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Skeletonized Wave-Equation Refraction Inversion
With Autoencoded Waveforms
Han Yu , Yuqing Chen, Sherif M. Hanafy, and Gerard T. Schuster

Abstract— We present a method that skeletonizes the first
arriving seismic refractions by machine learning and inverts them
for the subsurface velocity model. In this study, first arrivals can
be compressed in a low-rank sense with their skeletal features
extracted by a well-trained autoencoder. Empirical experiments
suggest that the autoencoder’s 1 × 1 or 2 × 1 latent vectors
vary continuously with respect to the input seismic data. It is,
therefore, reasonable to introduce a misfit functional measuring
the discrepancies between the predicted and the observed data
in a low-dimensional latent space. The benefit of this approach
is that an elaborated autoencoding neural network not only
refines intrinsic information hidden in the refractions but also
improves the quality of inversion for a reliable background
velocity model. Numerical tests on both synthetic and field
data demonstrate the effectiveness of this method, especially
in recovering the low-to-intermediate wavenumber parts of the
subsurface velocity distribution. Comparisons are made with
the other three relevant methods, the wave-equation travel-time
(WT) inversion, the envelope inversion, and the full waveform
inversion (FWI). As expected, the cycle skipping problem is
alleviated due to the reduction of dimensions of data space. This
method outperforms the envelope inversion in resolution, and it
is no worse than WT. Moreover, there is no need for careful
manual travel-time picking with this methodology. In general,
this inversion framework provides an extendable strategy to
compress any input data for reconstructing high-dimensional
physical parameters.

Index Terms— Autoencoder, refractions, skeletonization,
waveform inversion.

I. INTRODUCTION

FULL waveform inversion (FWI) has been proven to be an
effective method for high-resolution imaging the Earth [1]

by iteratively refining velocity models with reverse time
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migration (RTM) of the residuals [2], [3]. However, almost
all successful inversions rely on accurate initial velocity
models [4], where most misfit functionals of FWI can be
easily trapped into local minimum due to the famous cycle-
skipping issue [5]. Remedies to this problem tend to utilize
the information hidden in the low-frequency signals of the
recorded seismic data. One of the most successful methods
is the multiscale approach [6] that gradually inverts for the
velocity models with low-to-high wavenumbers [7]. Not long
ago, the suboffset and time-lag axes were used for migration
velocity analysis (MVA) to accelerate the overall convergence
of FWI in the tomographic FWI [8]. Later, a data-adaptive
matching strategy was proposed in [9] to partially overcome
the cycle-skipping problem. Other methods, such as the wave-
field reconstruction inversion, were also proposed in [10] to
avoid the necessities of kinematically accurate initial models,
and it might rely on building a proper misfit function with
regularization.

Wu and Chen [11] employed more information from the
envelope of seismic data to invert for the salt body, which
automatically incorporated more ultralow frequency signals so
that the misfit functionals are less sensitive to cycle-skipping.
Kwon et al. [12] have made a series of advances in the
Laplace–Fourier domain to invert the data with low frequen-
cies, therefore making their inversions more robust than con-
ventional FWI. Recently, Yao et al. [13] and Chen et al. [14]
revised the velocity models gradually from near-offset to far-
offset reflections so that the objective functions can more
likely reach the global minima and the corrected velocity
models can approximate the true model. To focus on matching
the kinematic information rather than the dynamics, Sun and
Schuster [15] and Fu et al. [16] developed a phase mismatch
objective function that is largely insensitive to the amplitude
mismatch between the predicted and observed arrivals.

The nonlinearity of the FWI function usually prevents the
updated velocity model from converging to the correct one.
To overcome this problem and the high-frequency approxima-
tion of ray-based tomography, Luo et al. [17] and Luo and
Schuster [18] inverted travel time using the wave-equation.
Inverting refraction travel times with the wave equation not
only reduces the complexity of the misfit functional [19]
but also accelerates the convergence of iterative inversion.
Nevertheless, only inverting the travel times of first arrivals
limits the tomogram to be a low resolved approximation to
the subsurface velocity model.

Theoretically, the key idea of skeletonized inversion is to
invert skeletal features in the data that are strongly dependent
on the model parameters of interest. For example, changes
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Fig. 1. Framework for skeletonized wave-equation inversion of AE head waves.

in the velocity model mostly influence the travel times of
reflections and diving waves, not their amplitudes. Another
example is by Dutta [20] who inverted the shift in peak
frequencies of arrivals for the Q distribution and Li et al. [21]
who inverted the dispersion curves of surface waves for the
shear-velocity distribution. Lu et al. [22] summarized these
methods to describe the development of them and their future
applications.

In all the abovementioned skeletonized inversion methods,
once the data set is skeletonized, the misfit function measures
the difference between the predicted and the observed seismo-
grams in the compressed data domain. The adjoint sources are
weighted by the skeletonized residuals and then backprojected
into the model to update the target parameters.

To generalize the skeletonized inversion procedure to any
type of skeletal data, Chen and Schuster [23] developed
the Newtonian machine learning (NML) method. Here, they
used the compressed latent space variables of an autoencoder
[24]–[26] as the skeletonized data. They then used the implicit
function theorem to invert these latent variables for the model
parameters of interest. In their formula, the raw direct arrivals
in a cross-well experiment are used to invert the latent
variables for the velocity model, and the dimension of their
proposed latent space is only one, which may undermine the
quality of data restoration and inversion. Since the processed
first arriving waveforms are usually less complicated, they
are more suitable for the input of an autoencoder than later
arrivals [27], [28].

It is, thus, proposed in this study to construct the misfit
functional as the sum of squared differences between the
calculated and the observed latent-space variables associated
with a land seismic survey. Here, we refer to NML as
autoencoded (AE) inversion. The synthetic and field data are
windowed about the first arrivals, and some 1 (or 2)×1 vectors
of latent-space coefficients are used for skeletonizing traces,
not only the 1-D latent space vector in [23]. Therefore, all
the formulas in the theoretical section are redeveloped in this
study. Comprehensive results with both synthetic and field data
show the efficiency of this approach, where the major benefit
is that refractional seismic features automatically skeletonized
by an autoencoding network can naturally participate in the
inversion based on the wave equation. Also, the travel times
do not need to be precisely picked for the first arrivals.

