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Abstract

Ensemble optimal interpolation (EnOI) is a variant of the ensemble
Kalman filter (EnKF) that operates with a static ensemble to drastically
reduce its computational cost. The idea is to use a pre-selected ensemble
to parameterize the background covariance matrix, which avoids the costly
integration of the ensemble members with the dynamical model during the
forecast step of the filtering process. To better represent the pronounced
time-varying circulation of the Red Sea, we propose a new adaptive EnOI
approach in which the ensemble members are adaptively selected at every
assimilation cycle from a large dictionary of ocean states describing the Red
Sea variability. We implement and test different schemes to select the en-
semble members (i) based on the similarity to the forecast state according to
some criteria, or (ii) in term of best representation of the forecast in an en-
semble subspace using an Orthogonal Matching Pursuit (OMP) algorithm.
The relevance of the schemes is first demonstrated with the Lorenz 63 and
Lorenz 96 models. Then results of numerical experiments assimilating real
remote sensing data into a high resolution MIT general circulation model
(MITgcm) of the Red Sea using the Data Assimilation Research Testbed
(DART) system are presented and discussed.
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1. Introduction

The Red Sea lies between Africa and the Arabian Peninsula, connect-
ing the Mediterranean Sea to the Indian Ocean. It serves chief shipping
trade routes between Europe and Asia with the opening of the Suez Canal
and substantially contributes to the social and economic developments in
the surrounding countries. The Red Sea’s complex terrains and landforms
have accommodated a unique ecological system rich of biodiversity [4]. The
Red Sea hosts a dozens of islands scattered along its coast, particularly in
the Southern basin, while flat coastal plains gradually slope to the central
trough, deepening up to 2100 m. The water exchange between the Red
Sea and the Mediterranean Sea is quite limited, but the outflow/intrusion
to/from the Gulf of Aden is significant for the Red Sea circulation and
ecosystem despite the topographic restrictions of the narrow strait of Bab-
Al-Mandeb [9, 65, 66].

An increasing number of observations have become available in recent
years in the Red Sea, collected by different platforms, including satellites,
buoys, gliders, cruises, etc. Despite this, the spatial and temporal data
coverage in the Red Sea is still limited, making it difficult to study the
hydrodynamics based solely on observations. Numerical simulations of the
Red Sea circulation using eddy-resolving Oceanic General Circulation Mod-
els (OGCM) have therefore become popular to conduct various studies of
the Red Sea circulation, including the general and overturning circulations
[65, 66], deep water formations [46, 64], eddies variability and dynamics
[67, 68, 69, 70], connectivity [40, 48], internal waves [17, 18], etc. Such
models are also the step-stone to develop forecasting capabilities.

Numerical models are imperfect and inevitable source of errors may af-
fect their outputs [11]. Currently, the best approach to obtain accurate
model simulations is to condition the model outputs to available observa-
tions through a data assimilation process. Data assimilation methods seek
for the best possible estimates of the state of a dynamical system given
available data [21]. These are now widely used in atmospheric and oceanic
applications for operational services, and also for parameter estimation, op-
timal observations design, etc [20, 52, 67].

Data assimilation in marginal seas is more challenging than in the open
ocean, due to the rich nonlinear dynamics of coastal regions, the lack of
coordinated observational networks, albeit for targeted efforts to monitor
some specific local features of interest, and inevitably modeling uncertain-
ties resulting from the complex topography, and coarse atmospheric forcing
fields and ocean boundaries [11]. Until very recently, data assimilation was
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not applied in the Red Sea, except for one early work [5] that implemented a
coarse model with simplified atmospheric forcing and assimilated sea surface
temperature (SST) and XBT/CTD data using a simple nudging technique.
With the ever increasing interests to develop modeling and forecasting ca-
pabilities for the Red Sea, driven by the new mega Saudi governmental
projects along the shores of the Red Sea and the desire of the national
oil company ARAMCO to develop advanced operational capabilities to sup-
port their operations, significant efforts are now being undertaken to develop
such a system using state-of-the-art modeling and data assimilation tech-
niques. These were initiated by the Red Sea Modeling and Prediction Group
at King Abdullah University of Science and Technology (KAUST). In 2017,
[60] presented the implementation of the first Red Sea ensemble assimilation
and forecasting system and assessed the performances of different assimila-
tion schemes, namely a deterministic Ensemble Adjustment Kalman Filter
(EAKF), and an Ensemble Optimal Interpolation (EnOI) with pre-selected
static and seasonally varying ensembles. Composed of the MIT general cir-
culation model (MITgcm) for ocean forecasting and the Data Assimilation
Research Testbed (DART) for ensemble assimilation, the system is forced
with realistic atmospheric fields and assimilates remotely sensed sea sur-
face height (SSH) and SST observations. The system is further equiped to
assimilate most, if not all, available ocean measurements [20, 60].

Ensemble assimilation methods have been proven very efficient in many
ocean applications and regions (e.g. [6, 20, 43, 60, 63]). The performance of
these methods greatly depends on the representativeness of their ensembles,
which should be large enough to describe the directions of errors growth of
the system and mitigate the effects of sampling errors [25, 32, 56]. Using
large ensembles in an ensemble Kalman filter (EnKF), such as EAKF, means
more numerical model integrations and therefore increased computational
cost [60]. EnOI integrates only the filter estimate (i.e. analysis) to compute
the forecast and updates the latter with the incoming observations based
on the sample covariance of a pre-selected ensemble, as a way to reduce the
number of model runs. A stationary ensemble may however not properly
capture the striking seasonal variability of the Red Sea dynamics [65, 66]. A
Seasonal EnOI, which uses seasonally varying ensembles [63], was success-
fully implemented in the Red Sea [23, 60]. It was however not very efficient
at describing the prevailing eddy and mesoscale activities in the basin [69].

The use of pre-selected time-varying ensembles that represent the differ-
ent seasons of the studied basin has already been proposed in EnOI [62, 63].
Here we propose to push this idea further by adaptively and automatically
selecting, at every filter analysis step, a new ensemble from an available
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“dictionary” of representative ocean states (e.g. long reanalysis). As in an
EnKF, this will enable updating the ensemble of the EnOI scheme, in order
to describe the state uncertainties at the time of the analysis step, while
avoiding the costly numerical integration of its members. The selection of
the ensemble members will be based on the best estimate of the state at
the time of the analysis, i.e. the forecast state. This new Adaptive EnOI
(AEnOI) scheme will therefore only integrate the model once to forecast
the state, and then select an ensemble from the dictionary that represents
its current uncertainties according to a certain criteria, based on which the
Kalman analysis step will be applied.

