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Key Points:10

• The SKRIPS regional coupled model is used to hindcast a series of AR events.11

• The coupled model better reproduces ARs than the uncoupled model with per-12

sistent SST, especially when ARs occurred with strong SST cooling.13

• The coupled model has more skill below 850 hPa in modeling AR water vapor con-14

tent (IWV) and AR intensity (IVT)15
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Abstract16

Atmospheric rivers (ARs) play a key role in California’s water supply and are respon-17

sible for most of the extreme precipitation and major flooding along the west coast of18

North America. Given the high societal impact, it is critical to improve our understand-19

ing and prediction of ARs. This study uses a regional coupled ocean–atmosphere mod-20

eling system to make hindcasts of ARs up to 14 days. Two groups of coupled runs are21

highlighted in the comparison: (1) ARs occurring during times with strong SST cool-22

ing and (2) ARs occurring during times with weak SST cooling. During the events with23

strong SST cooling, the coupled model simulates strong upward air–sea heat fluxes as-24

sociated with ARs; on the other hand, when the SST cooling is weak, the coupled model25

simulates downward air–sea heat fluxes in the AR region. Validation data shows that26

the coupled model skillfully reproduces the evolving SST, as well as the surface turbu-27

lent heat transfers between the ocean and atmosphere. The roles of air–sea interactions28

in AR events are investigated by comparing coupled model hindcasts to hindcasts made29

using persistent sea surface temperature (SST). To evaluate the influence of the ocean30

on ARs we analyze two representative variables of AR intensity, the vertically integrated31

water vapor (IWV) and integrated vapor transport (IVT). During strong SST cooling32

AR events the simulated IWV is improved by about 12% in the coupled run at lead times33

greater than one week. For IVT, which is about twice more variable, the improvement34

in the coupled run is about 5%.35

Plain Language Summary36

Atmospheric rivers (ARs) play a key role in extreme precipitation along the west37

coast of North America. Because of their important societal impact, an improved un-38

derstanding of ARs is critical. In the present work, we use a coupled ocean–atmosphere39

modeling system to investigate the role of air–sea interactions in simulating ARs. We40

highlight two groups in our simulations for which the ocean’s response to ARs differs.41

One group is associated with strong ocean cooling, where the ocean cools everywhere.42

The other group is associated with weak ocean cooling, where the ARs can warm part43

of the ocean. We investigate the AR water vapor content and transport to evaluate the44

ocean’s impact on ARs. We find that the coupled model better simulates the air–sea ex-45

changes and AR water vapor content. The improvements are more significant during the46

AR events associated with strong ocean cooling.47

1 Introduction48

Atmospheric rivers (ARs) are narrow, elongated plumes of enhanced water vapor49

transport over the oceans that can extend from the tropics and subtropics into the ex-50

tratropics (Ralph et al., 2004, 2005; Bao et al., 2006; Jankov et al., 2009; Ralph et al.,51

2018). Many studies over the past three decades have helped explain the atmospheric52

processes governing AR dynamics and thermodynamics (e.g., Newell et al., 1992; Zhu53

& Newell, 1998; Ralph et al., 2004, 2010; Gimeno et al., 2014; Sodemann et al., 2020).54

ARs produce 25-50% of the annual precipitation in key areas of the western United States55

and are responsible for most of the extreme precipitation and flooding events in Cali-56

fornia (Ralph et al., 2004; Neiman et al., 2008; Leung & Qian, 2009; Dettinger et al., 2011;57

Dettinger & Cayan, 2014; Gershunov et al., 2019). ARs can have both beneficial (e.g.,58

replenishing water reservoirs) and detrimental (e.g., causing destructive floods and land-59

slides) impacts on regional economies and public safety (DeFlorio et al., 2018; Ralph et60

al., 2019; Corringham et al., 2019). Since they play such important societal roles, im-61

proved understanding and accurate forecasting of ARs and AR-induced precipitation are62

critical (Ralph et al., 2010; Martin et al., 2018).63

To better understand ARs, the forecast skill of ARs in numerical weather predic-64

tion (NWP) models has been assessed over the last several decades (Wick et al., 2013;65
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Nayak et al., 2014; Lavers et al., 2016; DeFlorio et al., 2018; Martin et al., 2018). For66

example, Wick et al. (2013) assessed the control forecasts of five global operational en-67

semble forecast systems, focusing on integrated water vapor (IWV). The models exhib-68

ited some usable skill in predicting the overall occurrence of ARs out to 10 days, although69

the landfall position error was roughly +/− 500 km at 5-days lead time and degraded70

to +/− 1000 km at 10-days lead time. They also investigated the influence of model spa-71

tial resolution on forecasting ARs and found that the error in AR width is greater in coarser-72

resolution models. Lavers et al. (2016) investigated the global ensemble reforecasts of73

integrated vapor transport (IVT) and precipitation across 31 winters. Their results showed74

that IVT (used as proxy to represent AR conditions) has higher predictability than pre-75

cipitation, suggesting that IVT may be used to provide early awareness of extreme AR76

events. They also found large interannual variability in predicting IVT and precipita-77

tion. Martin et al. (2018) compared the forecasts of global and regional models against78

the observations. They demonstrated that improving the water vapor transport accu-79

racy can significantly reduce precipitation error in the regional model, while this was not80

observed in the global model. In addition, the recently created scale for AR intensity and81

impacts (Ralph et al., 2019) uses IVT specifically to define the AR intensity, and IVT82

depends upon the amount of water vapor in the air (best represented here by the param-83

eter IWV). These factors motivate the use of IWV and IVT in the analyses presented84

herein.85

To extend the predictability of ARs by numerical weather prediction models, re-86

cent studies have focused on the connection between ARs and lower frequency synoptic-87

scale atmosphere features. This is because AR location, intensity, and frequency are strongly88

modulated by these lower frequency variabilities, such as the El Niño Southern Oscil-89

lation (ENSO), the Madden–Julian Oscillation (MJO), the Pacific Decadal Oscillation (PDO),90

and the Pacific North America (PNA) teleconnection patterns (Guan et al., 2013; Mund-91

henk et al., 2016; Payne & Magnusdottir, 2014; Gershunov et al., 2017; Baggett et al.,92

2017; Zhou & Kim, 2018). These studies suggest that AR prediction skill can be poten-93

tially extended through the knowledge of these lower frequency signals. In addition, DeFlorio94

et al. (2018) studied the combined effect of lower frequency signals on AR prediction skill.95

They showed that (1) AR prediction skill was increased over the north Pacific/western96

United States at a 10-day lead when El Niño and positive PNA conditions occur con-97

currently; and (2) AR prediction skill was increased over the north Atlantic/United King-98

dom at a 7-day lead when La Niña and negative PNA conditions occur concurrently.99

Air–sea interactions can also impact ARs and their predictability. Recent studies100

emphasized the importance of AR-induced strong winds (Waliser & Guan, 2017; Shin-101

oda et al., 2019). These winds are often associated with large pressure gradients between102

extratropical cyclones on the northwest sides of the ARs and anticyclones on the south-103

east sides (e.g., Newell et al., 1992; Newman et al., 2012; Shinoda et al., 2019). Large104

air–sea fluxes of momentum, heat, and moisture then result from the strong winds, gen-105

erating substantial ocean responses. Neiman et al. (2013) investigated a few landfalling106

AR events and showed that the upward surface latent heat flux can be 200 W/m2 in the107