This article is organized into four parts. After the introduc-
tion, we explain the theory of an autoencoding neural network

and how it is used for skeletonized waveform inversion. This
includes the use of the implicit function theorem to derive the
wave-equation formulas for the misfit gradient of the latent
variables. Section III presents the numerical examples for
applying this method to both a synthetic data set and a land
data set. Section IV presents the conclusions and discussions.

II. THEORY

The skeletonized inversion scheme is divided into two
parts. The first part, including Sections II-A and II-B, is to
briefly introduce the autoencoding technique. The second part,
including Sections II-C–II-E, shows how the implicit function
theorem can be used to derive the wave-equation formulas for
the misfit gradient of the latent variables.

A. Autoencoder

In this study, an autoencoding neural network serves as a
tool to map the first arriving signals to the latent space first
and then back to the original data space. However, the input
seismic waveforms to be inverted require more simplification
to reduce the complexity of training the autoencoding net-
work [25]. Therefore, we only take the envelopes of the first
arriving head waves for encoding. Once the estimated first
arrivals are determined, averaging the near offset refraction
wavelets within a window of 10–15 traces can help to identify
the length of the time windows around the first arrivals.
A Hanning window is then used to mute the later arrivals
while avoiding frequency leaks. Next, we apply the Hilbert
transform to the first arrivals for obtaining their envelopes. The
key idea stems from the connective function in wave-equation
travel time (WT), but the “travel time” here is replaced by
the encoded vector (or scalar), which represents both the
travel time and the normalized amplitude, that is, the envelope
feature.

Fig. 1 presents the workflow of our proposed inversion
method. The input raw data represent the envelopes of the
refractions, as shown by the red curve in Fig. 2. There are
three basic requirements for the raw data as the input of an
autoencoder. First, the features of the first arriving signals
should include both the travel time and the amplitude infor-
mation. Second, the skeletonized features can be plugged into
the inversion framework as a part of the misfit function. Third,
to effectively compute the Fréchet derivatives, perturbations of
the velocity model and the skeletal data can be connected by
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TABLE I

DIMENSIONS OF MATRICES FOR CONNECTING DIFFERENT LAYERS IN THE AUTOENCODER

Fig. 2. Envelope of a Ricker wavelet with the frequency at peaked 30 Hz.

a continuously differentiable function. Therefore, we choose
envelopes of the first arriving refractions as the input for the
autoencoding network. A prior trained autoencoding network,
as a well-known unsupervised learning tool to compress data,
can squeeze out the features hidden in the first arriving
envelopes for the following inversion.

In theory, if the network is well-trained, the encoding and
the decoding processes can be symmetric, which means that
the decoder is the inverse of the encoder. With this simple
assumption, we set up the network in such a way that at
least their structures are alike, as shown in Fig. 3. The
layers in the autoencoder are for a fully connected neural
network. We expect that the decoded signals can approximate
the original ones as close as possible, which means that the
skeletonized features can reflect the intrinsic characteristics of
the waveforms to a large extent.

B. Data Training

For the observed first arrivals of all the common shot gathers
(CSGs), it is not necessary to use the entire data set for training
because of the increasing cost of computation, and only a
part of them can be chosen for building the autoencoder.
Each seismic trace is Hilbert transformed to its envelope
first and then normalized by the variance or the root mean
squared energy, as shown in Fig. 2. Then, these processed
envelopes e(i) are fed into the autoencoder network with a
1-D or 2-D latent space, where i is the envelope index. Here,
an increase in the latent space dimension does not lead to
more computational time in training. Instead, it is expected
to improve the accuracy of data compression and restoration
compared with the 1-D case. An analog to this strategy is like
the Fourier transform that extracts intrinsic data properties,
namely the amplitude and the phase information, but only one
of the two parameters cannot solely restore the original signals

based on inverse FFT. However, the two mechanisms are not
equivalent in which an autoencoder can be more complicated
than the discrete Fourier transform. Therefore, it is worth to
remark that no obvious parallels can be drawn between the
two operations.

In Fig. 3, for both the encoder and the decoder subnet-
works, we design three layers with symmetric dimensions.
For instance, the three encoding operators with their weighting
matrices’ (W1,2,3) dimensions as Dim2×Dim1, Dim3×Dim2,
and 1(or 2) × Dim3, where Dim1 > Dim2 > Dim3, shrink
in size until the latent-space layer. If the length of every input
envelope is equal to M , we must have M = Dim1. In the
latent space, there is only one vector (or scalar) as the extracted
feature of one seismic trace for rebuilding the input envelope.
Then, the original trace can be recovered through the inverse
procedure with another three-layered network that maps the
vector back to the envelope space. The dimensions of all
the matrices in constructing the autoencoding neural network
are presented in Table I. The minibatch gradient descending
method is used to train this neural network in Pytorch.

Here, every envelope covers two or three wavelets of a trace
with the number of temporal samples M ≤ 3000. We set
this threshold for M by considering the computation cost
of training. In fact, this threshold can be adjusted according
to various applications whenever necessary. The number of
input training samples into the autoencoder is just equal to the
number of selected sample traces, and this number can range
from thousands to millions depending on the sizes of data
sets. Based on our empirical tests, three layers are adequate
for extracting the important features of the data that are
strongly dependent on the velocity model. Another three pairs
of matrices and vectors W ′

i and b′
i form the decoding proce-

dure. To ensure autoencoding effects, Dim3, Dim2, and Dim1
should gradually approximate the length of the first arriving
wavelets. The leftmost and the rightmost signals in Fig. 3
present the original envelope and the decoded envelopes.
An ReLu or sigmoid function Re = tanh() is inserted into the
encoding and the decoding processes. Therefore, the weighting
matrices Wi and W ′

i , and their corresponding bias vectors bi

and b′
i (i = 1, 2, 3) can be updated by training the misfit

functional defined as

ANN(W1,2,3, b1,2,3, W ′
1,2,3, b′

1,2,3) = min
M∑

i=1

(ê(i) − e(i))2

(1)

where the decoded ê(i) is expressed by

ê(i) = W ′
1 × Re

(
W ′

2 × Re
(
W ′

3 × Re
(
W3 × Re

(
W2

× Re
(
W1 × e(i) + b1

) + b2
) + b3

) + b′
3

) + b′
2

) + b′
1.

(2)
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Fig. 3. Autoencoder framework for data encoding and decoding.