Similar ideas have been recently proposed, relying on some kind of dic-
tionary to describe the uncertainties or statistics of the estimate of interest.
[58], for instance, suggested a fully data-driven ensemble data assimilation
framework that selects the “best” ensemble members from a given “catalog”
of possible successive states of the system based on a “analog” or “nearest-
neighbor” approach. The nearest-neighbor approach is adopted from the
machine learning community and is basically designed to find the closest,
according to some metric, possible successor state given the current state of
the system. This however amounts to replace the dynamical ocean model
by a purely data-driven model. A closely related approach was proposed by
[30] based on the so-called Takens approach, replacing the dynamical model
with a delay coordinate embedding model. Another technique, known as
the Dynamic Ensemble Update (DEU), was introduced in the context of an
EnKF [53], but uses a particular dictionary of sparse realizations to sparsify
the filter estimate. Other approaches also resorted to some dictionaries to
account for some missing physics [3], or to simplify the complexity of the
dynamical model [10].

The approach we propose here is somehow different; it uses the full
dynamical model for forecasting and the dictionary to provide a possible set
of realizations (ensemble members) that represents the current uncertainties
based on the forecast. We present and discuss different metrics to select the
new ensemble members from the dictionary, and test their relevance with a
realistic ensemble data assimilation exercise using a high resolution MITgcm
model in the Red Sea. The paper is organized as follows. Section 2 recalls
the EnKF and EnOI algorithms. Section 3, presents the adaptive EnOI
algorithm and discusses approaches to select the ensemble members from the
available dictionary. Section 4 presents the results of the implementation of
the adaptive EnOI algorithm with the Lorenz 63 and 96 models. Section 5
describes the general circulation ocean model and its configuration, as well
as the assimilated observations. It also outlines the design of the conducted
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assimilation experiments, and discusses the filters performances and results.
Finally, Section 6 concludes the work with a summary of the main findings
and a discussion on the future directions.

2. Ensemble Data Assimilation

The data assimilation problem with the Ensemble Kalman filter is de-
scribed following the state-space model formulation

xt+1 = Mt(xt) + ηt, (1)

yt = ht(xt) + εt, (2)

where Mt denotes the model representing the ocean dynamics, xt is the
state vector at time t, and ηt is the model error. yt is the observation
vector, which is related to the state via the measurement operator ht and εt
represents the observational error. Both ηt and εt are assumed independent
and normally distributed of mean zero and covariance matrices Qt and Rt,
respectively.

As a variant of the well-known Kalman filter (KF) [29], the EnKF rep-
resents the statistics (first two moments) of the system state by a collection
of random realizations, or ensemble members [13, 21]. The estimate at any
given time is then given by the sample mean and the error covariance is
approximated by the sample covariance of the ensemble [13]. Here we adopt
a deterministic formulation of the EnKF [21, 24]. Given a forecast ensemble

of N members at time step t forming the matrix Xf
t = [xf1,t, . . . ,x

f
N,t], with

xfi,t denoting the i-th ensemble member at time t. The forecast ensemble
anomaly is

Xf ′

t = Xf
t −

1

N

(
N∑
i=1

xfi,t

)
e1×N , (3)

with e1×N denoting the matrix with ones as elements and size 1×N . At the
analysis step, once an observation yot becomes available, the forecast state
xft , which is the mean of Xf

t , is updated using the standard Kalman filter
correction step to obtain the analysis state

xat = xft + Kt

(
yot − ht(x

f
t )
)
, (4)

where Kt = Pf
t H

T
t

(
HtP

f
t H

T
t + Rt

)−1
is the Kalman gain. The forecast

error covariance Pf
t is estimated as 1

N−1Xf ′

t Xf ′

t

T
, and the associated analysis
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error covariance as

Pa
t = [(Pf

t )−1 + HT
t R−1

t HT
t ]−1.

In the EAKF formulation, a matrix At is introduced such that Pa
t = AtP

f
t A

T
t .

Based on a judicious choice of At, an analysis ensemble is then resampled as

Xa
t = At

(
Xf
t − 1

N

(∑N
i=1 xfi,t

)
e1×N

)
+ 1

N

(∑N
i=1 xai,t

)
e1×N in such a way

to match the analysis xat and covariance Pa
t before it is integrated by the

model (1) to compute the next forecast [21], allowing for a dynamical up-
date of the estimation error. A new assimilation cycle starts once the new
observation becomes available.
EnOI is the optimal Interpolation (OI) variant of the EnKF ([14]) in which
a pre-selected ensemble remains static during all assimilation cycles, with no
feedback from the assimilation system to modify the forecast (background)
covariance ([52]). In the EnOI forecast step, only the analysis state is inte-
grated by the dynamical model for forecasting, before it gets updated again
with the incoming observation based on the pre-selected ensemble ([14]).
EnOI therefore leads to a drastic computational cost reduction (by almost
a factor N) compared to an EnKF, and no resampling step is needed after
the analysis. It further does not suffer from the typical ensemble collapse
of the EnKFs, which often requires artificial inflation of its ensemble [1].
This makes EnOI a computationally very efficient approach for ensemble
assimilation and was shown to be particularly robust in numerous ocean
applications ([6, 43, 60, 63]).

3. Adaptive EnOI

The use of representative background covariances is critical for the per-
formance of any data assimilation scheme, as these should describe the spa-
tial and multivariate structure of the subspace in which the update with the
observation is performed ([19, 34]). In particular, the behavior of ensem-
ble assimilation methods largely depends on the representativeness of their
(forecast) ensembles, based on which the background covariance is estimated
([56]). The ensemble should (i) describe the directions of estimation errors
growth, and therefore be time-variant to follow their dynamical evolution
([21, 23]), and (ii) be large enough to infer reliable statistics between the
observations and the forecast state and to provide enough rank (degrees
of freedom) to fit the data ([19, 22]). In realistic large scale applications
with general circulation ocean models, however, EnKFs can be only im-
plemented with relatively limited ensembles O(10 members) to maintain a

6



manageable computational load ([21]). This usually results in rank-deficient
background covariances that require various auxiliary techniques, such as
covariance localization ([28]) inflation ([19]), to infer reasonable forecast in-
crements from the incoming observations. Localization restricts the action
of the increments only to grid points close to the observation, which helps
increasing the background covariance rank and filters spurious correlations
[27]. Another typical concern with ensemble data assimilation systems is
the loss of spread in the forecast ensemble, which is associated with the
dissipative nature of ocean models ([25, 32]) and the often misrepresented
sources of model errors ([26]). This is often mitigated through simple ensem-
ble inflation and/or stochastic perturbations (of the parameters and inputs)
techniques [14].