AR region, and even higher on the northwest side of AR at 550 W/m2. The recent study108

of Shinoda et al. (2019) showed a dipole-like structure that cooler/warmer SST is ob-109

served on the northeast/southwest side of the AR center due to strong surface winds and110

air–sea heat fluxes. The AR-induced sea surface temperature (SST) variations and air–111

sea fluxes could feedback on the ARs and play a critical role in their evolution. However,112

although there are many studies on AR dynamics and thermodynamics (e.g., Ralph et113

al., 2004, 2010; Martin et al., 2018; Shinoda et al., 2019), very little is known about the114

influence of air–sea interactions on modeling and forecasting ARs. There are still fun-115

damental questions to be addressed:116

1. How do ARs impact the ocean?117

2. How does the ocean impact ARs?118
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3. Can a coupled ocean–atmosphere model better simulate AR events?119

The goal of this work is to investigate the influence of air–sea interactions on AR120

events. To this end, we perform a series of coupled and uncoupled numerical simulations121

in the northeastern Pacific region, where ARs have been well-studied. We first present122

the SST variations and the ocean surface heat fluxes in a series of AR events, aiming to123

show how ARs impact the ocean. Then, by comparing the coupled and uncoupled runs,124

we isolate the effect of SST variations to investigate how the AR-induced ocean response125

feeds back onto the ARs. Finally, we use observational and reanalysis data to quantify126

the difference in skill between the coupled and uncoupled simulations.127

The rest of this paper is organized as follows. The coupled model, the design of the128

experiments, and the data used in this work are introduced in Section 2. An overview129

of the AR events is presented in Section 3. Section 4 details the impact of air–sea inter-130

actions on modeling AR events. Section 5 discusses IWV and IVT skill, and assesses sources131

of errors. The last section concludes the paper.132

2 Methodology133

2.1 Coupled Model134

In this case study, the Scripps–KAUST Regional Integrated Prediction System (SKRIPS,135

version 1.0) is used (Sun et al., 2019). The SKRIPS is a regional coupled ocean–atmosphere136

model: the oceanic model component is the MIT general circulation model (MITgcm) (Marshall137

et al., 1997) and the atmospheric model component is the Weather Research and Fore-138

casting (WRF) model (Skamarock et al., 2019). The Earth System Modeling Framework (ESMF) (Hill139

et al., 2004) is used as the coupler to drive the coupled simulation. The National United140

Operational Prediction Capability (NUOPC) layer in the ESMF is also used to simplify141

the implementations of component synchronization, execution, and other common tasks142

in the coupling (Hill et al., 2004; Sitz et al., 2017). The schematic description of the cou-143

pled model is shown in Fig. 1. In the coupling process, the MITgcm sends SST and ocean144

surface velocity to ESMF, and ESMF sends them to WRF as the bottom boundary con-145

ditions. WRF sends surface fields to ESMF, including (1) net surface longwave and short-146

wave radiative fluxes, (2) surface latent and sensible heat fluxes, (3) 10-m wind speed,147

(4) precipitation, and (5) evaporation. The MITgcm uses these variables to prescribe sur-148

face forcing, including (1) total net surface heat flux, (2) surface wind stress, and (3) fresh-149

water flux. The total net surface heat flux is computed by adding surface latent heat flux,150

sensible heat flux, net shortwave radiation flux, and net longwave radiation flux. The151

MITgcm computes the 10-m neutral wind speed based on the 10-m winds from WRF152

and then computes the surface wind stress (Large & Yeager, 2004). The freshwater flux153

is the difference between precipitation and evaporation. The surface latent and sensi-154

ble heat fluxes are computed using the COARE 3.0 bulk algorithm in WRF (Fairall et155

al., 2003).156

2.2 Experimental Design157

The AR events in the northeastern Pacific region are investigated. We perform 93158

pairs of coupled and uncoupled hindcast simulations, which are initialized on each day159

in three Januaries from 2016 to 2018 (3 years × 31 days/year). We select these events160

because they capture different thermodynamic characteristics of ARs, which will be de-161

tailed in Section 4. Each simulation aims to examine the model skill up to 14 days and162

the ensemble of the runs allow us to examine the mean and spread of the hindcasts. In163

each simulation, a few ARs (about 5 AR events) can be observed throughout the domain,164

and the duration of ARs can be a few days.165
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Figure 1. The schematic description of the SKRIPS regional coupled ocean–atmosphere

model. The yellow block is the ESMF/NUOPC coupler; the white blocks are the ocean and at-

mosphere components; the red blocks are the implemented MITgcm–ESMF and WRF–ESMF

interfaces. Although the regridding capability is implemented in SKRIPS, it is not used in the

simulations because MITgcm and WRF use identical horizontal grids.

The model domain extends from 18.16◦N to 54◦N and from 116◦W to 180◦. To gen-166

erate the grids, we choose latitude–longitude (cylindrical equidistant) map projection for167

both MITgcm and WRF. The horizontal grid has 448×800 (lat×long) cells and the spac-168

ing is 0.08◦ in both directions. We use identical horizontal grids for both MITgcm and169

WRF to eliminate the issue of regridding winds near steep orography and complex coast-170

lines (Seo et al., 2016). Although the regridding capability is implemented in SKRIPS,171

the interpolations are not performed in the coupling process. There are 40 sigma lay-172

ers in the atmosphere model and 60 z-layers in the ocean model. The top of the atmo-173

sphere is at the 50 hPa pressure level.174

The bathymetry of the ocean model is extracted from the 2-minute Gridded Global175

Relief Data (ETOPO2) (National Geophysical Data Center, 2006). The time step of the176

ocean model is 120 seconds. The horizontal sub-grid mixing is parameterized using non-177

linear Smagorinsky viscosities, and the K-profile parameterization (KPP) is used for ver-178

tical mixing processes (Large et al., 1994). The time step for the atmospheric simula-179

tion is 30 seconds. The Morrison 2-moment scheme (Morrison et al., 2009) is used to re-180

solve the microphysics; the updated version of the Kain–Fritsch convection scheme (Kain,181

2004) is used for cumulus parameterization; the Mellor–Yamada–Nakanishi–Niino (MYNN)182

2.5-order closure scheme (Nakanishi & Niino, 2004, 2009) is used for the planetary bound-183

ary layer (PBL); the Rapid Radiation Transfer Model for GCMs (RRTMG; (Iacono et184

al., 2008)) is used for longwave and shortwave radiation transfer through the atmosphere;185

the Noah land surface model is used for the land surface processes (Tewari et al., 2004).186

In the present study, we perform the following simulations:187

1. Run CPL: two-way coupled ocean–atmosphere (MITgcm–WRF) simulations.188

2. Run ATM.STA: stand-alone atmosphere (WRF) simulations with the initial SST189

kept persistent. This run serves as a benchmark to highlight the difference between190
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the coupled and uncoupled runs. It allows assessing the atmospheric model be-191

havior with realistic, but persistent SST.192

Both CPL and ATM.STA are initialized using global analysis data. The initial con-193

ditions, boundary conditions, and forcing terms of the simulations are summarized in194

Table 1. In CPL, the ocean model uses the assimilated HYCOM/NCODA 1/12◦ daily195

global analysis data (the Global Ocean Forecast System, Version 3.0, https://www.hycom196

.org/dataserver/gofs-3pt0/analysis) as initial and boundary conditions for ocean197

temperature, salinity, and horizontal velocities (Chassignet et al., 2007). The boundary198

conditions for the ocean are updated based on linearly interpolating between the daily199