Fig. 4. Two reflecting CSGs: (a) shot gather 1 and (b) shot gather 2 with (c) their first arrival travel-time comparison and (d) encoded skeletal data comparison.

As a result, we believe that the encoded vector z = W3 ×
Re(W2 ×Re(W1 ×e(i)+b1)+b2)+b3 is the best representation
of the original envelope under this well-trained autoencoding
neural network in the least-squares sense. This misfit function
for the low-dimensional representation of the seismic data
exhibits a pattern similar to that of the travel-time misfit func-
tion, as another skeletonized feature sensitive to the velocity
changes. To verify this assumption, we simply build two
two-layered models for testing the encoder on the reflections
traveling over the media, and the only difference is the velocity
distribution of their top layers: one model is with velocity
vtop = 2.5 km/s, while the other one is with vtop = 3 km/s.
All the other settings are identical for comparisons.
Fig. 4(a) and (b) presents reflecting CSGs of two shots
excited at the same location but corresponding to models
with vtop = 2.5 km/s and vtop = 3 km/s, respectively.
Fig. 4(c) and (d) shows the comparisons of their travel-time
curves and their encoded latent space values, respectively.

For this preliminary toy example, we train the autoencoder
using half of the CSGs with vtop = 2.5 km/s and half of the
CSGs with vtop = 3 km/s, and the evidence in Fig. 4(d) shows
that our previous assumption is not without ground. The
whole network is a black box whose parameters are updated
in training the autoencoder. Nevertheless, we have taken
out the intermediate data processed by the two intermediate
layers. However, there are no discernible physical meanings
in the intermediate representations that can be reasonably
interpreted. Therefore, the encoding can be regarded as a
pure data compressing operation in this context.

C. Skeletonized Inversion With 1-D Latent Space

The misfit functional J for the skeletonized refraction
autoencoding inversion is defined as

J = min
v(x)

1

2

∑
s

∑
r

(�z(xr , xs))
2 (3)
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Fig. 5. Workflow of AE inversion.

Fig. 6. (a) True velocity model. (b) 30th CSG.

where �z denotes the differences of the encoded values in the
1-D latent space between the observed and the predicted data,
namely �z(xr , xs) = zobs(xr , xs) − zpred(xr , xs). A source is
at location xs , whereas a receiver is at location xr to record
the signals excited from this source. Next, the gradient β with
respect to the velocity model v(x) for each image point x can,
thus, be calculated by

β(x) = −
∑

s

∑
r

∂�z

∂v(x)
�z(xr , xs). (4)

In a few cases, the skeletonized functional J may converge
well, even to the global minimum with the gradient β(x), if the
true model/structure is not too complex. In principle, if the
dimension of the latent space is reduced to one, then there
should be no more cycle-skipping phenomenon because all the
waveform signals disappear in the misfit functional. However,
the annoying local minima problem can still occur during the
inversion due to possible reasons, such as highly nonlinear
relationship between the compressed data and the true model,
unexpected noise in the data, and imperfect inversion methods.

In general, the AE inversion can be guided by four major
steps, as shown in Fig. 5.

Step 1 (Seismic Survey): Either forward modeling or field
work is used to generate raw data.

Step 2 (Data Processing): First arrivals are roughly win-
dowed and extracted for computing their envelopes.

Step 3 (Data Training): An autoencoder is a setup with a
pair of encoder and decoder networks, where each of them
contains an equal number of layers with weighting matrices
and bias vectors. Guided by (1), the computed envelopes are
fed into the autoencoder for training. These trained parameters
as weighting matrices and bias vectors are saved for the
inversion.

Step 4 (Inversion): Equations (3) and (4) are used to iter-
atively invert the latent-space misfit function for the velocity
model until convergence.

In detail, the Fréchet derivative of �z with respect to v(x)
can be calculated using the connective function theory [17].
Here, we tend to use the first arrival envelope instead of
the first break in WT as the independent variable since the
amplitude together with the phase information, represented by
this single encoded scalar, can be more informative about the
subsurface structures. From another perspective, the trained
autoencoding network simulates a series of linearly indepen-
dent vectors as a basis, whereas the latent space scalars are like
coordinates under this basis. The connective function should
quantify a relationship between the velocity field perturbation
and the perturbation of the encoded latent variables.

D. Connective Function

To invert the first arriving waveforms, we assume the
constant-density acoustic wave equation

1

v2(x)

∂2 p(x, t|xs)

∂ t2
− ∇2 p(x, t|xs) = src(xs, t) (5)

where p(x, t|xs) represents the first arriving pressure field at
position x and time t with a point source excited at xs , and
src(xs, t) is the source function. In a 2-D space, the vector x
consists of two components for the horizontal and the vertical
coordinates. The solution to (5) is computed by following a
finite-difference method [29] and can be written in terms of
its Green’s function g(x, t|x′, 0) as:

p(x, t|xs) =
∫

g(x, t|x′, 0) � src(x′, t|xs) dx′ (6)

where the symbol � denotes convolution in time.
Let ez(xr , t; xs) denote the envelope of a trace p(xr , t|xs)

recorded at xr associated with the source at xs . A correla-
tion function f is defined as the function that connects the
skeletonized data with the recorded pressure field. Its form is

f (xr , z; xs) =
∫

eobs,z∗+z(xr , t; xs)

Aobs(xr , t; xs)
epred,z∗ (xr , t; xs) dt (7)
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Fig. 7. (a) Envelope of first arrivals in the 30th CSG (b) its decoded envelope. (c) Matrix latent-space values for all the traces (encoding results).