EnOI schemes efficiently resolve the issue of computation load, which
enables the use of large ensembles without cost increase. A static ensemble
may however not always be representative of the modeled dynamics, espe-
cially when dealing with rapidly varying dynamics and those that experience
sudden regime changes ([23]). To deal with the pronounced seasonality of
the South China Sea, [63] suggested pre-selecting seasonal representative
ensembles and then use these in an EnOI according to the season during
which the observations are assimilated.

We propose here to push further the idea of using a time-varying en-
semble in EnOI, not only by utilizing static ensembles by selecting a new
ensemble on a seasonal basis, but at every assimilation cycle to account for
the mesoscale and eventually intra-seasonal variability. We propose here to
select the new ensemble after every forecast step from an available historical
set, or “dictionary”, of ocean states describing the variability of the studied
basin. The selection of the ensemble will be based on the best available
information at the time of the update step, which in the context of an EnOI
is the forecast state. The proposed assimilation workflow is schematized
in Figure 1 and we will refer to it as the Adaptive EnOI, or AEnOI. The
selection of the ensemble members from the dictionary is the corner stone
of the proposed approach and is discussed in the next section.

3.1. Ensembles selection

We present two different strategies to select the ensemble members from
an available dictionary: (i) select the elements that are the “closest” to the
forecast according to a certain distance, (ii) select the elements that describe
at best the filtering error subspace [42], based on the so-called Orthogonal
Matching Pursuit (OMP) algorithm. After selecting the new members, the
mean of the ensemble is replaced by the forecast state in both approaches,
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so that only the ensemble anomaly is used in the EnOI algorithm. The
incoming observations are not used in the selection, so that the data are not
involved in the choice of the prior.

3.1.1. Distance-based similarity selection

We look for the dictionary elements that bear spatial similarities, or are
the closest in some sense, to the forecast state according to a distance mea-
sure. The idea is that if an ocean state displays similar spatial features as the
forecast state, it is also expected to carry information about the uncertain-
ties around the forecast. One straightforward way to evaluate the distance
between the forecast and the dictionary elements is to use the L2-norm, or
L1-norm as illustrated in Figure 2. In our experiments, the assimilation re-
sults were quite close whether using L1-norm or L2-norm, and thus we only
report here the results of the latter in the numerical experiments presented
in Section 5.

Quantifying the similarity between two fields according to some norm
may under-represent some localized ocean features in the overall basin-
distance. We have also tried to involve correlations in our elements selection,
but the strong environmental gradient in the Red Sea ([70]) dominated the
correlations and made it difficult to distinguish the dictionary elements in
this basin at the mesoscales.

3.1.2. Error-subspace selection

The basic idea is to identify a subset of the dictionary elements that
represents at best the forecast error subspace in which the Kalman filter
update is applied [23, 32, 41]. Here we propose to use a Matching Pursuit
(MP) method, an interactive greedy algorithm that finds the best matching
projections of a high-dimensional signal onto the span of a (complete) dic-
tionary [37]. By selecting the elements that are most correlated with the
current residuals (see Figure 3 for schematic illustration and algorithm’s de-
scription), MP attempts to approximately represent a signal using a sparse
linear combination of the dictionary elements, called atoms, while minimiz-
ing the signal representational error in the dictionary. This is different than
selecting the elements that are most correlated with the forecast state, and
should lead to an ensemble with more spread describing the forecast state
variability, assumingly representative of the filter error-subspace. In the
Orthogonal Matching Pursuit (OMP) algorithm, the residual is always or-
thogonal to the span of the dictionary elements already selected. This can
conceptually be implemented using a Gram-Schmidt scheme and results in
convergence for a n-dimensional vector after at most p-iterations (p ≤ n,
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being the sparsity level) [61]. Enforcing orthogonal elements helps to avoid
selecting redundant elements and provides more ensemble spread [61].

3.2. Implementation of the ensemble selection strategies

All the selection methods share the same workflow and the difference
appears only at the selection stage (3.1. of Algorithm 1). The generic form
of the ensemble selection is detailed in Algorithm 2, while Table 1 outlines
two implementations of Algorithm 2, one with the L2 selection method and
the other one with the OMP.

4. Preliminary experimentation with Lorenz models

The adaptive EnOI schemes are first tested and compared with the stan-
dard EnOI and EnKF algorithms using Lorenz-63 [35] (hereafter L-63), and
Lorenz-96 [36] (hereafter L-96) models, two popular prototypes for assessing
new assimilation schemes. For each model, all EnOI-based schemes use the
same dictionary, constructed from a collection of samples that came with
the EnKF-Matlab software [51], and was generated by a long model run. We
conduct twin-experiments where the trajectory of a reference run is taken
as the “true” trajectory from which synthetic observations are generated by
adding zero-mean Gaussian white noise with variance σ2y . The filters’ per-
formances are evaluated using the root-mean-square error (RMSE) between
the reference states and the filters’ estimates averaged over all variables and
over the whole assimilation period. We implement all filters using the co-
variance inflation [2]. We further apply a local analysis [27] in the L-96
experiments.

4.1. Numerical experiments with L-63

The L-63 model is a nonlinear dissipative dynamical system that mimics
an atmospheric chaotic behavior [45]. It is governed by the following systems
of differential equations 

dx

dt
= σ(y − x),

dy

dt
= (ρ− z)x− y,

dz

dt
= xy − βz,
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where σ = 10, ρ = 28, and β = 8/3. The state variables x, y and z measure,
respectively, the intensity of convective motion, the temperature difference
between the ascending and descending currents, and the distortion of vertical
temperature profile from linearity. The model is integrated using a fourth-
order Runge-Kutta integration scheme, with a time step of 0.01 time units.
After a spin-up period of roughly 20 days to remove any detrimental impact,
the simulations are run for a period of five years in model time (i.e., 36500
model steps). We consider the case where all three variables are observed
with σ2y = 2. All schemes are tested with different values of inflation, ranging
between 1 and 1.3, and compared, based on their minimum RMSEs. Our
numerical experiments suggested that EnOI-based schemes do not require
inflation, which was therefore not applied.

