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Abstract—The performance of a biologically plausible spiking
neural network (SNN) largely depends on the model parame-
ters and neural dynamics. This paper proposes a parameter
optimization scheme for improving the performance of a bio-
logically plausible SNN and a parallel on-FPGA online learning
neuromorphic platform for the digital implementation based on
two numerical methods, namely Euler and the 3rd-order Runge-
Kutta (RK3) methods. The optimization scheme explores the
impact of biological time constants on information transmission
in the SNN and improves the convergence rate of the SNN
on digit recognition with a suitable choice of the time con-
stants. The parallel digital implementation leads to a significant
speedup over software simulation on a general-purpose CPU.
The parallel implementation with Euler method enables around
180× (20×) training (inference) speedup over a Pytorch-based
SNN simulation on CPU. Moreover, compared with previous
work, our parallel implementation shows more than 300× (240×)
improvement on speed and 180×(250×) reduction on energy
consumption for training (inference). In addition, due to the high-
order accuracy, RK3 method is demonstrated to gain 2× training
speedup over Euler method, which makes it suitable for online
training in real-time applications.

Index Terms—Neuromorphic computing, spiking neural net-
work, On chip learning, unsupervised STDP learning, Euler
method, Runge-Kutta method, parameter optimization, FPGA
platform, parallel architecture.

I. INTRODUCTION

IN recent years, non-Von Neumann computing architec-
tures have become popular to satisfy demands for high

throughput computations [1]. Originally proposed in 1990,
a neuromorphic system defines an entire system built by
means of the organizing principles existing in nervous systems
[2]. Neuromorphic systems feature parallel operations and
collocated memory and processor.

While artificial neural networks (ANNs) have proved to
be extraordinarily successful in various applications [3]–[5],
their architecture inherently requires a massive amount of
computing power due to intensive matrix multiplications and
memory access. In contrast, spiking neural networks (SNNs)
compute like a human brain by emulating and modeling the
structure of nervous systems, which transmit information in
the form of action potential (or spikes) [6]. In the network, the
information transmission is driven by different events that are
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generally sparse in time. Thus, with the event-driven property,
SNNs perform energy-efficient computation and have shown
high potential in real-time applications [7]–[10]. Due to its
functional similarity to biological nervous system, SNNs have
been explored in a wide range of applications, such as image
classification [11], object detection [12], navigation [13] and
motor control [14]. In this paper, we construct SNNs based
on the leaky integrate-and-fire (LIF) model which is the most
widely used neuron model in neuromorphic systems. The
model is composed of one simple first-order linear differential
equation and a threshold condition [15]. The synapse is
modelled by ionic channels with time-varying conductance
[16].

SNNs can be trained with different supervised and unsuper-
vised learning algorithms. Recently, to enhance the learning
capability of SNNs, different variants of supervised backprop-
agation (BP) algorithm has been introduced for SNNs tackling
the issue of non-differentiable neural models [17]–[19]. These
methods perform gradient descent technique on the modified
continuous membrane potential function. By incorporating
BP algorithms, SNNs start to perform closely to ANNs in
various recognition tasks. However, this comes at the cost
of long training time and high computational power, mak-
ing BP algorithms not suitable for developing neuromorphic
systems, which motivates local learning techniques such as
DECOLLE [20]. On the other hand, SNNs can be directly
trained with biologically plausible unsupervised learning rules
(e.g., spike-timing-dependent plasticity (STDP)) which update
synaptic weights using local spiking information between a
presynaptic neuron and postsynaptic neuron. Although STDP
learning rule still lags behind supervised BP algorithms, recent
efforts on applying STDP learning rule in deep networks
have shown potential in closing the gap [16], [21], [22].
Besides, STDP learning rule is able to analyze spatio-temporal
information and demonstrated to be very useful in solving
difficult computational problems [23]–[25]. Because of its
biological plausibility, STDP is also of great interest to neu-
roscientists to investigate the learning mechanism happening
in human brains. Moreover, with local event-driven updating
features, STDP learning rule can be efficiently implemented
on hardware and enables scalable online learning in various
neuromorphic systems [26]–[28]. In this work, a triplet-based
spike-timing-dependent plasticity (STDP) model is considered
because of its biological plausibility and easy implementation
[29].