Fig. 8. (a) Decoded envelope of CSG #30 with 2-D latent space. (b) First- and (c) second-dimensional latent-space values for all the traces (encoding results).

where z∗ denotes the encoded value of the calculated envelope
epred,z∗ (xr , t; xs) with its later arrivals muted. This subscript
z∗ is the scalar representing its skeletonized feature encoded
by a well-trained autoencoder neural network. The denom-
inator Aobs(xr , t; xs) represents the maximum amplitude of
eobs,z∗+z(xr , t; xs). In the same way, eobs,z∗+z(xr , t; xs) rep-
resents the envelope of an observed trace merely with its
first arrivals encoded as z∗ + z. The observed and pre-
dicted envelopes share the same source and receiver locations.
Here, the two subscripts z∗ + z and z∗ represent two
encoded envelopes of an observed trace and a calculated
trace, respectively. These two expressions are used simply for
indicting that z∗ is relatively fixed, and z denotes the real
difference between the two signals in the latent space. In other
words, to make the two envelopes match or equal in the new
domain, the operation of changing z can be seen as shifting the
observed envelope in WT in the time domain to make it match
the predicted data. Also, similar to building the correlation
function in WT, if the function of the two envelopes in (7)
reaches its maximum, then there must exist a �z with z =
�z depicting their difference in the latent space. Therefore,
by taking the derivative of f with respect to z, we have

ḟ�z = ∂ f (xr , z; xs)

∂z

∣∣∣∣
z=�z

=
∫

ėobs,z∗+�z(xr , t; xs)

Aobs(xr , t; xs)
epred,z∗ (xr , t; xs) dt = 0. (8)

Here, the derivative, as the dot operator above f , taken on the
first term of the right-hand side of (8) is

ėobs,z∗+�z(xr , t; xs) = ∂eobs,z∗+�z(xr , t; xs)

∂z

∣∣∣∣
z=�z

. (9)

In terms of computation, (9) presents the reason why a decoder
is required because the derivative of an envelope with respect
to z can be numerically approximated using the decoder,

Fig. 9. Starting gradient model.

which is a very important procedure in this method. Using the
implicit function theorem, the Fréchet derivative in (4) can be
expanded as

∂�z

∂v(x)
= −

(
∂ ḟ�z

∂v(x)

)(
∂ ḟ�z

∂�z

)−1

= − 1

E

∫
ėobs,z∗+�z(xr , t; xs)

∂epred,z∗ (xr , t; xs)

∂v(x)
dt (10)

where the denominator can be written as

E =
∫

ëobs,z∗+�z(xr , t; xs)epred,z∗ (xr , t; xs) dt . (11)

In (10), the Fréchet derivative as the gradient image for
updating the velocity field is
∂epred,z∗ (xr , t; xs)

∂v(x)

= 1√
p2

pred,z∗(xr , t; xs) + hp2
pred,z∗ (xr , t; xs)

×
[

ppred,z∗(xr , t; xs)
∂ppred,z∗(xr , t; xs)

∂v(x)

+ hppred,z∗ (xr , t; xs)
∂hppred,z∗(xr , t; xs)

∂v(x)

]
(12)
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Fig. 10. Tomograms inverted for 50 iterations by 30 Hz. (a) WT inverted model. (b) Skeletonized AE inversion (AE inverted model with 1-D latent space).
(c) Envelope inversion model. (d) AE inverted model with 2-D latent space. (e) FWI inverted model.

where hp means the pure Hilbert transform of the raw pre-
dicted pressure field profile p without taking the envelope.
Moreover, in detail, we have

∂ppred,z∗ (xr , t; xs)

∂v(x)
= 2

v3(x)
ġ(x, t; xr, 0) � ṗpred,z∗ (x, t; xs),

(13)

∂hppred,z∗ (xr , t; xs)

∂v(x)
= 2

v3(x)
ġ(x, t; xr, 0) � ḣppred,z∗(x, t; xs)

(14)

where g denotes the backpropagated Green’s function for
the acoustic wave-equation, and the dot operator means the
derivative with respect to time. Equations (13) and (14) are
nothing but to conduct two RTMs. As (12) represents the
standard Fréchet derivative of the envelope with respect to
the velocity variations, we will also compare the results
of the proposed method with the envelope inversion results
in the next numerical experiment section. Inserting (10)–(14)
to (4), we have the ultimate gradient expression. In this
study, the gradient of refraction AE inversion for the latent-
space misfit function is derived using our notation similar to

that in [23]. Its final form is given as

β(x)

= −
∑

s

∑
r

∂�z

∂v(x)
�z(xr , xs)

= 1

v3(x)

∑
s

∑
r

⎧⎨
⎩

�z(xr , xs)

E

∫
dt

⎡
⎣ėobs,z∗+�z(xr , t; xs)

× 1√
p2

pred,z∗ (xr , t; xs) + hp2
pred,z∗(xr , t; xs)

×(ppred,z∗ (xr , t; xs)ġ(x, t; xr, 0) � ṗpred,z∗(x, t; xs)

+ hppred,z∗(xr , t; xs)ġ(x, t; xr, 0) � ḣppred,z∗ (x, t; xs))

⎤
⎦

⎫⎬
⎭.

(15)

Now, the velocity tomogram v(x) can be iteratively updated
by a preconditioned conjugated gradient method [30] as

vk+1(x) = vk(x) + αkβk(x) (16)

where k indexes the iteration number, and the step-length αk

is computed using a quadratic approximation.
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Fig. 11. Gradients computed by (a) WT, (b) skeletonized AE inversion [AE inversion gradient (1-D)], (c) envelope inversion, (d) AE inversion with 2-D
latent space, and (e) FWI in the first iteration.

E. Inversion With 2-D Latent Space

If the dimension of the latent space is set to two as
z = (z1, z2), then the degree of freedom to express the
envelopes is increasing. Therefore, the corresponding inversion
theory in [23] needs to be modified with a few changes to the
misfit function. The misfit function associated with the 2-D
latent space autoencoder can be defined as

L = min
v(x)

1

2

∑
s

∑
r

(
�z2

1(xr , xs) + �z2
2(xr , xs)

)
(17)

and the gradient image γ (x) becomes

γ (x) = − ∂L

∂v(x)

= −
∑

s

∑
r

(
∂�z1

∂v(x)
�z1(xr , xs) + ∂�z2

∂v(x)
�z2(xr , xs)

)

(18)

where the velocity distribution v(x) is also updated by

vk+1(x) = vk(x) + αkγk(x). (19)

Here, we redefine the correlation function q(xr , z1, z2; xs) by

q(xr ,z1,z2;xs)=
∫

eobs,z∗
1+z1,z∗

2+z2(xr ,t;xs)

Aobs(xr , t; xs)
epred,z∗

1 ,z∗
2
(xr ,t;xs) dt

(20)

where the encoded latent-space vector (z1, z2) denotes the
envelope features. When the correlation function q reaches
its maximum, taking the gradient of q with respect to z =
(z1, z2) should be equal to zero as a usual necessary condition.
Therefore, we have

∇q(�z1,�z2) = (q1, q2) =
(

∂q

∂z1
,

∂q

∂z2

)∣∣∣∣
(z1,z2)=(�z1,�z2)

= 0

(21)

and, in detail, the two elements can be, respectively,
expanded as

q1 = ∂q

∂z1

∣∣∣∣
(z1,z2)=(�z1,�z2)

= 0

=
∫

epred,z∗
1,z

∗
2
(xr , t; xs)

Aobs(xr , t; xs)

× ∂eobs,z∗
1+z1,z∗

2+z2(xr , t; xs)

∂z1

∣∣∣∣
(z1,z2)=(�z1,�z2)

dt (22)
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Fig. 12. First-arrival travel-time matrices of tomograms inverted by (a) WT, (b) AE inversion (1-D), (c) envelope inversion, (d) AE inversion (2-D), and
(e) FWI. (f) True first arrival matrix.