Figure 4 plots time series of the analysis RMSEs (upper subplot) and the
forecast ensemble standard deviations (bottom subplot), as resulting from
all schemes between assimilation steps 3000 and 3500, for illustration. Data
are assimilated every 4 model steps and the ensemble size is set to 100. The
RMSEs time series suggest a clear outperformance of the EnKF, followed
by the AEnOI-L2 and the AEnOI-OMP. The reported RMSE values, aver-
aged over the whole simulation period (0.172 for EnKF, 1.032 for AEnOI-
L2, 1.119 for AEnOI-OMP, and 1.205 for EnOI), further confirm this and
support our expectations about the capabilities of the AEnOI schemes in
improving the EnOI performances, although they all fall behind EnKF. This
is expected as the EnKF evolves the underlying state distribution by updat-
ing the ensemble members with the model dynamics. This however might
be computationally demanding, since large ensembles are usually needed to
properly describe the state statistics. For example, a one-year filtering run
with 200 members, assimilating every 50 model steps (2.5 days), completed
in 6.5538 s with the EnKF, 0.5103 s with the AEnOI-L2 and 2.9924 s with
the AEnOI-OMP. Regarding the ensemble spread, the results suggest that
EnKF, and to a lesser extent AEnOI-L2, exhibit the smallest spreads. EnOI
and AEnOI-OMP however have larger spreads, but with different patterns.
Indeed, EnOI has of course a constant spread, whereas AEnOI-OMP sug-
gests a strongly variable spread over time. We further study the schemes’
sensitivities to different ensemble sizes (Ne) and frequencies of assimilation in
Figures 5 and 6, respectively. Overall, increasing the ensemble size reduces
the RMSE values for all schemes, except for AEnOI-L2, which yields the
most accurate results with small ensembles (10, 20 and 40), while for these
ensemble sizes, AEnOI-OMP does not improve EnOI performances. As the
ensemble size increases, the benefit from AEnOI-OMP becomes clearer and
its performances approach those of AEnOI-L2 while both schemes remain
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better than EnOI. Similarly, assimilating the data more frequently further
improves the results although the EnOI-based schemes seem less sensitive
to the assimilation period than the EnKF.

4.2. Numerical experiments with L-96

The L-96 model simulates the time evolution of an atmospheric quantity
based on a set of differential equations:

dxk
dt

= (xk+1 − xk−2)xk−1 − xk + F, k = 1, · · · ,K. (5)

where xk denotes the kth element of the state x. The nonlinear (quadratic)
terms represent advection and the linear term simulates dissipation. In its
most common form, the system dimension is K = 40 and the forcing term F
is set to 8, a value for which the model exhibits a chaotic behavior. Boundary
conditions are periodic (i.e; x−1 = x39, x0 = x40 and x41 = x1). The model
is integrated using a fourth-order Runge-Kutta integration scheme, with a
time step of 0.05 time units. After a spin-up period of roughly 20 days to
remove any detrimental impact, the simulations are run for a period of five
years in model time (i.e., 7300 model steps). We consider the case where
all variables are observed with σ2y = 1. We test the schemes using different
values of inflation ranging between 1 and 1.3. We apply the standard local
analysis approach by restricting the update of each grid point to only obser-
vations falling within some influence radius ([50]). The localization support
radii vary from 2 (strong localization) to 40 (weak localization) grid points.
The schemes are then compared based on their minimum RMSEs over all
possible combinations of inflation and localization values. Figure 7 gives an
idea about the schemes’ needs for inflation and localization by plotting the
RMSEs as a function of the localization radius and inflation factor.

Based on an extensive set of numerical experiments, the EnKF was the
most sensitive to the choice of inflation and localization. Regarding EnOI-
based schemes, the results suggest that they have enough spread and there-
fore do not require inflation. AEnOI-OMP was the least dependent on lo-
calization among the EnOI schemes. A sensitivity further analysis suggests
that increasing the ensemble size and the assimilation frequency enhances
the schemes behaviors (Figures 8,9), with less sensitivity from the EnOI-
based schemes. The results further suggest that, in all tested scenarios,
EnKF provides the most accurate estimates. AEnOI-OMP yields similar
results as EnOI whereas AEnOI-L2 clearly improves its performances. One
may also notice that, when data are assimilated less frequently using a small
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ensemble, the performance of EnKF degrades and approaches those of the
EnOI-based schemes. Therefore, in these challenging cases, the benefit from
using AEnOI-L2 as a computationally less demanding alternative to EnKF,
becomes more pronounced.

5. Experimentation with an ocean general circulation model in
the Red Sea

5.1. The ocean model

We employ the Massachusetts Institute of Technology general circula-
tion model (MITgcm), which solves the Navier-Stokes equations under the
implicit free surface and Boussinesq approximations ([38]). The model is
configured for the domain 30◦E-50◦E and 10◦N-30◦N covering the whole
Red Sea, including the Gulf of Suez, the Gulf of Aqaba, and part of the
Gulf of Aden where an open boundary connects it to the Arabian Sea. The
model is configured with a Cartesian grid at an eddy-resolving grid reso-
lution of 0.04◦× 0.04◦. In the vertical direction, the configuration has 50
layers, with 4 m spacing in the surface and 300 m near the bottom. The
bathymetry of the basin is derived from the General Bathymetric Chart
of the Ocean (GEBCO, available at http://www.gebco.net/data_and_