HYCOM/NCODA analysis data. A restoring layer with a width of 13 grid cells is ap-200

plied at the lateral boundaries. The inner and outer boundary relaxation timescales are201

10 and 0.5 days, respectively. The atmosphere is initialized using the NCEP FNL (Fi-202

nal) Operational Global Analysis data. The same data also provide the boundary con-203

ditions for air temperature, wind speed, and air humidity. The atmospheric boundary204

conditions are updated based on linearly interpolating between 6-hourly NCEP FNL data.205

The ‘specified’ zone in WRF prescribes the lateral boundary values, and the ‘relaxation’206

zone is used to nudge the solution from the domain toward the boundary condition value.207

Here we use the default width of one point for the specific zone and four points for the208

relaxation zone.209

Importantly, both CPL and ATM.STA derive skill from boundary conditions (i.e.210

they are dynamically downscaled hindcasts). This better allows us to focus on highlight-211

ing the impacts of air–sea interactions on ARs. In CPL run, HYCOM/NCODA data is212

used for the oceanic initial and lateral boundary conditions. Thus in ATM.STA run, HY-213

COM/NCODA SST is used as the initial condition and is persistent throughout the run.214

The atmospheric initial and lateral boundary conditions in ATM.STA are the same as215

CPL. The coupling interval used for CPL is 20 minutes to allow capturing the diurnal216

cycle of air–sea fluxes (Seo et al., 2014). In this study, we do not compare the coupled217

run with atmosphere-only model driven by daily SST from HYCOM or other SST datasets.218

This is because (1) we aim to show the difference in IWV and IVT due to the coupling219

and (2) daily SST may not be available in a real-time forecast.220

2.3 Validation of the results221

To evaluate the performance of CPL and ATM.STA, the model outputs are com-222

pared with validation data. For water vapor during the AR events we compare IWV and223

IVT with ERA5 reanalysis data (ECMWF, 2017). IWV is calculated from specific hu-224

midity q (kg kg−1) in the atmosphere:225

IWV =
1

g

∫ 100 hPa

psurface

qdp, (1)

where g is the gravitational acceleration (equal to 9.81 m s−2); and p is pressure (Pa).226

IVT is calculated from specific humidity and wind speed:227

IVT =
1

g

√√√√(∫ 300 hPa

psurface

qudp

)2

+

(∫ 300 hPa

psurface

qvdp

)2

, (2)

where u and v are the zonal and meridional wind speeds (m s−1), respectively. Note that228

we integrate IWV and IVT from the surface pressure psurface to 300 hPa (Lavers et al.,229

2016). In the simulations, there are about 30 vertical levels below 300 hPa in WRF. To230

better illustrate the difference between model outputs and validation data, IWV and IVT231

are averaged on a daily basis (ending at 0000 UTC) using hourly instantaneous diagnos-232

tics (Lavers et al., 2015; Hecht & Cordeira, 2017). The simulated surface turbulent heat233

fluxes (THFs) are validated against the 1◦ × 1◦ daily OAFlux data (Yu et al., 2008).234
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Table 1. The computational domain, WRF physics schemes, initial condition, boundary condi-

tion and forcing terms used in present simulations.

run CPL ATM.STA

model region 18.16◦N to 54◦N; 116◦W to 180◦

horizontal resolution 448×800 (lat×long)
grid spacing 0.08◦ × 0.08◦ (lat×long)

vertical levels
40 (atmosphere)

40 (atmosphere only)
60 (ocean)

microphysics scheme Morrison 2-moment scheme
convection scheme Kain–Fritsch scheme

PBL scheme Mellor–Yamada–Nakanishi–Niino 2.5-order scheme
longwave radiation scheme Rapid Radiation Transfer Model for GCMs (RRTMG)
shortwave radiation scheme Rapid Radiation Transfer Model for GCMs (RRTMG)

land surface scheme Noah land surface model

initial and NCEP FNL (atmosphere)
NCEP FNL (atmosphere only)

boundary conditions HYCOM/NCODA (ocean)

ocean surface
from MITgcm

HYCOM/NCODA
conditions (persistent)

atmospheric forcings
from WRF not necessary

for ocean model

The simulated SST fields are validated against the 1/12◦ daily HYCOM/NCODA data.235

Here we use the same HYCOM/NCODA analysis data as the initial and boundary con-236

dition in the coupled model (shown in Section 2.2) , aiming to show the increase of er-237

ror from initial condition. We used bilinear interpolation to transfer the validation data238

onto the model grid to achieve a uniform spatial scale. When interpolating SST, only239

the data saved on ocean points are used. The validation data are summarized in Table 2.240

Because (1) ARs can be observed in the selected domain throughout the simulations (shown241

in Appendix A) and (2) the differences in IWV/IVT, THFs, and SST are found outside242

the AR regions (e.g., pre-AR and post-AR regions), we analyze the simulations results243

for the entire domain.244

The Brier skill score (BSS) is used to examine the skill difference between CPL and245

ATM.STA (Von Storch & Zwiers, 2001). Here, we use the modified version that simpli-246

fies the comparability of positive and negative scores (Winterfeldt et al., 2011):247

BSS =

{
1 − σ2

Fσ
−2
R , if σ2

F ≤ σ2
R ,

σ2
Rσ

−2
F − 1, if σ2

F > σ2
R ,

(3)

where σ2
F and σ2

R are the mean squared error (MSE) of the “forecast” and “reference”,248

respectively. According to Eq. (3), positive BSS means the forecast is more skillful than249

the reference, whereas negative BSS means the forecast is less skillful than the reference.250

In this study, we use the difference between the model outputs and the validation data251

to calculate the BSSs. We recognize the validation data is also an estimate with recog-252

nized uncertainty. Nevertheless, we here use it as truth and choose to refer to the dif-253

ference between model outputs and validation data as “errors”.254
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Table 2. The dataset used to validate the simulation results.

variable validation data

interpolated water vapor (IWV) ERA5
interpolated vapor transport (IVT) ERA5

surface latent and sensible heat OAFlux
sea surface temperature (SST) HYCOM/NCODA

3 Overview of the AR events255

A series of AR events with different thermodynamic interactions are observed in256

the simulations. To illustrate the different characteristics of ARs, the results obtained257

in two representative coupled simulations are shown: CASE1 initialized at 0000 UTC258

Jan 09 2018; and CASE2 at 0000 UTC Jan 25 2018. The evolution of the ARs is shown259

in Fig. 2 by plotting the daily-averaged IVT fields 4, 6, 8, and 10 days after initiation.260

Here, we use IVT > 250 kg m−1 s−1 to define the AR region (Rutz et al., 2014). It can261

be seen in Fig. 2 that ARs are observed in the selected domain throughout the simula-262

tions. Figure 2(a) shows several west–east oriented ARs in CASE1, with a maximum IVT263

of about 1250 kg m−1 s−1, whereas Fig. 2(b) shows CASE2 has several ARs with a more264

south–north orientation and with a maximum IVT of about 900 kg m−1 s−1. Figure 3265

displays the 14-day averaged IVT and the number of days under AR conditions. The mean266

IVT in CASE1 is higher than that of CASE2, but the AR events cover similar regions267

in both cases.268

Figure 2. The daily-averaged IVT in two representative coupled simulations. The snapshots

show the IVT after 4, 6, 8, and 10 days from the simulation initial time. The black contours

denote the AR region where IVT > 250 kg m−1 s−1. CASE1 in Panel (a) is initialized at 0000

UTC, Jan 07 2018; CASE2 in Panel (b) is initialized at 0000 UTC, Jan 25 2018.