Fig. 13. Comparisons of (a) data and (b) model residuals above the depth Z = 17 m with five different methods. (a) Variations of data residuals. (b) Variations
of inverted model residuals.

and

q2 = ∂q

∂z2

∣∣∣∣
(z1,z2)=(�z1,�z2)

= 0

=
∫

epred,z∗
1,z

∗
2
(xr , t; xs)

Aobs(xr , t; xs)

× ∂eobs,z∗
1+z1,z∗

2+z2(xr , t; xs)

∂z2

∣∣∣∣
(z1,z2)=(�z1,�z2)

dt . (23)

If we differentiate (22) and (23) once more with respect to
�z1, �z2, and v(x), then they are

∂2q

∂�z2
1

d�z1 + ∂2q

∂�z1∂�z2
d�z2 + ∂2q

∂�z1∂v(x)
dv = 0 (24)

and

∂2q

∂�z2∂�z1
d�z1 + ∂2q

∂�z2
2

d�z2 + ∂2q

∂�z2∂v(x)
dv = 0. (25)
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Fig. 14. (a) Aqaba data acquisition map with the white seismic line (topographic map of Aqaba gulf). (b) Raw CSG #1 (Aqaba data CSG #1).

Fig. 15. (a) Processed CSG #1 and (b) its first arrivals.

Fig. 16. (a) Envelope of first arrival CSG #1 (b) its decoded envelope (1-D) and (c) encoded latent space of all the traces (Aqaba data).

To obtain the two gradient terms in (18), we solve (24)
and (25) by⎡

⎢⎢⎣
∂�z1

∂v(x)
∂�z2

∂v(x)

⎤
⎥⎥⎦ = −

[
q11 q12

q21 q22

]−1

⎡
⎢⎢⎣

∂2q

∂�z1∂v(x)

∂2q

∂�z2∂v(x)

⎤
⎥⎥⎦. (26)

Here, the partial derivative of q about v(x) is taken on
the predicted envelope term as the regular Fréchet derivative
in (13) and (14). Therefore, the two imaging elements are
computed by

∂2q

∂�z j∂v
=

∫
1

Aobs(xr , t; xs)

∂epred,z∗
1 ,z∗

2
(xr , t; xs)

∂v(x)

× ∂eobs,z∗
1+�z1,z∗

2+�z2(xr , t; xs)

∂�z j
dt (27)

where j = 1, 2. The terms q11 and q22 are the second-
order derivatives on �z1 and �z2, respectively. Similarly,
q12 and q21 denote two second-order mixed derivatives on
�z1 and �z2, and we assume that q12 = q21 in this study
without loss of generality.

III. NUMERICAL TESTS

The AE (or NML) method is tested for a land survey using
both synthetic data and field data. The field data are from a
seismic survey near the Gulf of Aqaba in a desert environment.

A. Synthetic Test on Sinusoid Model

The model shown in Fig. 6(a) is used to generate synthetic
data to test the effectiveness of the proposed method. The
model size is 26 m × 120 m in the vertical and horizontal
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Fig. 17. (a) Decoded envelope of first arrival CSG #1 with 2-D latent space. (b) First- and (c) second-dimensional latent-space values for all the
traces (encoding results).

directions, respectively. The data are recorded by 60 receivers
spaced at an interval of 2 m, and they are triggered by
60 sources at every receiver’s location. A grid point of spacing
of 1 m is set for both the horizontal and the vertical directions.
Based on the acoustic wave equation (5), a Ricker wavelet
with a frequency band peaked at 30 Hz is excited as the
source to conduct the forward modeling for all the CSGs, and
a typical CSG #30 is shown in Fig. 6(b). The recording time
for each CSG is 0.2 s with a sampling interval of 0.1 ms, so the
number of temporal samples is set as M = 2000 for each trace.
Four types of methods are, respectively, applied to reconstruct
the subsurface velocity models for comparisons. The first is
WT inversion; the second is the proposed skeletonized AE
inversion method in this study; the third one is the envelope
inversion method introduced by Wu and Chen [11]; and
the fourth one is the conventional FWI for a comparison.
Moreover, the skeletonized AE inversion with 2-D latent space
is also applied for comparisons. The detailed steps to carry out
our method with the previous theoretical section are given in
the following.
Step 1: The first breaks are automatically windowed out with

a rough estimate.
Step 2: The first arrivals in all the traces are extracted with a

temporal window size of 120 samples starting from
the first breaks; the later arrivals outside the time win-
dow are gradually muted by a decaying exponential
function for avoiding the frequency leakage problem.

Step 3: Envelopes of all the first arrivals are computed and
then fed into the autoencoding neural networks for
training. Here, the hyperparameters are Dim1 =
2000, Dim2 = 500, and Dim3 = 90.

Step 4: Skeletonized AE inversions are carried out based on
(3), (4), and (16)–(19) for the subsurface velocity
distributions.