To perform time-domain computation, SNNs need to be
implemented as a highly-parallel hardware system similar
to the structure of a human brain. Towards that end, hard-
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ware systems using both analog or digital circuits have
been proposed [26], [27], [30]–[34]. Despite the advantages
of small area and low power consumption, analog systems
suffer from poor flexibility, noise, device variabilities, and
lack of area-efficient storage elements [35], [36]. In contrast,
digital systems provide great reconfigurability, stability, and
efficient embedded memory. Particularly, field programmable
gate array (FPGA) provides a low-cost reconfigurable platform
that supports the design of parallel processing architectures,
which makes it very suitable for the functional and topological
exploration of large-scale spiking neural networks.

Numerous examples of the implementations of SNNs on
FPGA have been reported for different applications [37]–
[41]. Yang et al. reported a real-time digital neuromorphic
system that was used to simulate the cortico-basal ganglia-
thalamocortical network with 1 million neurons [38]. Neil et
al. developed an event-driven deep spiking network accelerator
which was demonstrated to operate with very low power
consumption [39]. Wang et al. implemented a spiking neural
network on FPGA for the application of digit recognition [41].
With the consideration of parallel processing and approximate
computing in the architecture design, they managed to achieve
around 60x speedup over the software program on general-
purpose CPU and reduce the energy consumption by 20%.

The previous works have focused on the architectural de-
sign of SNNs on FPGA towards low-cost and low-power
development. In these works, the neurodynamics models in
SNNs are implemented using Euler method which requires a
small number of hardware resources and low power. However,
this numerical method produces a first-order accuracy, which
potentially may degrade network performance. Recent efforts
considered more accurate numerical approaches such as high-
order Runge-Kutta (RK) methods [42], [43]. While these
works provide useful insights into the implementation of
neuron models with different numerical methods, they fail to
present a comprehensive study of the end-to-end performance
of SNN utilizing different numerical methods. Therefore, in
this paper, we investigate the performance of two differ-
ent numerical methods, namely Euler method and 3rd-order
Runge-Kutta (RK3) method in the spiking neural network
implemented on FPGA for pattern classification, and provide a
comprehensive comparison in terms of classification accuracy,
resource utilization, energy consumption and FPGA runtime.
The main contributions of this paper are listed as follows.

1) We introduce an optimization scheme for the biological
parameters in the SNN and investigate the impact of
the time constants on the information transmission in
the network. The optimization scheme improves the
classification accuracy and convergence rate.

2) A digital implementation of SNNs with parallel archi-
tecture capable of online learning is proposed in this
paper. The parallel implementation significantly accel-
erates image processing in the network over software
simulation. An efficient method for memory storage of
synaptic weights is presented.

3) The implementations of SNNs based on two numerical
methods are presented. A detailed comparison between
the two methods reveals that RK3 method is promising
for online training in real-time application and Euler
method is suitable for low-cost implementation and low-

energy inference applications.
The rest of this paper is organized as follows. Section II

introduces the network architecture, the numerical methods
and optimization scheme. Section III provides the details of
digital implementation and the schemes to parallelize the
network architecture. Section IV summarizes the simulation
results for the parameter optimization and implementation
results for both numerical methods. Section V compares our
study with previous work and discusses the potential benefits
of our design. Section VI concludes the paper.

II. METHODS

A. Neural Models
1) LIF neuron model: LIF model is composed of one first-

order linear differential equation and a threshold condition.
The dynamics of membrane potential v is described as

Cm
dv

dt
= gl(vr � v)� Is (1)

v = vr; if v > vth (2)

where Cm is the membrane capacitance, vr is the resting
membrane potential, vth is the threshold potential, gl is the
leaky conductance, and Is is the input synaptic current.

2) Synaptic dynamics: Synapse is modelled by different
ionic channels with time-varying conductance. The total post-
synaptic current Is can thus be modelled as

Is = ge(v � Eexc) + gi(v � Einh) (3)

where ge is the conductance associated with the excitatory
channel, Eexc is the reverse potential of the channel, gi is
the conductance associated with the inhibitory channel, Einh

is the reverse potential of the channel. The dynamics of the
conductance is governed by

�g
dg

dt
= �g +

X
j

wij�(t� tfj ) (4)

where g is the conductance, �g is the time constant, wij

is the synaptic weight from the presynaptic neuron j to
the postsynaptic neuron i, and tfj is the firing time of the
presynaptic neuron j.