To demonstrate different AR thermodynamic interactions in CASE1 and CASE2,269

the 14-day averaged surface THFs, the 14-day time-integrated Qnet (net surface heat flux),270

and the SST difference between day 14 and day 1 (dSST14) are plotted in Fig. 4. The271

surface THFs in Fig. 4(a) indicate the ocean is losing energy from surface turbulent heat272

transfer in both cases. The domain mean energy loss in CASE1 (mean THFs: -130 W m−2)273

is more significant than that in CASE2 (mean THFs: -103 W m−2). Figure 4(b) shows274

the time-integrated Qnet in the representative cases. In both cases, the mean Qnet in the275

–8–
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Figure 3. The averaged IVT and the number of “AR days” in CPL. Panel (a) plots the 14-

day averaged IVT in CASE1 and CASE2, and the contours indicate the regions where 14-day

averaged IVT > 250 kg m−1 s−1. Panel (b) shows the number of “AR days” with daily averaged

IVT > 250 kg m−1 s−1, and the contours highlight the regions that are under AR condition for

more than 6 days.

–9–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

domain is negative, indicating the ocean loses energy. However, in CASE2 the ocean gains276

energy in the AR region of about 0.4 × 108 J m−2 between 160◦–140◦ W and 18◦–42◦ N.277

Compared with CASE1, the total surface energy loss in CASE2 is only about half of that278

in CASE1 (CASE1: 2.34 ×1021 J; CASE2: 1.14 ×1021 J). Figure 4(c) shows the SST279

difference between the start and the end of the simulations. In CASE1, because the ocean280

loses heat, SST cooling is observed in the AR region, whereas SST warming is observed281

in CASE2, especially in the AR region where Qnet is positive (between 160◦–140◦ W and282

18◦–42◦ N). Despite the SST warming in the AR region for CASE2, the domain mean283

SST differences (dSST14) are negative for both cases (CASE1: -0.49 ◦C; CASE2: -0.07 ◦C).284

4 Case Study285

The two representative cases in Section 3 demonstrate different ARs thermodynamic286

interactions. In CASE1, SST cools about 1 ◦C in the AR region, whereas in CASE2, SST287

warming is observed in parts of the AR region. Here, we first examine the SST evolu-288

tion in all coupled simulations and use the statistics (e.g., mean, standard deviation, en-289

semble spread) to demonstrate how ARs impact the ocean. We then investigate how the290

ocean impacts ARs by comparing coupled and uncoupled simulation results. Due to the291

chaotic nature of the atmosphere (the differences of the snapshots are detailed in Ap-292

pendix A), it is challenging to investigate the physical processes that impact the distri-293

bution of water vapor without detailed experiments and process-based diagnostics. Hence,294

we focus on a statistical comparison rather than individual simulations due to the chaotic295

nature of the atmosphere.296

4.1 Sea Surface Temperature297

The SST evolution in all 93 coupled simulations is summarized in Fig. 5. It can298

be seen in Fig. 5(a) that coupled simulations generally reproduce the evolution of domain-299

averaged SST in consistency with HYCOM (mean error < 0.2 ◦C; root-mean-square er-300

ror < 0.6 ◦C). Figure 5(b) highlights two groups of simulations that each have 31 mem-301

bers (1/3 of all simulations): (1) strong cooling ARs and (2) weak cooling ARs. The strong302

cooling ARs include 31 runs that have more significant SST cooling (mean dSST14: −0.50 ◦C);303

the weak cooling ARs include 31 runs that have less significant SST cooling (mean dSST14:304

−0.22 ◦C). Compared with the average climatological SST cooling (−0.32 ◦C), the SST305

cooling in “strong cooling” events is stronger; the SST cooling in “weak cooling” events306

is weaker. Because the AR conditions are observed throughout each 14-day run in the307

selected domain, shown in Appendix A, we are able to study the interactions between308

ARs and the ocean in these runs. Note that in the “weak cooling” runs, the SST may309

increase in parts of the AR region (example shown in Fig. 4), but the domain-averaged310

SST is still cooling. Here, we use the magnitude of SST cooling to separate the simu-311

lations because (1) SST changes are determined by the surface heat fluxes that are im-312

portant in ocean–atmosphere coupling, and (2) SST is used as the boundary condition313

in the atmospheric model. The 31 runs that have intermediate cooling are included in314

the ”all AR” statistics presented, but are not shown in isolation.315

The SST simulated with the coupled model is now compared with the validation316

data to demonstrate the skill improvement over assuming a persistent SST (Fig. 6). In317

Fig. 6(a) we plot the root-mean-square errors (RMSEs) of SST obtained in CPL as a func-318

tion of lead time in red. The upper (lower) whiskers represent maximum (minimum) val-319

ues; the upper (lower) box bounds represent upper (lower) quartile Q1 (Q3); the box cen-320

ter lines represent median RMSEs for the 93 coupled or uncoupled simulations. The in-321

terquartile range is IQR = Q1 − Q3, and the values above (below) the upper (lower)322

fence Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers. In comparison, the RMSEs of persis-323

tent SST are also plotted in gray. It can be seen that the median, the upper/lower quar-324

tiles, and the maximum/minimum RMSESST in CPL are all smaller than persistence from325
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Figure 4. The mean surface THFs, the time-integrated net surface heat flux Qnet, and the

SST difference between day 14 and day 1 dSST14 in two representative coupled simulations. In

Panels (a) and (b), the positive values denote downward heat fluxes that warm the ocean; the

negative values denote upward heat fluxes that cool the ocean. In Panel (c), the positive values

indicate warming SST; the negative values indicate cooling SST. The left panels are showing

CASE1 that is initialized at 0000 UTC, Jan 07 2018; the right panels are showing CASE2 that is

initialized at 0000 UTC, Jan 25 2018. The black contours highlight the AR region where IVT >

250 kg m−1 s−1.
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Figure 5. The evolution of domain-averaged SST from all coupled simulations in comparison

with HYCOM SST data. Panel (a) shows the SST evolution throughout all simulations in each

year; Panel (b) highlights the SST trend in strong and weak cooling AR events in all simulations.

The inset figure in Panel (b) shows the total domain-averaged SST variation dSST14 during the

14-day simulation. Here, we highlight two groups of simulations that each has 31 members (1/3

of all simulations). The strong cooling ARs include 31 events that have more significant SST

cooling (mean dSST14: −0.50◦C); the weak cooling ARs include 31 events that have less signifi-

cant SST cooling (mean dSST14: −0.22◦C). The dashed line in Panel (A) is the daily climatology

SST (Banzon et al., 2014), available at ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/

climatology/.
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day 1 to day 14. Because the persistent SST is used in ATM.STA, this demonstrates that326

the SST in CPL agrees better with the validation data than ATM.STA. In addition, we327

plot BSSSST to quantify the improved skill in CPL (Fig. 6(b)). Here, σ2
F in Eq. (3) is328

calculated between HYCOM SST data and the simulated SST obtained in CPL; σ2
R is329

calculated between HYCOM SST data and the persistent SST used in ATM.STA. It can330

be seen in Fig. 6(b) that the median BSSs for all AR events are about 20% from day 1331

to day 14. The median BSSs for strong and weak cooling AR events are 26.8% and 18.7%,332

respectively, shown in Table 3. However, in the second week, the BSSs of strong cool-333

ing ARs (44.6%) are higher than those of weaker cooling events (6.4%) by about 40%,334

resulting from the combined effect of the coupled model being able to skillfully simulate335

the stronger SST changes as well as persistence being less skillful during the strong cool-336

ing events.337

Figure 6. Evaluation of coupled model skill in simulating SST. The SST obtained in CPL

is compared with persistent SST used in ATM.STA. The SST data are validated against HY-

COM/NCODA data. Panel (a) shows the RMSEs plotted as functions of hindcast lead time;

Panel (b) shows the evolution of BSSs. Note that each marker in the background represents the

RMSE of each simulation. The upper (lower) whiskers represent maximum (minimum) values;

the upper (lower) box bounds represent upper (lower) quartile Q1 (Q3); the box center lines rep-

resent median values. The interquartile range is IQR = Q1 − Q3, and the values above (below)

the upper (lower) fence Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers.