products/gridded_bathymetry_data). The model uses a direct space time
3rd order scheme for tracer advection, harmonic viscosity with coefficients
of 30 m2/s in the horizontal and 7 × 10−4 m2/s in the vertical, implicit
horizontal diffusion for both temperature and salinity, and the K-Profile
Parameterization (KPP) scheme ([31]) for vertical mixing with a vertical
diffusion coefficient of 10−5 m2/s for both temperature and salinity. The
open boundary conditions for temperature, salinity, and horizontal velocity
are prescribed daily from the Global Ocean Reanalysis and Simulation data
(GLORYS; [47]) available on a 1/12◦ horizontal grid. A sponge layer of 5
grid boxes with a relaxation period of 1-day is implemented for smooth in-
corporation of open ocean conditions through the eastern boundary. The
normal velocities at the boundary are adjusted to match the volume flux
of GLORYS, which is estimated from GLORYS sea surface height (SSH)
variations inside the model domain. The resulting inflow at the eastern
boundary ensures consistency between the model and GLORYS basin-scale
SSH. The model was spun-up for 31 years starting from 1979 to 2010 us-
ing the European Center for Medium Range Weather Forecast (ECMWF)
reanalysis of atmospheric surface fluxes of radiation, momentum, freshwa-
ter sampled every 6-hour and available on a 75 km × 75 km grid ([7]).
The model has been extensively validated for the Red Sea by earlier studies
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(e.g. [16, 60, 65, 66, 67]). For comparison with the assimilation runs (as
further discussed in the next section), the same model configuration was
integrated forward for the year 2011 using 6-hourly ECMWF atmospheric
fields available at 50 km × 50 km resolution. We refer to this model free-run
experiment without assimilation as Fexp.

5.2. Experimental setup

Available observations are assimilated using the Ensemble Adjustment
Kalman Filter (EAKF) available in the DART-MITgcm (Data Assimila-
tion Research Testbed) package ([20, 24]) implemented for the Red Sea by
[60]. All the experiments, in the present study, assimilate the data every 3
days, using a ∼300 km horizontal localization radius and a multiplicative
inflation factor of 1.1, as suggested by [60]. We assimilated observations of
SST data generated from a level-4 daily 0.25◦ × 0.25◦ resolution product of
[49] (which was prepared by blending SST measurements from in situ and
advanced very high resolution radiometer infrared satellites), and along-
track satellite level-3 merged altimeter filtered sea level anomalies (SLA;
corrected for dynamic atmospheric, ocean tide, and long wavelength errors)
from Copernicus Marine Environment Monitoring Service (CMEMS; [39]).
To compute the innovations between the SLA observations and the model
SSH during assimilation, we add the model mean SSH to SLA observations
prior to assimilation. Observations errors are assumed uncorrelated, and
are prescribed with error variance of (0.04 m)2 for SLA, and vary between
(0.1 ◦C)2 and (0.6 ◦C)2 for SST in accordance with the interpolation errors
specified in the level-4 gridded SST product of [49]. Four different assimila-
tion experiments were conducted under the same conditions: EAKF with 50
members, and EnOI, AEnOI-L2, and AEnOI-OMP with 300 ensemble mem-
bers. They differ only in terms of the underlying method to sample/select
the ensemble from a long dictionary of MITgcm outputs simulated during
the period 2002-2016. EAKF dynamically evolves the ocean ensemble. Its
initial ensemble is generated by first selecting Fexp fields corresponding to
±15 days from January 1st and then by adjusting the ensemble mean to the
same initial state as Fexp. The EnOI uses a static ensemble of 300 members
across all assimilation cycles (60 cycles in total) by selecting ocean states
of 2002-2016 model hindcasts. AEnOI-L2 and AEnOI-OMP, dynamically
select 300 members, based on the SST distance between the current ocean
state and the dictionary elements. This choice is motivated by two factors:
the SST exhibits a seasonal signal, and the ensemble members selection
would have been computationally demanding (especially for OMP) if based
on the full ocean state vector (107) and a dictionary with large number of
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elements. All the EnOI assimilation experiments are conducted over a 6-
month period in 2011, starting from January 1st, 2011 using the same initial
condition as Fexp.

Unless stated, we analyze daily averaged forecasts as they result from
the different assimilation experiments. Bias, correlations and root-mean-
square-errors (RMSE) of the assimilated solution (both analysis snapshots
and daily averaged forecasts) for SST and SSH are computed with respect
to the merged satellite level-3 observations of the Group for High Resolution
Sea Surface Temperature (GHRSST; [12]) and merged along track level-3
altimeter observations of SSH from CMEMS ([39]), respectively. In order
to demonstrate the relative performance of the assimilation system with re-
spect to interpolated products, we employed level-4 SST and SSH products.
The interpolated SST product is a high-resolution daily averaged level-4
SST product from OSTIA (Operational Sea Surface Temperature and Sea
Ice Analysis) [8, 57], generated on a 0.054◦(∼6 km) grid by combining SST
data from various satellites and in situ observations using an Optimal Inter-
polation (OI) system. The interpolated SSH product is the multi-mission
altimeter merged satellite level-4 gridded Absolute Dynamic Topography
(ADT) provided by CMEMS (here after CMEMS-L4; [39]), which is also
available daily at a resolution of 0.25◦×0.25◦. The maximum reported ADT
mapping error (provided along with the CMEMS-L4 ADT product) during
the analysis period 1st January-30st June, 2011 is estimated between 1.8 cm
- 4 cm in the southern Red Sea and reaches up to 7 cm in the northern Red
Sea. In order to use it in the present study, we adjust the CMEMS-L4 ADT
by replacing its 15-year average by the model equivalent sea surface height
climatology, similarly to the treatment of the level-3 SLA observations for
assimilation.

5.3. Experimental results

Figure 10 displays spatial maps of SST forecast statistics (computed over
the study period, i.e. 1st January to 30th June, 2011), compared to satellite
level-3 SST observations, from different assimilation schemes, the free model
experiment and the interpolated data product. The results indicate that the
standard deviation (STD) is large over the Gulf of Aden (reaching 2 ◦C) and
small over the central parts of the Red Sea (below 1.2 ◦C). Outputs from
the free model run captures this contrasting feature. However, it underes-
timates the SST STD over the whole domain, particularly in the northern
and central parts of the Red Sea. Those underestimations of SST STD, as
well as SST biases, are improved by assimilation. The improvements are
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more pronounced in the adaptive and ensemble optimal interpolation exper-
iments relative to the EAKF. However, the EnOI and AEnOI-OMP suggest
increased SST biases in the Gulf of Aden. Root-mean-square errors (RM-
SEs) and correlations also deteriorated, particularly in EnOI, with RMSEs
increasing from 0.5 ◦C to 1 ◦C and correlations dropping from 0.95 to 0.8.
Assimilation with the AEnOI-L2 strategy, on the other hand, yields SST im-
provements, with biases and RMSEs mostly within 0.5 ◦C and correlations
above 0.8, all over the model domain, including Gulf of Aden and the Red
Sea. AEnOI-L2 results are even better than the interpolated SST product,
particularly in the northern and central Red Sea.