3) Triplet STDP: A triplet-based STDP model considers
sets of three spikes (one presynaptic and two postsynaptic
spikes) and each spike leaves a time-varying trace whose
dynamics is described as below [29],

dxj

dt
= �xj=�x (5)

dyi

dt
= �yi=�y (6)

where xj is the trace variable associated with the firing event
of the presynaptic neuron j, yi is the trace variable associated
with the firing event of the postsynaptic neuron i, �x and �y

are the corresponding time constants. y represents a fast and
slow trace variables denoted as y1

i and y2
i respectively. When

the presynaptic neuron (postsynaptic) fires, the relative trace
xj (yi) is reset to 1. The weight updates are carried out on
the occurrence of presynaptic or postsynaptic spikes.

�wij =

(
��prey

1
i ; if neuron j fires,

+�postxjy
2
i ; if neuron i fires.

(7)
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(a) Triplet STDP

(b) Network

Fig. 1: (a) Illustration of the triplet-based STDP model. (b)
The architecture of a spiking neural network. An input layer
consists of 784 neurons, receiving the pixel values from one
input image and converting them into Poisson spike trains
in time. A processing layer is built in a WTA network that
includes 100 excitatory (Exc) and 100 inhibitory (Inh) neurons.

where �pre and �post are the corresponding weight updating
rates. The weight updating process is illustrated in Fig. 1a.

B. Network Architecture

The architecture of the spiking neural network is constructed
according to the reference [16]. The schematic of the network
is shown in Fig. 1b. Hand-written digit images from the
MNIST dataset are used as inputs that are converted into
Poisson spike trains [44]. A winner-take-all (WTA) network
and threshold adaption scheme are applied to induce the
competition for activation among neurons so that each neuron
gets to learn different input pattern. We chose this network
architecture for two main reasons; 1) Reasonable performance:
despite the simplicity of the network which consists of two
layers, it can achieve 95% classification accuracy with an
unsupervised STDP learning rule only [16], and 2) Biological
plausibility: the network structure uses a combination of
different biological plausible models, including LIF neuron
model, conductance-based synaptic model, STDP model, WTA
network model, and intrinsic plasticity model. It closely mim-
ics biological processes and provides a good platform to study

how a biological neural network performs computations un-
supervised. It also enables us to study the impact of temporal
information transmission on network performance, as all the
neural models largely depend on spike timing.

C. Numerical methods
In this paper, we adopt two numerical methods with differ-

ent complexity and accuracy to implement the SNN, namely
the Euler method [45] and the third order Runge-Kutta method
[46].

Consider the differential equation, y0 = f (t; y), where f(:)
is some arbitrary function of time t and y.

1) Euler’s method: The iterative numerical formula at the
time point n is defined as,

y[n+ 1] = y[n] + hf(t[n]; y[n]) (8)

where h is the step size. This method produces first-order
accuracy, where the global error at a given time point is
proportional to the step size.

2) 3rd-order Runge-Kutta (RK3) method: RK3 method pro-
duces third-order accuracy at the cost of higher computational
complexity as shown below [46],

y [n+ 1] = y [n] +
1

6
h (k1 + 4k2 + k3) (9)

where k1, k2 and k3 are defined as:

k1 = f (t [n] ; y [n]) (10)

k2 = f

�
t [n] +

1

2
h; y [n] +

1

2
k1h

�
(11)

k3 = f (t [n] + h; y [n]� k1h+ 2k2h) (12)

D. Parameter optimization
Neural model biological parameters play a crucial role in

the capability of the SNN. To simulate the SNN, we have
to consider all key parameters involved in different neural
models [47]. Namely, we aim to optimize the time constants
of the conductance model and STDP model, the learning rates
of the STDP model, and the threshold adaption constant, as
these parameters are critical to the learning capability of the
network. Table I lists the corresponding model parameters.

In order to find the best training parameters that achieve
the best performance metrics, a search optimization algorithm
is needed. In this work, we chose a genetic algorithm (GA)
since it avoids being trapped in local optimal points compared
to gradient-based methods where a GA searches the entire

TABLE I: Model parameters to be optimized.