Table 3. Summary of the comparison between CPL and ATM.STA. The weekly average of the

median BSSs in Figs. 6, 7, and 9 are shown. The standard deviations of the BSSs are shown in

the parentheses. The BSSs of strong and weak cooling AR events are also shown.

week 1 week 2

all ARs
strong weak

all ARs
strong weak

cooling ARs cooling ARs cooling ARs cooling ARs

SST 21.2% (2.6%) 26.8% (3.3%) 18.7% (5.1%) 17.8% (2.7%) 44.6% (5.5%) 6.4% (2.2%)
THF 10.3% (2.2%) 11.6% (2.7%) 10.2% (2.3%) 15.0% (1.4%) 20.0% (3.2%) 11.2% (1.0%)
IWV 2.7% (1.2%) 3.0% (1.8%) 1.9% (0.5%) 6.9% (1.5%) 11.7% (3.0%) 4.0% (1.4%)
IVT 0.2% (0.8%) 0.2% (1.1%) 0.6% (0.8%) 1.6% (1.6%) 4.7% (2.5%) -0.6% (1.8%)
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4.2 Surface Turbulent Heat Fluxes338

In the AR events associated with stronger SST cooling, stronger surface turbulent339

heat losses from the ocean can be observed; in the AR events associated with weaker SST340

cooling, there is much less surface turbulent heat transfer between ocean and atmosphere.341

This section aims to demonstrate how the coupled model better simulates the surface342

turbulent heat transfer during the AR events.343

To demonstrate how the coupled model better simulates the surface THFs, the com-344

parison between the daily-averaged THFs and daily OAFlux validation data is shown345

in Fig. 7. In Fig. 7(a), the RMSEs of THFs are plotted as functions of lead time. It can346

be seen that the RMSEs of CPL are smaller than those of ATM.STA from day 1 to day347

14. Note that the RMSEs do not increase significantly (less than 5 W m−2) for longer348

lead simulations. To quantify the improvement of the coupled model, the BSSs are shown349

in Fig. 7(b). Here, σ2
F in Eq. (3) is calculated between the OAFlux data and the THFs350

obtained in CPL; σ2
R is calculated between the OAFlux data and the THFs obtained in351

ATM.STA. It can be seen in Fig. 7 that the medians of BSSs are increasing from 0.06352

to 0.17 with lead time. In week one, the difference of BSSs between strong and weak cool-353

ing events is about 0.01, outlined in Table 3. However, in week two, the BSSs of strong354

cooling events are much higher than weak cooling events (strong cooling events: 20%;355

weak cooling events: 11%). This indicates that the skill improvement of the coupled model356

is more significant for strong cooling AR events.357

Figure 7. Comparison of the skill of THFs between CPL and ATM.STA. The THFs obtained

in the simulations are validated against the OAFlux data. Panel (a) shows the RMSEs plot-

ted as functions of lead times; Panel (b) shows the evolution of BSSs. Note that each marker

in the background represents the raw data obtained in each simulation. The upper (lower)

whiskers represent maximum (minimum) values; the upper (lower) box bounds represent up-

per (lower) quartile Q1 (Q3); the box center lines represent median values. The interquartile

range is IQR = Q1 − Q3, and the values above (below) the upper (lower) fence Q1 + 1.5IQR

(Q3 − 1.5IQR) are outliers.

4.3 Improved Skills in Simulating ARs358

Because of the improved skill of the coupled model in simulating SST and surface359

THFs, the question arises whether the coupled model can also better simulate the ARs.360

This section investigates how much skill is added by the coupled model in simulating ARs.361

The diagnosed IWV and IVT are used to demonstrate the influence of air–sea interac-362

tions on ARs.363
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The RMSEs of both IWV and IVT are shown in Fig. 8, along with the errors of364

persistent values. It can be seen that the RMSEs of CPL and ATM.STA are only 25%365

of the persistence forecasts, showing both coupled and uncoupled models have much bet-366

ter skills than persistence. In week one, the RMSEIWV and RMSEIVT of CPL do not367

differ much from those of ATM.STA. In week two, the differences of RMSEs are larger:368

the median RMSEIWV of CPL is smaller by about 0.1 mm and the median RMSEIVT369

of CPL is smaller by about 1 kg m−1 s−1. It is noted that there are a few simulations370

that have more than twice larger RMSEs than the median, but the model outputs are371

still better than the persistent values.372

To demonstrate the relative skill improvement of the coupled model, the BSSs of373

IWV and IVT are plotted as functions of lead time in Fig. 9. Here, σ2
F is calculated be-374

tween the ERA5 and the results obtained in CPL; σ2
R is calculated between the ERA5375

and the results obtained in ATM.STA. In Fig. 9, the mean RMSEIWV and RMSEIVT376

are shown; the standard error of the mean are also plotted as error bars1; the median,377

the upper/lower quartiles, and the maximum/minimum RMSEs are shown in the inset378

figures. It can be seen that the mean BSSIWV and BSSIVT are all positive from day 1379

to day 14. The coupled model is even better at simulating strong cooling AR events for380

both IWV (about 12% in week two) and IVT (about 5% in week two), shown in Table 3.381

However, the skill improvement is much less in weak cooling AR events, where the air–382

sea heat exchanges are smaller. The skill improvement of IWV is higher than that of IVT,383

because IVT is more variable than IWV. This difference will be discussed further in Sec-384

tion 5. The standard deviations of the BSSs are also shown in Table 3. It can be seen385

that BSSIWV and BSSIVT are less statistically significant in week one compared with week386

two. The BSSIVT is also less statistically significant compared with BSSIWV for the strong387

cooling AR events. This is also because IVT is more variable than IWV.388

Figure 8. Comparison of RMSEIWV and RMSEIVT obtained in CPL and ATM.STA. The

simulation results are validated using ERA5. Panels (a) and (b) show the statistics of RMSEIWV

and RMSEIVT, respectively. The inset figures shows the differences between the simulations

results and persistent IWV/IVT. The upper (lower) whiskers represent maximum (minimum)

values; the upper (lower) box bounds represent upper (lower) quartile Q1 (Q3); the box center

lines represent median values. The interquartile range is IQR = Q1 − Q3, and the values above

(below) the upper (lower) fence Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers.