We further analyzed the time evolution of RMSEs for the daily averaged
SST forecasts (Figure 11a) and for 3-day spaced SST analysis snapshots
(Figure 11b) corresponding to the studied domain. As shown in Figure
11a, RMSEs of SST forecasts from all the model experiments and interpo-
lation products does exhibit time dependence, with SST RMSEs dipping
in February and peaking during June, except for EnOI and AEnOI-OMP
which showed an additional peak (reaching 2 ◦C and 1.6 ◦C in EnOI and
AEnOI-OMP, respectively) during the month of March. Interestingly, SST
RMSEs resulting from EnOI and AEnOI-OMP are larger than those of Fexp
until the last week of April. SST RMSEs are almost always less than those
of Fexp when assimilating observations with EAKF, but they are further
improved, even over the interpolated product, with the AEnOI-L2 strategy.
Assimilation fits the observations better in AEnOI-L2 than in EAKF (Fig-
ure 11b), which seem to be due to improved SST spread (as discussed in the
subsequent paragraphs using Figure 13), explaining the better SST forecasts
in AEnOI-L2. The SST analyses of all the three ensemble optimal interpo-
lation experiments are indeed almost identical (Figure 11b). The failure to
yield uniformly low SST forecast RMSEs and the occasional SST degrada-
tions in EnOI and AEnOI-OMP compared to the consistent improvements
witnessed in AEnOI-L2 and EAKF may be attributed to the repercussion
from comparatively larger dynamical imbalances in EnOI and AEnOI-OMP
analyses (as discussed in the subsequent paragraphs) [33, 55].

Figures 11c and 11d, respectively, display the time evolution of SSH
RMSEs for daily averaged forecasts and 3-day spaced analysis snapshots
from different experiments and interpolated product. SSH RMSEs of Fexp
exhibit noticeable fluctuations with largest values (reaching 14 cm) during
January and smallest values (∼5 cm) during the end of May. Unlike the
free model, SSH RMSEs in the interpolated product are stable with values
around 5 cm. Assimilating observations with EAKF, EnOI or AEnOI-OMP
also yields SSH RMSEs close to 5 cm, but they exhibit fluctuations in SSH
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RMSEs although not as large as Fexp. The fluctuations are reduced in
AEnOI-L2, and the SSH RMSEs are generally lower than those of the in-
terpolated product. In order to spatially investigate the assimilation results
for SSH we analyzed the region wise statistics. Since the altimeter coverage
is too sparse over the model domain to yield spatial maps of statistics, we
tabulated (Table 2) statistics for four different regions: Gulf of Aden (GoA;
30◦E-50◦E and 10◦N-14◦N), Southern Red Sea (SRS; 30◦E-50◦E and 14◦N-
19◦N), Central Red Sea (CRS; 30◦E-50◦E and 19◦N-23◦N) and Northern
Red Sea (NRS; 30◦E-50◦E and 23◦N-28◦N). Fexp underestimates the STD
(up to 3 cm) and the mean (up to 8 cm) of SSH. The underestimations of the
mean are largest in the NRS (by 160%) and the largest underestimations of
the STD are in the SRS (by 27%). SSH RMSEs (9-11 cm) and correlations
(0.4-0.86) are also poor in Fexp, particularly in the GoA and the NRS. The
interpolated SSH product also underestimates the mean, but provides ro-
bust estimates of the STD, with low RMSEs (5-6cm) and high correlations
(0.94-0.98) throughout the domain. Assimilation improves the SSH mean
and STDs considerably throughout the domain, even better than (or on par
with) the interpolated data product. SSH RMSEs (5-7 cm) and correla-
tions (0.54-0.92) are also improved compared to Fexp, and still less than the
interpolated product. Interestingly, AEnOI-OMP (EAKF) improvements
are less pronounced than those resulting from the standard EnOI, which is
probably related to the SSH spread of the background ensemble, as further
discussed in the subsequent paragraphs. The differences between EnOI and
AEnOI-L2 are not so large except for the GoA, in which AEnOI-L2 yields
better results than the rest of the assimilation schemes.

We also examine the estimated ocean state in the subsurface to assess
the impact of the assimilation strategies in these sparsely observed layers.
The ocean state in the subsurface layers is noisy in EnOI (Figures 12e and
12f) compared to Fexp (Figures 12a and 12b) and to EAKF (Figures 12c
and 12d), consistent with the results of [60], in which the noise in the sub-
surface was attributed to pronounced dynamical imbalances in the analy-
sis. While the ocean state becomes noisier in AEnOI-OMP (Figures 12i
and 12j), AEnOI-L2 (Figures 12g and 12h) reduces this noise and yields
more organized subsurface structures. For instance, EnOI simulates abrupt
jumps in the 22 ◦C isotherm in the months of March, April, and also in
May (Figure 12k) at (38◦E, 22◦N), and these are more frequent and larger
in AEnOI-OMP. Such abrupt jumps do not appear in the results of AEnOI-
L2, indicating a more stable solution. Dynamical imbalances (noise) may
result from inappropriate analysis update due to spurious spread, and cor-
relations in the background ensemble. These aspects are further discussed
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in the next paragraphs.
Figure 13 plots the spatial distribution of the ensemble spread on 1-May-

2011 from the different filtering schemes. The ensemble spreads of SSH,
SST and subsurface temperature are considerably larger in all the ensemble
optimal interpolation assimilation experiments compared to those of EAKF.
This is because the spread introduced in the ensemble of initial conditions
in EAKF fades out after few analysis cycles, and because the ensemble
optimal interpolation strategies do not lose spread as they select members
from model hindcasts after each analysis cycle. The spreads of SSH, SST
and upper layer temperatures resulting from EnOI, AEnOI-L2 and AEnOI-
OMP are significantly different. AEnOI-L2 selects the ensemble members
from a broader range of months based on their closeness to the forecast SST,
which seem to result here in a small ensemble spread (Figure 13g and 13k).
AEnOI-OMP selects the ensemble members based on the correlations of
the dictionary elements with residuals of the forecast state in the ensemble
subspace (weaker the correlation better are the chances for selection). As
a result, the selected members are not necessarily correlated/close to the
forecasted SST, and may thus exhibit larger ensemble spread (Figures 13d,
13h and 13l). Large ensemble spreads may cause a data overfit, and amplify
the noise in the filter updates, particularly in the data sparse regions ([44,
54]). This may explain the more (less) abrupt jumps in the 22 ◦C isotherm
in AEnOI-OMP (AEnOI-L2) compared to EnOI.