Parameters Description

�x
the time constant for the presynaptic trace x in the
STDP model

�1, �2
the time constants for the postsynaptic traces y1
(fast) and y2 (slow) in the STDP model, respectively.
�2 = 2�1

�ge exc,
�gi exc

the time constants for the excitatory and inhibitory
conductance channels of an excitatory neuron, re-
spectively

�ge inh
the time constant for the excitatory conductance
channel of an inhibitory neuron

�pre, �post
the learning rates of weight updates in the STDP
model

�+ threshold adaption constant
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TABLE II: GA Parameters.

Parameters Value
The number of generations Ngen 20
The number of individuals in a population Ni 20
The number of parents Np 7
The number of offspring Noff 18

solution space and reaches the optimal point. In addition, a GA
is inherently parallel and can be easily distributed [48]. The
GA consists of five phases, including parameter initialization,
fitness calculation, parent selection, crossover, and mutation
process, as described below. The algorithm is described in
Algorithm 1, and the corresponding parameters are listed in
Table II.
� Parameter initialization: randomly initialize the se-

lected parameters to be optimized for each individual in
a population.

� Fitness calculation: calculate the fitness score for each
individual in a population.

� Parent selection: select Np individuals with the best
fitness scores as parents.

� Crossover: Randomly select a crossover point in the
parameter set. Produce an offspring by combining the
parameters selected from the first parent before the point
and the parameters from the second parent after the point.

� Mutation: Randomly select a parameter from the pro-
duced offspring’s parameter set and mutate its value.

The fitness function is defined by considering both the clas-
sification accuracy and total time constant. The time constants
in the differential equations determine how fast the variables
change with time and hence have a direct impact on the
efficiency and effectiveness of information transmission in the
network. In other words, we need to do fast training and
inference while achieving the highest possible accuracy. Thus,
the optimization problem is defined as

max
x

wAccuracy + (1� w)�n

s.t. x � 0
(13)

where x = f�x; �1; �ge exc; �gi exc; �ge inh; �pre; �post; �
+g.

These parameters are as defined in Table I and �n is the
normalized total time constant, defined as

�n = (�max � �tot)=(�max � �min) (14)
�tot = �x + �1 + �ge exc + �gi exc + �ge inh (15)

�max and �min are the maximum value and the minimum
value of the total time constant respectively, and w is a
weighting factor. The impact of the time constants on the
optimization can be adjusted with the weight factor w. Since
�n is inversely proportional to the total time constant, the
optimization problem defined in (13) aims to search for a set of
parameters that ensure high classification accuracy and small
time constants at the same time. By solving this optimization
problem, one can compare the impact of different parameter
sets with regard to the number of time steps required per input
image to reach the maximum classification accuracy.

III. HARDWARE IMPLEMENTATION

In this section, the digital design and considerations of
SNNs are discussed in detail. Fig. 2 shows the overall system

Algorithm 1: Genetic Algorithm
Specify input parameters: Ngen, Ni, Np, Noff .
for k = 1 to Ngen do

if the first generation then
Parameter initialization.

end
else

Create a new population.
Parent selection.
Pass 10% of individuals of the current
population with the best fitness values to the
new population.

for i = 1 to Noff do
Select a pair of parents if the pair has not
been selected before.

Apply crossover to produce an offspring.
Mutate the offspring’s parameter.
Add the mutated offspring into the new
population.

end
end
Fitness calculation.

end

design of the spiking neural network. Initially, all the input
images are transferred from PC to the external memory (i.e.,
DDR SDRAM) on FPGA through a microprocessor. The
microprocessor manages the communication between direct
memory access (DMA) and the external memory. So image
pixels are transferred from the external memory to the network
through DMA and converted into Poisson spike trains. These
spike trains control the read operations of synaptic weights
from BRAMs so that certain weights are sent to the neuron
processing cores. Then the neuron processing cores update
their membrane potentials and generate spikes if the membrane
potentials surpass the thresholds. The generated spikes from
the SNN trigger the STDP learning unit before being sent out
to the DDR memory and then extracted to PC. The SNN is
mainly composed of Poisson spikes generator, neuron units,
STDP learning unit, and memory blocks.

Fig. 2: The overview of the proposed digital online learning
system. The processing unit manages the communication be-
tween PC and the SNN unit. The SNN unit processes the input
images and sends out spikes. In the WTA network, wexc and
winh are the constant synaptic weights between the excitatory
layer and inhibitory layer.
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(a) Euler method

(b) RK3 method

Fig. 3: The digital implementation of LIF neuron model with
different numerical methods. (a) details the design of LIF
neuron model based on Euler method. The current module pro-
duces the input synaptic current. The spike detection module
checks the occurrence of an output spike. (b) shows the design
based on RK3 method. The current module is repeatedly used
through the multiplexer (MUX) until the three intermediate
variables are updated.