1 AR events last for several days, meaning daily-mean IWV and IVT are not independent. We find the

errors of forecasts using persistent values of IWV and IVT plateau after 5 days (Fig. 8), implying decor-

relation on this timescale. Hence, we use the number of days simulated divided by 5 to determine sample

size for calculating a standard error. For all AR events, n = 18; for strong/weak cooling ARs, n = 6.
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Figure 9. Comparison of BSSIWV and BSSIVT between CPL and ATM.STA. The simulation

results are validated using ERA5. Panels (a) and (b) show BSSIWV and BSSIVT, respectively.

The markers are the mean BSSs and the error bars are the standard errors of the mean. The

inset figures are the box plots of the BSSs that shows the median, the upper/lower quartiles, and

the maximum/minimum RMSEs. The upper (lower) whiskers represent maximum (minimum)

values; the upper (lower) box bounds represent upper (lower) quartile Q1 (Q3); the box center

lines represent median values. The interquartile range is IQR = Q1 − Q3, and the values above

(below) the upper (lower) fence Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers.

To investigate the relationship between the SST variation and the improvement in389

model forecast skill, we plotted the BSSs as functions of SST changes in Fig. 10. It can390

be seen that both IWV and IVT skills in CPL increase when SST cooling is stronger in391

the simulations. The predictions of IWV and IVT of CPL are similar to those of ATM.STA392

when the SST cooling is less than 0.2 ◦C. On the other hand, when the SST cooling is393

stronger than 0.5 ◦C, the mean BSSs of IWV and IVT are 18% and 16%, respectively.394

The BSSs are also plotted as functions of the time-integrated net surface heat flux Qnet395

in Fig. 11. It can be seen that the skill of the coupled model increases with increasing396

Qnet loss. When the mean surface energy loss is smaller than 0.6×108 J m−2, the BSSs397

are smaller than 5%; when the mean surface energy loss is more than 1.2×108 J m−2,398

the mean BSSs of IWV and IVT are 18% and 15%, respectively. Because the accumu-399

lated SST cooling and Qnet loss in week two are higher than those in week one, we hy-400

pothesize that the skill improvement is better in week two because of stronger SST and401

more Qnet loss.402

4.4 BSSs at different atmospheric levels403

Although the changing SST influences the ARs in the simulations, its impact is height404

dependent. In this section we analyze two representative levels: the lower level is from405

the surface to 850 hPa; the upper level is from 850 hPa to 300 hPa. These levels are se-406

lected because each contains about 50% of the water vapor transport.407

The comparison of the relative skill at lower and upper levels is shown in Fig. 12.408

At the lower level BSSIWV and BSSIVT are all positive from day 1 to day 14, suggest-409

ing the coupled model better captures the water vapor in this level. In the second week,410

the improvement in IWV and IVT is about 12% and 4% respectively (Table 4). How-411

ever, the median BSSs in the upper level are almost neutral (between -2% to +2%) for412

both IVT and IWV, indicating the average impact of the SST on forecast skill is insignif-413

icant for the upper level. However improved forecast skill is apparent when splitting the414

strong and weak cooling AR events. As shown in Fig. 13, the BSSs in strong cooling events415
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Figure 10. The BSSs of IWV and IVT plotted as functions of mean SST difference. Pan-

els (a) and (b) show BSSIWV and BSSIVT, respectively. The markers in the background are the

daily-averaged BSS of all simulations (14 days × 93 simulations). The upper (lower) whiskers

represent maximum (minimum) values; the upper (lower) box bounds represent upper (lower)

quartile Q1 (Q3); the box center lines represent median values. The interquartile range is

IQR = Q1−Q3, and the values above (below) the upper (lower) fence Q1+1.5IQR (Q3−1.5IQR)

are outliers. The red dashed lines are the mean BSSs in each bin.

Figure 11. The BSSs of IWV and IVT plotted as functions of surface heat flux integrated

starting from the simulation initial time. Panels (a) and (b) show BSSIWV and BSSIVT, respec-

tively. The markers in the background are the daily-averaged BSS of all simulations (14 days ×
93 simulations). The upper (lower) whiskers represent maximum (minimum) values; the upper

(lower) box bounds represent upper (lower) quartile Q1 (Q3); the box center lines represent me-

dian values. The interquartile range is IQR = Q1 − Q3, and the values above (below) the upper

(lower) fence Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers. The red dashed lines are the mean BSSs

in each bin.
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are higher than those in the weak cooling events, and relative skill improvement of IWV416

and IVT in week two is 19% and 6% for the lower level and 10% and 3% for the upper417

layer (Table 4).418

Figure 12. The relative skill improvements (BSSIWV and BSSIVT) at lower and upper atmo-

sphere levels plotted as functions of lead time. Panels (a) and (b) show BSSIWV and BSSIVT,

respectively. The markers in the background are the daily-averaged BSS of all simulations. The

upper (lower) whiskers represent maximum (minimum) values; the upper (lower) box bounds

represent upper (lower) quartile Q1 (Q3); the box center lines represent median values. The

interquartile range is IQR = Q1 − Q3, and the values above (below) the upper (lower) fence

Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers.

Figure 13. The relative skill improvements (BSSIWV and BSSIVT) in strong and weak cooling

AR events at lower and upper atmosphere levels. The skill scores are plotted as functions of lead

time. Only the median values are shown.

5 Interpreting the forecast skill419

The comparison between CPL and ATM.STA demonstrates that the SST obtained420

in coupled run agrees better with the validation data than the persistent SST used in421

uncoupled run. It is also shown that the surface THFs, IWV, and IVT in the coupled422

run also agrees better with the validation data. Here, we first examine the impact of SST423

variations on THFs, IWV, and IVT in the simulations. We then investigate the compo-424
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Table 4. Summary of relative skill improvements at lower and upper atmospheric levels. The

average of the median BSSs in Figs. 12 and 13 are shown. The standard deviations of the BSSs

are shown in the parentheses.

week 1 week 2

all ARs
strong weak

all ARs
strong weak

cooling ARs cooling ARs cooling ARs cooling ARs

IWV, lower level 5.6% (2.6%) 6.0% (2.7%) 5.6% (2.7%) 12.6% (2.4%) 19.1% (4.3%) 10.1% (1.5%)
IVT, lower level 1.1% (0.7%) 1.1% (1.0%) 1.7% (1.3%) 4.2% (1.2%) 6.2% (2.1%) 3.4% (2.5%)

IWV, upper level 0.3% (0.4%) 0.4% (1.0%) -0.3% (0.6%) 1.6% (0.8%) 3.7% (0.9%) -1.3% (1.2%)
IVT, upper level -0.5% (0.6%) -0.7% (0.7%) 0.2% (0.8%) -1.7% (0.8%) 0.4% (0.9%) -4.2% (1.5%)

nents contributing to the total BSS (e.g., mean bias and standard deviation). This sec-425

tion aims to interpret the different skill scores shown in Section 4.426

5.1 Impact of the SST cooling427

Figure 14(a) examines the relationship between SST changes and heat fluxes. Each428

point in the background represents the difference in daily-mean surface THFs and SST429

between CPL and ATM.STA in 93 pairs of simulations. To be consistent with the def-430

inition in Fig. 4(a), positive THFs indicate downward heat fluxes that warm the ocean;431

negative THFs indicate upward heat fluxes that cool the ocean. It can be seen in Fig. 14(a)432

that there is less heat loss at the ocean surface in coupled runs. This is because of the433

cooler SST in the coupled system. Although the changes in THFs are associated with434

the changes in SST, they are likely not the only factor that impacts the AR in the sim-435

ulations. Furthermore, there are non-linear feedbacks in the system where changes in THFs436

can impact atmospheric humidity, which can further impact the THF response. Yet, our437

analysis shows that the SST difference does delineate the skill of the two sets of ARs (strong438

cooling and weak cooling).439

The differences in IWV and IVT due to SST variations are shown in Fig. 14(b) and 14(c),440

respectively. It can be seen that both IWV and IVT in CPL are smaller than those in441