One of the key assumptions of an EnKF framework lies on Gaussian fore-
cast errors, based on which the members are updated with the observations
using the Kalman linear analysis step ([25]). In the ensemble optimal inter-
polation schemes, the forecast error is estimated based on the anomalies of
the selected ensemble. We assess the relevance of the Gaussian assumption
in our setup by analyzing the histogram of SST ensembles at three locations
in the northern, central and southern Red Sea on 1-May-2011, as shown
in Figure 14. At all these locations, the prior distributions in EnOI and
AEnOI-L2 are clearly more Gaussian than that of the AEnOI-OMP. The
OMP scheme provides a more scattered ensemble that is far from a Gaus-
sian distribution, and this may limit the relevance of the Kalman-based
update step.

We also analyzed the SST correlation range at three different locations in
the northern, central and southern Red Sea for the different EnOI schemes
(Figure 15). At all locations, the SST correlation range for AEnOI-L2 is
narrower and less noisy than those of EnOI, and AEnOI-OMP, suggesting
less spurious long-range correlations. This means that AEnOI-L2 could be
configured with a larger localization radius, which may subsequently result
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in more dynamically consistent ocean state estimates ([15]). Given that
AEnOI-L2 only forecasts the analysis state, this would enable using larger
ensembles to rely even less on localization ([59]), without significantly in-
creasing the computational cost. In our specific system, one MITgcm model
run requires 4.8 core hours for a 3-day simulation and a DART-filter up-
date requires 111 core hours. Therefore, one EAKF assimilation step with
300 (50) members consumes 1551 (351) core hours. The adaptive schemes
involve a single model run for forecasting, and the selection step of its 300-
member ensemble requires 21.37 and 20.77 core hours for the AEnOI-L2 and
AEnOI-OMP, respectively, followed by a filter update. This amounts to an
approximate computational cost of 137 core hours for each of the adaptive
schemes and translates to more than a factor 10 (2) cost saving compared
to the EAKF.

6. Conclusions

The Red Sea is characterized by a marked seasonal variability and strong
mesoscales activity. In order to account for these variations at different time
scales with reasonable computational burden, we proposed new cost-effective
adaptive Ensemble Optimal Interpolation (AEnOI) schemes for assimilating
multivariate data sets of the Red Sea based on the Data Assimilation Re-
search Testbed (DART) and the MIT general circulation model (MITgcm).

The AEnOI schemes select the ensemble members from a complete dic-
tionary describing the underlying system variability. The members selec-
tion is based on their similarity to, according to a certain criteria, or to
their representativeness of the current forecast state, which represents the
best available information at the time of the incoming observations. Two
approaches for selecting the ensemble members were proposed: the first is
based on the L2-distance between the forecast and the dictionary elements,
and the second uses an Orthogonal Matching Pursuit (OMP) algorithm to
identify the error-subspace of the forecast state. In term of computational
efficiency, EnOI was of course an advantage since the selection process is ap-
plied offline and only once, before the start of the assimilation experiments.
The AEnOI schemes enable however for adaptive selection of the ensemble
members, which could account for instance for inter-seasonal and mesoscale
variability.

The AEnOI schemes were first implemented and validated with the
Lorenz-63 (L-63) and the Lorenz-96 (L-96) models, compared against the
Ensemble Kalman filter (EnKF) and the standard EnOI. While the EnKF
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yields the best results, eventually at the expense of applying auxiliary tech-
niques such as inflation and localization, and higher computational cost,
AEnOIs generally yield more accurate estimates than the standard EnOI, in
terms of RMSE. They are further, particularly AEnOI-L2, computationally
very efficient and may provide an alternative to the EnKF in the challenging
scenario of small ensembles.

Within the DART-MITgcm Red Sea assimilation system, the AEnOI
schemes operate on a dictionary of ocean realizations describing the mul-
tiscale temporal and spatial variability of the basin. Different aspects of
the assimilation system have been assessed; including SST and SSH biases,
standard deviations, correlations, and root-mean-square errors. AEnOI-L2
yields substantial improvements in certain regions of the Red Sea, whereas
the AEnOI-OMP and the EnOI lead, in general, to more or less comparable
assimilation results in our particular domain.

The AEnOI schemes, AEnOI-L2 more precisely, provided competitive
performances to the computationally much demanding ensemble (adjust-
ment) Kalman filter, especially in situations when the model forward in-
tegration is computationally demanding. We will work in the future on
developing adaptive Hybrid schemes in which a new ensemble member will
be selected from a dictionary, eventually regionally, based on the statistics
of an (small) evolving ensemble. The resulting ensemble will combine the
spread benefit of the EnOI scheme and will constrain it by that of the evolv-
ing ensemble that accounts for the error-of-the-day. We are also planning
to implement these schemes within a stochastic EnKF framework based on
the scheme proposed by [24].
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Cornuelle, B., Köhl, A., Heimbach, P., 2013. A mitgcm/dart ensemble
analysis and prediction system with application to the gulf of mexico.
Dynamics of Atmospheres and Oceans 63, 1 – 23.
URL http://www.sciencedirect.com/science/article/pii/

S0377026513000249

[21] Hoteit, I., Luo, X., Bocquet, M., Köhl, A., Ait-El-Fquih, B., 2018. Data
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Algorithm 1 Dictionary based schemes Data Assimilation Algorithm

0. Initialization: initial ensemble Xf

1. Analysis step:

Input: Xf

Output: xa

2. Forecast step:
Input: xa

Output: xf

3. Ensemble selection:

3.1. Anomalies generation

• Select an ensemble X

• Compute the anomalies X
′

= X− x where x is the mean of
X

3.2. Xf generation

Inputs: X
′

and xf

Output: Xf = X
′
+ xf

4. Goto 1
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Algorithm 2 Generic ensemble design Algorithm

1. Inputs: a dictionary D = [d1,d2, · · · ,dL] of model outputs, the de-
sired ensemble size N (with L � N and at least L ≥ N), and the
forecast xf is iterated through the dictionary to apply the selection.