The envelopes calculated in Step 3 can efficiently be used
for the envelope inversion. Here, sizes of the three encoding
weighting matrices W1, W2, and W3 are 2000 × 500, 500 ×
90, and 90 × 1(or 2), respectively. Accordingly, sizes of the
three decoding matrices W ′

1, W ′
2, and W ′

3 are 500 × 2000,
90 × 500, and 1 (or 2)×90 in a reverse order. As an example,
the envelopes of first arrivals in CSG #30 are presented
in Fig. 7(a), which are encoded and decoded in turn with
the output shown in Fig. 7(b). The learning rate is set up as
0.001, and the iteration number is set as 50. These empirical

Fig. 18. Starting model.

parameters, for this simple example, are obtained by trial
and error to ensure the recovery of all the envelope signals.
The entire latent space values are finally saved in a matrix,
as illustrated in Fig. 7(c). In the case of mapping the envelopes
into 2-D latent space, only the lowest dimension is set to
two, and other preset parameters are identical to the 1-D case.
Fig. 8(a) presents the decoded envelope of CSG #30, which
is superior to the 1-D case shown in Fig. 7(b) by referring to
the standard envelope in Fig. 7(a). Fig. 8(b) and (c) presents
the two encoded latent-space matrices for all the traces in this
data set.

With the initial gradient model presented in Fig. 9,
the abovementioned four methods and FWI are used to invert
the velocity model. For fairness in the following comparisons,
all these inversions are applied to the same first arriving CSGs.
After 50 iterations when all the data misfit functionals stop
decreasing, the inverted models are shown in Fig. 10(a)–(e),
implying the advantages of the proposed method because
Fig. 10(b) and 10(d) is closer to the true model in Fig. 6(a)
than other three tomograms. Five gradient images of the first
iteration are also presented in Fig. 11(a)–(e), which reveals that
the skeletonized autoencoding inversion (both 1-D and 2-D)
can reconstruct the essential features of the first arriving sig-
nals. For a sanity test, all the first breaks picked from the CSGs
associated with the five inverted models and the true model are,
respectively, presented in Fig. 12(a)–(f). Fig. 12(b) and (d)
again illustrates the advantages of this method over the other
three methods in this case. Note that both the WT tomogram
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Fig. 19. Tomograms inverted by (a) 50-Hz WT, (b) 50-Hz skeletonized AE inversion, (c) envelope inversion, (d) AE inversion with 2-D latent space, and
(e) FWI.

Fig. 20. Gradients inverted by (a) WT, (b) skeletonized AE inversion, (c) envelope inversion, (d) AE inversion with 2-D latent space, and (e) FWI in the
first iteration.

[see Fig. 10(a)] and its corresponding first arrival matrix [see
Fig. 12(a)] show that this reconstructed interface oscillates
stronger than the true interface in Fig. 6(a) although the
general basic structure can be rebuilt.

For quantitative comparisons, Fig. 13(a) and (b) presents
the data misfit and the model misfit curves with all the five
algorithms for the first 50 iterations. As expected, if the num-
ber of local minima decreases with less amount of the input
data, inversions can achieve better convergence rates because
the observed data can be more easily approximated. To avoid
the overfitting problems, all the iterations are terminated if
their objective functions cease to decrease because they are
all defined in the data domain. In Fig. 13(a), both WT and

the AE inversions (1-D and 2-D) converge faster than the
envelope inversion and FWI, and the latter two inversions
cease to update the models after several iterations possibly
due to the local minima problems. The AE inversions perform
better than the envelope inversion or FWI in which the Fréchet
derivatives in (15) and (18) are weighted by the terms �z and
(�z1,�z2), measuring the distance between traces in the latent
space, but not in the raw data space.

Another criterion is the model misfit function that can
directly measure the quality of inverted tomograms although
manual visual recognitions are often indispensable as an auxil-
iary technique for quality control. In Fig. 13(b), the tomogram
computed by the AE inversion (1-D) is the closest to the
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Fig. 21. First arrivals of CSGs #1 with the tomograms inverted by (a) WT, (b) AE inversion (1-D), (c) envelope inversion, (d) AE inversion with 2-D latent
space, and (e) FWI.

Fig. 22. First arrival residuals of CSGs #1 associated with the raw data in Fig. 15(b) and the inverted data in Fig. 21(a)–(e). (a) Data residual with WT.
(b) Data residual with AE Inv. (1-D). (c) Data residual with envelope Inv. (d) Data residual with AE Inv. (2-D). (e) Data residual with FWI.

true model in terms of the L2 model residuals above the
depth 17 m. We calculate the model misfits above this depth
because the refractional signals are often used for near-surface
imaging. Since this AE inversion is supposed to include both
the phase and the amplitude information through encoding,
it performs better than WT even though its data misfit curve,
i.e., the 2-D AE inversion, is a little inferior. Similar to FWI,
the envelope inversion is still susceptible to the cycle-skipping
problem although its input signal spectra are wide with some
ultralow frequencies, which is also the reason why its inverted
model is smoother than others. It is also worthy of attention
that increasing the dimensions of the latent space can be
beneficial for both the data compressing and the inversion.
In the data domain, a higher dimensional latent space largely
improves the quality of the decoded signals by looking over
Figs. 7(a)–(b) and 8(a) because more degrees of freedom are

TABLE II

STATISTICAL FEATURES OF THE ENCODED LATENT

SPACE VALUES: SYNTHETIC DATA

assigned to capture the envelope features (see Table II). As for
the inverted tomograms [see Fig. 10(b) and (d)] by the two AE
inversions, the interface between the two layers in Fig. 10(d)
is a little, if not much, more accurate in-depth than that
in Fig. 10(b), in spite that the interface shape in Fig. 10(b)
shows stronger oscillations. Therefore, both the AE inversions
(1-D and 2-D) can produce more robust and convincible results
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Fig. 23. First-arrival travel-time matrices with (a) WT, (b) AE inversion (1-D), (c) envelope inversion, (d) AE inversion (2-D), (e) FWI, and (f) picking.
(a) First breaks with WT inversion. (b) First breaks with AE inversion (1-D). (c) First breaks with envelope inversion. (d) First breaks with AE inversion (2-D).
(e) First breaks with FWI. (f) Picked first breaks.

by referring to Fig. 13(b). In practice, it is recommended that
the AE inversions with both 1-D and 2-D latent spaces can be
simultaneously conducted for promising results.