ATM.STA. It is noted that the percentage differences of IWV and IVT are generally con-442

sistent because the mean wind speed is not sensitive to SST variations in the simulations.443

To investigate the differences in IWV and IVT between the simulations, we plotted the444

differences in evaporation, precipitation, and E-P (evaporation minus precipitation) in445

Fig. 15. Each point in the background represents the accumulated evaporation and pre-446

cipitation from the start of the simulations. It can be seen that both evaporation and447

precipitation in CPL are less than those in ATM.STA, and they are both one order of448

magnitude higher than the differences in E-P. If we compare E-P with the decrease of449

IWV in Fig. 14(b), they are generally consistent. Because both CPL and ATM.STA use450

the same boundary condition for the water vapor, we conclude that the difference in IWV451

is mainly due to the differences in E-P.452

5.2 Components contributing to BSS453

Although Section 5.1 demonstrated that both IWV and IVT decreases by the same454

percentage in CPL compared with ATM.STA, the results in Section 4.3 and Section 4.4455

demonstrated greater skill improvement by the coupled model in forecasting IWV than456

in forecasting IVT, especially in the lower atmosphere. Because both IWV and IVT are457

–19–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

Figure 14. The difference between CPL and ATM.STA due to the impact of SST variation.

Panel (a) shows the difference in mean surface THFs; Panel (b) shows the difference in IWV;

Panel (c) shows the difference in IVT. The markers in the background are the differences be-

tween THFs, IWV, and IVT of all simulations (14 days × 93 simulations). The upper (lower)

whiskers represent maximum (minimum) values; the upper (lower) box bounds represent upper

(lower) quartile Q1 (Q3); the box center lines represent median values. The interquartile range is

IQR = Q1−Q3, and the values above (below) the upper (lower) fence Q1+1.5IQR (Q3−1.5IQR)

are outliers.

Figure 15. The impact of SST variation on evaporation and precipitation. Panel (a) shows

the difference in accumulated evaporation between CPL and ATM.STA; Panel (b) shows the

difference in accumulated precipitation between CPL and ATM.STA; Panel (c) shows the dif-

ference in accumulated E-P between CPL and ATM.STA. The markers in the background are

the differences in evaporation, precipitation, and E-P of all simulations (14 days × 93 simula-

tions). The upper (lower) whiskers represent maximum (minimum) values; the upper (lower) box

bounds represent upper (lower) quartile Q1 (Q3); the box center lines represent median values.

The interquartile range is IQR = Q1 − Q3, and the values above (below) the upper (lower) fence

Q1 + 1.5IQR (Q3 − 1.5IQR) are outliers.
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used to describe the ARs, we examined the difference in BSSIWV and BSSIVT by com-458

paring different components contributing to the total BSSs.459

The BSS is computed by comparing the mean squared error (MSE) σ2, which com-460

bines information of the “mean bias” and the “standard deviation”:461

σ2 = BIAS2 + STD2, (4)

where BIAS is the mean bias between model outputs and validation data; STD is the462

standard deviation between model outputs and validation data. Table 5 summarizes the463

MSEs, the biases, and the standard deviations of IWV and IVT in Section 4.3. In CPL,464

the mean IWV and IVT are both smaller than ATM.STA by about 1%; the mean bi-465

ases of IWV and IVT are also smaller than those of ATM.STA; the standard deviations466

of IWV are similar to that of ATM.STA. When comparing the contribution of mean bias467

and standard deviation, we found that the IVT is far more variable because it is the in-468

tegral of the product between water vapor and wind speed. Hence, when computing the469

BSSs, the improvement of mean bias in IWV is more important compared with IVT. Al-470

though the impact of SST variation on mean IWV and IVT are very similar by percent-471

age (shown in Fig. 14), the BSSs of IWV are much higher than those of IVT.472

To investigate the difference in BSSs between lower and upper atmosphere, we sum-473

marized the MSEs, the biases, and the standard deviations in Table 6. We found that474

the mean IWV in both lower and upper atmosphere obtained in CPL are smaller than475

those in ATM.STA by about 1%, suggesting the impact of SST on mean IWV is gen-476

erally consistent in the upper and lower atmosphere. In the lower atmosphere, the mean477

biases are larger and the standard deviations are smaller, and thus the improvement of478

the MSE is more significant than the upper atmosphere (lower atmosphere: 9.2%; up-479

per atmosphere: 0.6%).480

Table 5. Summary of the IWV and IVT obtained in CPL and ATM.STA. Decomposition of

the MSE (σ2) of IWV and IVT in the simulations

IWV (kg m−2) mean IWV MSE σ2 BIAS STD BIAS2/σ2 STD2/σ2

CPL 16.97 3.63 +0.41 1.86 4.7% 95.3%
ATM.STA 17.15 (+1.1%) 3.80 (+4.4%) +0.60 1.86 9.4% 90.6%

IVT (kg m−1 s−1) mean IVT MSE σ2 BIAS STD BIAS2/σ2 STD2/σ2

CPL 208.84 1463.69 +3.76 38.07 1.0% 99.0%
ATM.STA 211.32 (+1.2%) 1483.75 (+1.4%) +6.23 38.01 2.6% 97.4%

6 Summary and Conclusion481

A series of atmospheric river events were simulated using a regional coupled ocean–482

atmosphere model (SKRIPS v1.0). The coupled simulation results were compared with483

those in uncoupled simulations to demonstrate the ocean and atmosphere interactions484

during AR events. We found that the SST cooling in different cases can be significantly485

different, hence we highlighted two groups of simulations: (1) strong cooling ARs and486

(2) weak cooling ARs. The strong cooling group had the 31 AR events that occurred with487

the most significant SST cooling and the weak cooling group had the 31 AR events that488

occurred with the weakest cooling. The 31 intermediate cooling events were analyzed489

as part of the “all AR” statistics, but not in isolation.490
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Table 6. Decomposition of the MSE (σ2) of IWV in lower and upper atmosphere

IWV (kg m−2) mean IWV MSE σ2 BIAS STD

lower atmosphere, CPL 9.83 0.90 +0.32 0.89
lower atmosphere, ATM.STA 9.93 (+1.0%) 0.99 (+9.2%) +0.42 0.90

IWV (kg m−2) mean IWV MSE σ2 BIAS STD

upper atmosphere, CPL 7.14 1.83 +0.10 1.35
upper atmosphere, ATM.STA 7.22 (+1.1%) 1.85 (+0.6%) +0.18 1.35

Two representative simulations were selected to analyze different thermal interac-491

tions of strong and weak cooling ARs. CASE1 was west–east oriented with a maximum492