2. Sort the elements based on the metric ordering criteria:
dj1 ,dj2 , · · · ,djN , · · · ,djL

3. Form the ensemble of the first N members X = [dj1 ,dj2 , · · · ,djN ]
and use it to update the forecast with the incoming observations.
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Table 1: Specific algorithms of the selection methods

Selection method Algorithm

L2-norm 2. For i from 1 to L compute γi =
∥∥xf − di

∥∥
2

3. Sort the γi in ascending order: γi1 , γi2 , · · · , γiL with γi1 ≤ γi2 ≤ · · · ≤ γiL
and assign j1 = γi1 , j2 = γi2 , · · · , jL = γiL

OMP 2.1 Initialization: set y0 = 0, index set ∆0 = ∅ and residual r0 = xf

2.2 For t from 1 to N ,

• Find the index of the dictionary element having the highest inner
product with the residual:
set δt to one of the indexes j for which the maximum is reached,
i.e. |〈rt−1,dδt〉| = max

j=1, ··· ,L
|〈rt−1,dj〉|

• Augment the index set: ∆t = ∆t−1 ∪ {δt}

• Solve the least-square problem min
y

∥∥xf −D∆ty
∥∥
2

and then choose

yt ∈ arg min
y

∥∥xf −D∆ty
∥∥
2

• Calculate new residual rt = xf −D∆tyt

End for

3. Assign j1 = δ1, j2 = δ2, · · · , jN = δN
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Table 2: Region wise SSH statistics for CMEMS-L4 interpolated product, Fexp, EAKF,
EnOI, AEnOI-L2, and AEnOI-OMP. Statistics are shown for four different regions, Gulf of
Aden (GoA; 30◦E-50◦E and 10◦N-14◦N), Southern Red Sea (SRS; 30◦E-50◦E and 14◦N-
19◦N), Central Red Sea (CRS; 30◦E-50◦E and 19◦N-23◦N) and Northern Red Sea (NRS;
30◦E-50◦E and 23◦N-28◦N). Units for mean, STD and RMSD are in cm. The assimilation
experiment yielding best results for a region is highlighted with bold fonts.
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Figure 1: Workflow of the dictionary-based AEnOI schemes as implemented with DART.
The forecast state xf is used to select an ensemble Xf = [xf

1 , . . . ,x
f
N ] from an available

dictionary. This ensemble is then centered around xf before it is updated by the upcoming
observation to obtain the analysis state xa, which is then integrated by the model to
compute the next forecast.
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Figure 2: Illustration of an ensemble construction based on L2. Compute the L2-distances
(dist1, dist2, · · · , distL) between the forecast xf and the dictionary members (d1, d2, · · · ,
dL) then select the first N members (dj1 , dj2 , · · · , djN ) with the smallest distances to the
forecast member to generate the ensemble X.
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Figure 3: Illustration of an ensemble construction based on OMP. Compute the inner
products (ip1, ip2, · · · , ipL) between the forecast xf and the dictionary members (d1, d2,
· · · , dL) and keep the member having the highest ip value. Solve the least-square problem
between the forecast and that member, and then compute the residual r1. Compute the
inner products between the residual r1 and the remaining dictionary members and keep the
member having the highest ip value. Solve the least-square problem between the forecast
and the set containing that member and all the previous selected members. Compute
the residual r2. Repeat the process with the successive residuals until N members are
selected.
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Figure 5: Sensitivity of the ensemble schemes to the ensemble size for a given assimilation
window using L-63 model.
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Figure 6: Sensitivity of the ensemble schemes to the assimilation period for a given
ensemble size using L-63 model.
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window using L-96 model.
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Figure 9: Sensitivity of the ensemble schemes to the length of the assimilation period for
a given ensemble size using L-96 model.
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Figure 10: Spatial maps of SST STD in ◦C (b-g), Bias (h-m), RMSE (n-s) and correlations
(t-y) for OSTIA (b), Fexp (c), EAKF (d), EnOI (e), AEnOI-L2 (f), and AEnOI-OMP (g).
All the statistics are with respect to satellite level-3 SST observations. Panel “a” shows
STD in the satellite level-3 SST. Negative values of bias indicate model cold biases and
vice versa.
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Figure 11: Time series of root-mean-square-error (RMSE) for daily averaged forecasts
of (a) SST (b) SSH from Fexp (red), EAKF (maroon), EnOI (green), AEnOI-L2 (blue),
AEnOI-OMP (pink), and level-4 gridded products (OSTIA for SST and CMEMS-L4 for
SSH; black). RMSE is computed by collocating the daily averaged model forecasts onto
satellite along-track level-3 SST and SSH observations. 10-day smoothing is applied to
better emphasize the differences between the assimilation results. Units are in “◦C” and
“cm” for SST and SSH, respectively. Panels (c) and (d) are similar to (a) and (b) except
that the RMSEs are computed for 3-day spaced analyses (snapshots after assimilation)
without smoothing.
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Figure 12: Depth-Time evolution of temperature (◦C; a, c ,e, g, and i) and salinity (psu;
b, d ,f, h, and j) and depth of 22 ◦C isotherm (meters; k) at (38◦E, 22◦N) as resulted from
Fexp, EAKF, EnOI, AEnOI-L2 , and AEnOI-OMP.
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Figure 13: Horizontal and vertical distributions of ensemble spread (a - d) of SSH, (e - h)
SST, and (i - l) temperature on 1-May-2011 as they result from EAKF, EnOI, AEnOI-L2,
and AEnOI-OMP.
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Figure 14: The histograms (prior) in experiments using EnOI (1st column), AEnOI-L2
(2nd column) and AEnOI-OMP (3rd column) assimilation experiments at three selected
locations (indicated in Figure 15) in the northern, central and southern basins of the Red
Sea, as the 1st, 2nd and 3rd rows, respectively.
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Figure 15: Sampled correlations for SST as computed from the assimilation experi-
ments using EnOI (1st column), AEnOI-L2 (2nd column), and AEnOI-OMP (3rd column)
schemes at three selected locations in the northern (1st row), central (2nd row), and south-
ern (3rd row) basins of the Red Sea, respectively, before applying localization. The black
dot in each panel indicates the selected location.
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