B. Field Test on Aqaba Data

A field data set collected near Aqaba, Jordan, to the north
of the King Abdullah University of Science and Technology
(KAUST), is shown in Fig. 14(a) [31]. The white line segment
represents the 300-m-long survey line, where the ground
elevation gradually increases uphill from west to east (see
an elevation color bar shown on the right). The data are
recorded by 120 receivers spaced at an interval of 2.5 m, and
they are triggered by 120 sources at every receiver’s location.
A vibrating source with a wide-frequency band is excited at
every source location to conduct the experiment for all the
CSGs. A typical CSG #1 is shown in Fig. 14(b). The recording
time for every CSG is 0.4 s with a sampling interval of 1 ms,
and the data in the last 0.1 s are muted as all the refractions
arrive before 0.3 s. For the convenience of computation,
the raw CSGs are then downsampled by eight times by linear
interpolation with the new temporal interval of 0.125 ms.
Therefore, we have M = 8 × 0.3 s ÷ 1 ms = 2400, which
is also the value of Dim1. For the horizontal and the vertical
directions, we set the spatial grid size dx = dz = 0.625 m.

Before the inversion, the raw CSGs are shifted and then
simply processed by a median filter. The goal of the shifting
operation is for the convenience of inversion because some
first arrivals of the raw zero-offset traces are obscure, and
this may cause frequency leaking during data processing.
It can also make it difficult to match the very near-offset
traces. Therefore, we shift all the CSGs forward in time
by 20 ms. All the first arrivals are windowed and extracted
with their later arrivals muted by a tapered decaying window.
Fig. 15(a) and (b) shows the processed CSG #1 and its muted
first arrivals to be inverted. Fig. 16(a) and 16(b), respectively,

Fig. 24. Comparisons of data residuals with different methods.

shows the envelope presented in Fig. 15(a) and its decoded
envelope by an autoencoding network.

In this land data case, we still set up two three-layered
networks as the encoding and the decoding parts for training
the input envelopes. Here, we set Dim1 = 2400, Dim2 = 800,
and Dim3 = 150. Therefore, the dimensions of the three
encoding weighting matrices W1, W2, and W3 are 2400 ×
800, 800 × 150, and 150 × 1, respectively, in the forward
direction. Accordingly, sizes of the three decoding matrices
W ′

1, W ′
2, and W ′

3 are 800 × 2400, 150 × 800, and 1 × 150.
All the encoded values of the first arriving envelopes (see
Fig. 16(a) as an example), representing the scalars in the
latent space, are presented in Fig. 16(c). Here, the learning
rate is still set up as 0.001, and the iteration number is set
as 80. Similarly, the dimension of the latent space can be
set to two by keeping other preset parameters unchanged.
Fig. 17(a) presents the decoded envelope of CSG #1, which is
much better than that shown in Fig. 16(b) compared with the
standard envelope in Fig. 16(a). Fig. 17(b) and (c) presents
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Fig. 25. (a) 1-D latent-space values for the AE inverted data and (b) first- and (c) second-dimensional latent-space values for the AE inverted data with 2-D
latent space.

TABLE III

STATISTICAL FEATURES OF THE ENCODED LATENT

SPACE VALUES: AQABA DATA

the two encoded latent-space matrices for this field data set.
Table III presents the statistical features of the encoded scalars
and vectors of all the refractions in the Aqaba data set. Similar
to the autoencoders in the synthetic case, both the absolute
mean values and the variances’ decay with the increment
of latent space dimensions. It implies that there can be an
abrupt or irregular variation of the 1-D latent scalar caused
by perturbing the input waveforms, whereas such variation
becomes relatively mild and robust in the 2-D case.

Five algorithms, i.e., the WT, the proposed AE inver-
sions with both 1-D and 2-D latent spaces, the envelope
inversion, and FWI are, respectively, applied to rebuild the
subsurface structures for comparisons with the initial model
presented in Fig. 18. After 20 iterations, the inverted mod-
els are shown in Fig. 19(a)–(e), and the first four inverted
tomograms, especially the first and the fourth tomograms
in Fig. 19(a) and (d), imply the possible location of Aqaba
fault location at X = 125 m and Z = 20 m, as indicated by
the red curves in Fig. 14(a). The result is also consistent with
the travel-time tomogram by Hanafy et al. [31]. Five gradient
images of the first iteration are also presented in Fig. 20(a)–(e),
which suggests that the skeletonized autoencoding inversion
can reconstruct the essential geological features near the
fault.

Two sanity tests are also conducted to validate the AE
inverted results. First, five groups of first arrivals extracted
from the forward modeled synthetic data based on the inverted
tomograms are presented in Fig. 21(a)–(e). Their data differ-
ences from the raw CSG #1 [see Fig. 15(b)] are presented
in Fig. 22(a)–(e), and all the subfigures are normalized trace by
trace. Second, the first-arrival travel-time matrices associated
with the five inverted tomograms and the true model are
presented in Fig. 23(a)–(f). As for the very near-offset first
breaks, Fig. 23(a) is closer to the true first-arrival travel-time
matrix presented in Fig. 23(f) although the quality of Fig. 23(d)
is not inferior either. It means that WT is able to reconstruct

the shallow parts of the subsurface structures in a more highly
resolved sense. However, at a larger scale, Fig. 23(d) and (a)
are more similar to Fig. 23(f) than Fig. 23(b), (c), and (e).
Moreover, Fig. 23(d) presents a better prediction to the first
arriving CSG #1 than the travel times computed from the
other four tomograms. All the data misfit curves with the five
algorithms are presented in Fig. 24 as another quantitative
reference. Here, the FWI misfit curve suggests that it is almost
not able to update the starting model possible because of
nonacoustic signals or unpredicted noise in the land data.
Nevertheless, the envelope inversion performs better than FWI
because low-frequency waveforms are particularly inverted,
and they are less sensitive to the noise. The AE inversion with
1-D latent space cannot successfully produce the calculated
data to be encoded for approximating the “observed” data
in Fig. 16(c), and it may stop updating the velocity models
after only a few iterations. The possible reason is that 1-D
latent space is not adequate to express the first arrivals, espe-
cially in real applications with complex subsurface structures.
Hence, it can cause nearly discontinuous encoding results,
as shown in Fig. 16(c), especially when there are some jumps
in neighbor traces. However, the situation becomes better in
the 2-D case, whose tomogram is similar to that inverted
by WT.