IVT of about 1250 kg m−1 s−1; CASE2 was almost south–north oriented with a max-493

imum IVT of about 900 kg m−1 s−1. CASE1 exhibited much stronger SST cooling and494

surface energy loss, suggesting the influence of ARs on the ocean can differ significantly495

according to the events and background ocean state. When performing coupled simu-496

lations, the Brier skill score showed that simulated SST was about 20% more accurate497

than persistent SST. The surface turbulent heat fluxes resulting from the coupled sim-498

ulations were about 10% more accurate. The improvement of the coupled model was even499

more pronounced in strong cooling AR events.500

In addition, we investigated the skill improvement of the coupled model in simu-501

lating ARs. Due to the chaotic nature of the atmospheric system, we compared the statis-502

tics of BSSs in all simulations instead of comparing the snapshots of each event. In the503

present case study, both coupled and uncoupled models realistically captured the gen-504

eral characteristics of the atmospheric vertical integrals. For the strong cooling AR events,505

the coupled model showed improved skill in predicting IWV and IVT by 12% and 5%506

respectively for lead times of longer than 7 days. The differences between coupled and507

uncoupled simulations in weak cooling AR events are less significant.508

The results presented here motivate further studies evaluating the effect of ocean–509

atmosphere coupling on AR events. Here we used a regional model to show that for runs510

out to 14 days coupling to an ocean model improved the simulation of AR characteris-511

tics. The impact of coupling on forecast skill on longer timescales is an important re-512

search topic, but best investigated with global models. Future work will involve explor-513

ing the response of SST to the atmosphere and ocean state (e.g., heat fluxes, wind stress,514

mixed layer deepening), the impact of the annual SST cycle, and the other character-515

istics of AR (e.g., AR intensity, orientation) on the coupling. In addition, the sensitiv-516

ity of the coupled model to different physics schemes in WRF will be investigated.517
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Appendix A: AR conditions of the simulations729

The daily-averaged IWV and IVT are presented here to complement the results pre-730

sented in Section 4. We show the contours of ARs in ERA5, the difference between CPL731

and ATM.STA, and the RMSEs of CPL and ATM.STA compared with ERA5. The aim732

is to demonstrate that the direct comparison of daily-averaged IWV and IVT suffers from733

the chaotic nature of the atmosphere in the present simulations.734

The snapshots of daily-averaged IVT contours of ARs in ERA5 are shown in Fig. A1.735

We select every other day in January and early February, aiming to demonstrate the AR736

conditions in our study. It can be seen in Fig. A1 that AR conditions are observed ev-737

ery day, covering about 20% of the computational domain. The differences between the738

simulation results obtained from CPL and ATM.STA (CPL−ATM.STA) are shown in739

Fig. A2. We select the same representative simulations as Section 3 and show the daily-740

averaged IWV and IVT as obtained from these simulations. Generally, it can be seen741

that the IWV is smaller in CPL compared with ATM.STA, especially in CASE1. This742
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is because the CPL captures the SST cooling and the reduction of E-P, which is a source743

of the water vapor. The comparison of IVT in Fig. A2 shows that IVT is also smaller744

in CPL. The difference of IVT is associated with the difference of IWV. It can be also745

seen that a dipole pattern is observed in CASE2 after 8 and 10 days, which indicates a746

shift of the AR front between two simulations. The comparison between CPL and ERA5747

(CPL−ERA5) is shown in Fig. A3. It can be seen that CPL−ERA5 is three times larger748

than CPL−ATM.STA. We did not show ATM.STA−ERA5 because it is similar to CPL−ERA5.749

In CASE1, the coupled model over-estimates the IWV in the warmer sector of AR, but750

under-estimates the IWV in the cooler sector. However, in CASE2 the difference is not751

significant at warmer and cooler sectors. It can be seen in the figures that the differences752

of IWV/IVT are chaotic because of the nonlinearty of the atmosphere, and thus it is chal-753

lenging to investigate the physical processes that impact the distribution of water wa-754

por without detailed experiments and process-based diagnostics. Instead, we examined755

the statistics of the skill of coupled and uncoupled models and detailed them in Section 4.756

Appendix B: SST evolution and AR events757

The evolution of SST in CPL run is shown in Fig. 5(a). To illustrate the main course758

of the SST cooling, the evolution of Qnet and mixed layer depth (MLD) is shown in Fig. B1.759

Here the mixed layer depth is determined based on the definition in Kara et al. (2000).760

Figure B1 aims to show that Qnet and MLD are associated with the SST cooling in the761

simulations. It can be seen in Fig. B1(a) that the MLD increases when SST cools down762

in the simulations, and Fig. B1(b) shows that the mean Qnet loss decreases when SST763

cools down. This suggests that Qnet and mixed layer depth are correlated with the SST764

evolution.765

Although we have compared the IWV and IVT of ARs between CPL and ATM.STA766

in Fig. 14. The impact of the SST evolution in CPL run on ARs is not shown. To demon-767

strate the impact of SST evolution on the ARs, we plotted IWV and IVT as functions768

of SST variations in Fig. B2. It can be seen that both IWV and IVT get smaller in CPL769

when SST cools down. From Fig. 15, when SST cools down, the E-P gets smaller and770

the total water vapor of the domain is decreasing.771

Appendix C: Comparison between early and late January cases772

In Fig. 5, we used the SST cooling to group the ARs in the simulations. It can be773

seen that most strong/weak cooling ARs occurred in the simulations are initialized on774

early/late January. Hence, we compared the cases initialized on the first 10 days and last775

10 days (about 1/3 of all simulations).776

The BSSs are plotted as functions of lead time in Fig. C1. Here, σ2
F is calculated777

between the ERA5 and the results of CPL; σ2
R is calculated between the ERA5 and the778

results of ATM.STA. The median, the upper/lower quartiles, and the maximum/minimum779

RMSEs are plotted in the figure. It can be seen that the median BSSIWV in early Jan-780

uary cases is slightly better than late January cases, especially in the second week of the781

simulations (early January cases: 9.7%; late January cases: 3.6%). On the other hand,782

the median BSSIVT in early January cases is still better than late January cases, but the783

improvement is much smaller (early January cases: 2.0%; late January cases: 0.5%). Com-784

pared with Fig. 9, using the SST cooling can better show the differences in the AR events785

in this case study.786
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Figure A1. The snapshot of the AR events in ERA5 in January and early February from

2016 to 2018. The contours highlight the AR region where IVT > 250 kg m−1 s−1.

Figure A2. The difference of IWV/IVT between CPL and ATM.STA. The black contours

highlight the AR region where IVT > 250 kg m−1 s−1. The results obtained in CASE1 and

CASE2 in Section 3 are shown.

Figure A3. The difference of IWV/IVT between CPL and ERA5 data. The black contours

highlight the AR region where IVT > 250 kg m−1 s−1. The results obtained in CASE1 and

CASE2 in Section 3 are shown.
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Figure B1. The evolution of mixed layer depth (MLD) and mean Qnet loss of the ocean dur-

ing the CPL runs. Panel (a) shows the mixed layer depth; Panel (b) shows the mean Qnet loss.

Each line indicates the one of the CPL runs (93 simulations in total).
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Figure B2. The SST variation plotted as functions of daily-averaged IWV and IVT in CPL.

Panel (a) shows the IWV; Panel (b) shows the IVT. The markers in the background are daily-

averaged IWV and IVT obtained in all simulations (14 days × 93 simulations).
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Figure C1. Comparison of BSSIWV and BSSIVT between CPL and ATM.STA. The simulation

results are validated using ERA5. Panels (a) and (b) show BSSIWV and BSSIVT, respectively.

The box plot shows the median, the upper/lower quartiles, and the maximum/minimum BSSs.

The early January cases are initialized on the first 10 days; the late January cases are initialized

on the last 10 days (about 1/3 of all simulations).
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