A. Poisson spike generator
The Poisson spike generator is used to convert and encode

the image pixels to stochastic spike trains with Poisson pro-
cess. The generated spike trains are fed to spiking neurons in
the next layer. This encoding scheme is commonly referred to
as rate coding in SNNs [49]. A random number generator is
implemented by using a 16-bit linear-feedback shift register
(LFSR). Within a particular time window, at each time step,
one random number is generated and then compared with the
input pixel value. If the random number is smaller, it outputs
a logic-1. Otherwise, it outputs a logic-0. In this way, a time
series of 0 or 1 forms the Poisson spike train.

B. Neuron processing core
The neuron processing core consists of two parts, an arith-

metic unit (AU) and a storage unit (SU). The arithmetic
unit updates the state variables of a neuron, like synaptic
conductance and membrane potential, by solving the related
differential equations. The storage unit provides the memory
space for storing the state variables. For the implementation of
an AU, we apply two different numerical methods to solve the
differential equations. The design of AUs is discussed below
for each case.

1) Euler-method based AU design: The Euler method pro-
vides a straightforward way to update the variable. With the
Euler method, the membrane potential in the LIF model can
be updated according to the following formula.

I(v[n]) = gl(vr � v[n])� Is(v[n]) (16)
v[n+ 1] = v[n] + h=Cm � I(v[n]) (17)

where Is(v) is the synaptic current defined as a function of
the membrane potential v as in (3), v[n] and v[n + 1] are
the membrane potential at time n and n + 1 respectively,
and h is the time step size. The leaky conductance, gl, is
set as 1. Fig. 3a illustrates the design diagram of solving
the LIF neuron equation. First, the current module generates
the synaptic current and leakage current by multiplying the
conductances with the voltage drop. Then the membrane
potential is updated and compared with the threshold voltage.
An output spike will be detected once the membrane potential
surpasses the threshold. In the design, the multiplications
between the conductance and voltage drops are implemented
by multipliers. The multiplication by constants is realized by
shift operation by properly choosing the constants as powers
of two.

2) RK3-method based AU design: RK3 method requires
more iterative steps and complicates the design. The formulas
used to update the membrane potential are expressed as below.

k1 = I(v[n])=Cm (18)

k2 = I(v[n] +
1

2
k1h)=Cm (19)

k3 = I(v[n]� k1h+ 2k2h)=Cm (20)

v[n+ 1] = v[n] +
1

6
h(k1 + 4k2 + k3) (21)

The detailed design is shown in Fig. 3b. We use one mul-
tiplexer (MUX) and one demultiplexer (DEMUX) to realize
the time-division multiplexing function so that the current
module can be used repeatedly at each iteration. The MUX
and DEMUX gates are controlled by three selection signals
(S1, S2, and S3), and each signal selects a different input to
the MUX gate and a different output for the DEMUX gate. The
three selection signals are activated sequentially in non-overlap
time windows, and activation starts after a signal for membrane
potential update arrives. The intermediate variables k1, k2,
and k3 are iteratively computed by multiplexing the relative
inputs. After obtaining the values of all intermediate variables,
the membrane potential is updated. In the final update of the
membrane potential, the multiplication by a model coefficient
is reduced to shift-and-add operations by approximating the
coefficient to the sum of powers of two [46]. Because of the
lengthy iterative steps, it takes more resources and clock cycles
to finish one time-step update in the RK3-method based AU
design.

C. STDP unit
The function of the STDP learning unit is to update the

synaptic weights on the occurrence of an output spike. We
implemented the triplet-based STDP model [29], and the
formulas used to compute weight updates based on Euler
method are shown below.

xj [n+ 1] =

(
1; if a presynaptic neuron fires,
xj [n]� xj [n]h=�x; otherwise.

(22)

yi[n+ 1] =

(
1; if a postsynaptic neuron fires,
yi[n]� yi[n]h=�y; otherwise.

(23)

The design is shown in Fig. 4 where the positive weight update
is computed. The negative update follows the similar design.