Unlike WT, which focuses on inverting the first breaks,
or the envelope inversion, which recovers the envelope with
a low-frequency band, the proposed AE inversion pays more
attention to the skeletonized inner features of the first arriving
signals. These vectors in the latent space are not referred to
as specific physical quantities, but rather as certain numeri-
cal weights to modulate the quasi-envelope inversion shown
in (15) and (26). As a comparison, the relationship of this
“quasi-envelope” inversion and the envelope inversion is anal-
ogous to that between WT and the first arrival waveform
inversion. The former methods invert the data based on
its features, while the latter ones conduct inversions using
waveforms. The theoretical similarities between the proposed
AE inversion and WT are that both the implicit function
theory and the connective function techniques are used.
Fig. 25(a)–(c) presents the encoding results of two predicted
data sets until the convergence of inversion as comparisons
to Figs. 16(c) and 17(b) and (c). It once again verifies that
an increase of the latent-space dimension can make a robust
promise of the inversion quality in the data domain.
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Fig. 26. Updated autoencoder with Resnet structure embedded in the encoding subnetwork.

IV. CONCLUSION AND DISCUSSION

We extended the wave-equation inversion of skeletonized
data using a more state-of-the-art technique that minimizes the
misfit function measuring the refraction differences. Applying
an autoencoder to the windowed seismic data enables us to
skeletonize them in the autoencoder’s latent space, where the
AE largely reduces the dimensionality of the input data to
mitigate convergence problems with local minima. This com-
pression allows for the computation of envelope derivatives
with respect to the perturbation in the encoded latent space.
The essential assumption meant by (7) and (20) is that the
velocity perturbation is implicitly connected to the perturba-
tion of the encoded values. Numerical results with both the
synthetic and the field data sets validate the effectiveness
of this skeletonized inversion with an autoencoder. It can
accurately estimate the background velocity model with low-
to-intermediate wavenumbers.

We also compared the AE inverted tomograms to those
computed by three relevant techniques, WT, the envelope
inversion, and FWI. FWI, with its misfit function highly
nonlinear with respect to velocity perturbations, can be easily
trapped into local minima especially when applying to real
data. To alleviate this problem, WT and the envelope inversion
were proposed in turn to effectively invert for more reliable
velocity models. WT is usually robust and can produce an
accurate background velocity model for inversion. However,
it only uses the first breaks, which is usually time-consuming
by manual picking or less reliable. Moreover, in the theory
of WT, it is assumed that the first arrivals of the calculated
and the observed data are identical in terms of their wavelets,
and their only differences lie in the first breaks. Therefore,
waveforms are not utilized in WT as in the skeletonized AE
inversion, which unearths the information in the compressed
first (or early) arrivals. However, it is not necessary to conduct
careful and precise picking for AE inversion because the
envelope encoding is automatically computed. The envelope
inversion may bring some ultralow frequency information in
the inversion because of the properties of the Hilbert trans-
form. However, the encoder and decoder networks together try
to extract the crucial components hidden in the first arriving
waveforms. The skeletonization operation sheds light on the
misfit functional that tends to reduce the differences in the
observed and the simulated skeletal data but not the entire
envelopes, hence making its convergence easier.

This article has illustrated that any type of seismological
data sets can be represented in fewer dimensions through

the autoencoder, thus transferring complexity into simplicity.
In addition, if the encoded late-space variables are continuous
with respect to the perturbation of the recorded data, then
autoencoders may show great promise for a wide range
of geophysical applications although we only conduct pure
seismic inversions in this study. For regular encoding and
decoding processes, the training actually behaves robust, and
the gradients do not explode or vanish. To guarantee data
consistency, the Resnet network is generally adopted with
typical embedded skip-connections structures. Fig. 26 presents
an updated autoencoder with Resnet in the encoding process,
and it is also tested on the synthetic data set in the numerical
section. Comparisons of training parameters using the regular
encoder and the Resnet encoder are presented in Fig. 27. Both
encoders show good convergence rates [see Fig. 27(a)], and
the regular one can continuously update the weights of the
first layer (Layer 1) with reasonable variances [see Fig. 27(b)],
which means that the regular encoder without skip-connections
will not stop optimizing the layers even far from the output
as the iteration proceeds. In practice, it can be explained by
the fact that the encoding network is not deep with only three
layers, which is adequate for compressing regular refractions.
Therefore, we have selected the empirical regular three-layered
encoder and decoder as tools in this study, and this strategy is
also for the purpose of saving computational time. Moreover,
a higher dimensional latent space may bring more degrees
of freedom to the data decoding and higher quality to the
inversion. Therefore, depending on the complexity and the
noise of the input data, it is necessary to choose a proper
latent-space dimension. To the best of our knowledge, the pros
and cons to weigh latent space variables differently in the
misfit function are still unknown because they are both trained
by such a straightforward encoder in this study but not by
attention networks that are able to assign various meanings
to the output terms. To optimize their weights in the misfit
function, specifying the physical meanings of the encoded
values, such as z1 and z2, is a necessary step for our future
work. To a certain degree, these two variables denote some
principle values of the first arriving wavelets extracted by
the trained autoencoder. At this stage, it is uncertain if the
two parameters are related to the amplitude and the phase
information.

It is also worthwhile to point out that other machine
learning methods, such as principle component analysis or
convolutional neural networks, can be used to compress the
data so that the implicit function theorem can be employed to
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Fig. 27. Comparisons of the regular encoder and the Resnet encoder for their (a) convergence rates and (b) variances of their updated weights in the first
layer for every training epoch.

invert the lower dimensional data. As a matter of fact, we have
tested the CNN autoencoding (CAE) algorithm on the syn-
thetic and the field data in this study, but the fully connected-
layer-based autoencoder is able to perform as well as, if not
better than CAE. Both algorithms can bring the loss function
down to 3%, but CAE spends much more time in training
and inversion (perhaps ten times more). We, thus, used the
latter one for data processing and inversion. If complex later
arriving waveforms are considered for inversion, then CAE
can be a powerful tool for picking up local structures of the
data. Another technique deserving attention is the automatic
differentiation technique for implementing FWI [32], and it
has the potential to replace the implicit function theorem.
Automatic differentiation is a natural combination of neural
network and FWI. In theory, data residuals in the latent space
can be directly used to calculate the derivative of the misfit
functional with respect to the velocity perturbations based on
this technique. It is also one of our ongoing research topics.
There are two significant topics to be explored in the future.
The first one is how to reconstruct more complicated and
noisy waveforms using autoencoders, which should consist of
more layers and a multidimensional latent space. The second
question to answer is how to produce a reasonable physical/
mathematical interpretation of the encoded values in the latent
space.
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