporal and spatial
scales of variability of the ocean. We encourage continuing
to leverage the sustained ocean-observing infrastructure for

short-term intensive process study campaigns that target key
knowledge gaps such as air-sea-land and ice coupling. When
such process studies are conducted, greater interaction with the
DA community before, during, and after the campaigns could
help to identify observations that may be good candidates for
transitioning into the sustained observing system. To this end,
we encourage stronger collaboration between the communities
developing near-term forecasting and ocean observing platforms
to aid model development and observational design.

CONCLUSION

The ocean-observing system plays an important role in
developing historical reconstructions of the ocean and initializing
forecasts of the coupled Earth system at all timescales. The ideal
observational sampling strategy will continue to evolve as we
improve our understanding of the spatial and temporal scales
of ocean variability and as technological observing capabilities
improve. An ongoing challenge for the reanalysis and prediction
communities will be to maintain close collaboration with
the ocean-observing community that is developing the next-
generation ocean-observing systems. This collaboration should
occur at all stages, including the design, implementation, and
decision making that determines sustained observations. The
ocean DA community should provide programmatic guidance
to the ocean-observing community regarding what types of
observations would be most useful when established in a
sustained observing network to best support ocean monitoring
and prediction at various timescales. This problem requires the
solution of a complicated optimization problem that is defined
by a stated goal (e.g., to maximize the skill of a forecast), while
taking into account the limitations of the forecast model, of each
observing platform, and of the DA method itself. So far, this is
not a mainstream activity and further coordination is needed
in the coming decade to make observing system design a key
application of ocean DA and CDA.
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We anticipate a continuing race between the physical scales
resolved by modeling and observing systems. DA systems must
be able to constrain increasingly high-resolution numerical
models at physical scales supported by the observation network.
This poses dual challenges to make better use of a sparse
observing system that will become increasingly coarse, in a
relative sense, as model resolutions increase, as well as the need
to incorporate as much information as possible from high-
resolution satellite observing systems. With upcoming satellite
missions, the satellite-based ocean-observing system may at times
evolve to support much higher resolutions of observed data
products than a state-of-the-art operational forecast model can
support. While a precise DA strategy should be developed for
such scenarios, we also encourage coordination to take place
between the modeling and prediction centers and the teams
developing plans for future satellite observing missions in order
to ensure prioritization of those missions that have maximum
impact on prediction skill.

To support CDA developments for operational applications,
we recommend that a high priority be placed on ensuring
consistency between atmosphere and ocean data governance
bodies (e.g., WMO and Copernicus Climate Change Service
and Copernicus Marine Environment Monitoring Service). At
present, many ocean observations risk missing the cut-off times
associated with the timelines of operational NWP. Improved
infrastructure is needed to support research and operations,
including real-time transmission of observed data and real-
time feedback from users regarding the quality control of
those data relative to other observing sources. For operational
coupled Earth system approaches, used for reanalyses and
prediction, it is crucial to enhance the consistency between
the atmospheric and the ocean-observing systems, not only
in terms of timeliness and infrastructure but also in terms of
funding support and sustainability. The European Environment
Agency State of Play Report (The European Environment Agency
[EEA], 2017) pointed out that the ocean-observing system
lacks prospects for long term funding. About 70% of data
in the GOOS is funded by time-limited research projects (in
contrast to 25% for atmospheric observations). In situ ocean
observations are based on infrastructures mainly supported by
national agencies, and in recent years the number of observation
sites and platforms have gone through periods of decline. They

also emphasized that more coordination is needed between
funding agencies, operators, and users of ocean observations
internationally. In addition, the EEA State of Play report
emphasized the lack of biogeochemical and deep (2000 m and
deeper) ocean observations.

Finally, the combination of increases in computing power
and availability of observations has enabled the development of
ensemble coupled DA systems. Ensemble-based approaches have
the ability to identify and track the largest growing disturbances
within the system. These growing disturbances represent regions
of high variance where potential predictability of the system
resides. The identification of these growing disturbances provides
information about regions of the ocean where observations are
likely to have the largest impact on the evolving coupled system
and likely lead to useful predictions at all scales. Emerging
CDA methods, enabled by coupled Earth system modeling,
provide a great opportunity for increased collaboration across
communities and rapid advances in scientific understanding over
the next decade.
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