
1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 1

High Performance Multivariate Geospatial
Statistics on Manycore Systems
Mary Lai O. Salvaña, Sameh Abdulah, Huang Huang, Hatem Ltaief,

Ying Sun, Marc G. Genton, and David E. Keyes

Abstract—Modeling and inferring spatial relationships and predicting missing values of environmental data are some of the main tasks
of geospatial statisticians. These routine tasks are accomplished using multivariate geospatial models and the cokriging technique.
The latter requires the evaluation of the expensive Gaussian log-likelihood function, which has impeded the adoption of multivariate
geospatial models for large multivariate spatial datasets. However, this large-scale cokriging challenge provides a fertile ground for
supercomputing implementations for the geospatial statistics community as it is paramount to scale computational capability to match
the growth in environmental data coming from the widespread use of different data collection technologies. In this paper, we develop
and deploy large-scale multivariate spatial modeling and inference on parallel hardware architectures. To tackle the increasing
complexity in matrix operations and the massive concurrency in parallel systems, we leverage low-rank matrix approximation
techniques with task-based programming models and schedule the asynchronous computational tasks using a dynamic runtime
system. The proposed framework provides both the dense and the approximated computations of the Gaussian log-likelihood function.
It demonstrates accuracy robustness and performance scalability on a variety of computer systems. Using both synthetic and real
datasets, the low-rank matrix approximation shows better performance compared to exact computation, while preserving the
application requirements in both parameter estimation and prediction accuracy. We also propose a novel algorithm to assess the
prediction accuracy after the online parameter estimation. The algorithm quantifies prediction performance and provides a benchmark
for measuring the efficiency and accuracy of several approximation techniques in multivariate spatial modeling.

Index Terms—Gaussian log-likelihood, geospatial statistics, high-performance computing, large multivariate spatial data, low-rank
approximation, multivariate modeling/prediction.

F

1 INTRODUCTION

THE convergence of high-performance computing (HPC)
and big data brings great promise in accelerating and

improving large-scale applications [1], [2] on climate and
weather modeling [3], astronomy [4], transportation [5],
and bioinformatics [6]. Climate and weather modeling, in
particular, is one of the first applications of HPC for big
data [7]. The need to improve climate and weather models
has pushed for advances in environmental data collection
technologies such as spaceborne, airborne, and ground sen-
sors [8]. The volume of data coming from these sources is
huge and increasing. For instance, NASA’s Earth Observing
System Data and Information System (EOSDIS) is expected
to archive more than 37 petabytes of data in 2020 [9]. By
2022, the yearly increase is projected at 47.7 petabytes.

Environmental data, such as climate and weather vari-
ables, are often recorded from different spatial locations,
and thus indexed by s 2 Rd; d � 1, where s is the location
of the measurement. Usually, there are multiple variables
measured at each location, such as temperature, humidity,
wind speed, and atmospheric pressure. These colocated
variables may or may not depend on each other and on
the variables at other locations.

� The authors are with the Extreme Computing Research Center, Computer,
Electrical, and Mathematical Sciences and Engineering Division
(CEMSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia. E-mail: fMarylai.Salvana,
Sameh.Abdulah, Huang.Huang, Hatem.Ltaief, Ying.Sun, Marc.Genton,
David.Keyesg@kaust.edu.sa.

Exposing spatial relationships among spatially refer-
enced data can be accomplished using geographical infor-
mation systems (GIS) [10]. Through GIS, one can produce
scientific visualizations such as maps of raw data and spa-
tial patterns, thereby facilitating exploratory data analysis,
statistical analysis, and hypothesis testing. The big data era
brought new challenges to GIS and its ability to process
and analyze huge streams and volumes of geospatial data.
However, the influx of big geospatial data were met with
brand new capabilities of GIS made possible by HPC [11].
HPC boosts GIS operations and computations in the face
of large amounts of geospatial data by utilizing modern
hardware architectures such as computer clusters, GPUs,
and cloud computing infrastructures [12], [13], [14], [15].
For instance, in [16], GPU accelerators have been used to
accelerate the visualization of large-scale geospatial data.
In [13], distributed GPU systems through Message Passing
Interface (MPI) over Network of Workstations (NoW) and
Compute Unified Device Architecture (CUDA) have been
used to perform real-time map matching and slope com-
putations of a large global positioning system (GPS) data.
Another example has been shown in [17] where a graph-
based methodology on a cluster computing paradigm was
employed in land use/land cover change (LUCC) analysis;
see [18] for other HPC-based GIS implementations review.

Aside from processing a huge amount of data har-
vested from different sources such as satellite images, model
simulations, sensors, and the Internet of Things, a major
concern when dealing with environmental datasets is miss-
ing data on one or a few variables. For instance, when

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 2

using environmental variables as inputs to climate and
weather models, the gaps in areas with no measurements
caused by poor atmospheric conditions or defective sen-
sors, to name a few, need to be filled [19], [20]. Several
missing data interpolation techniques exist in the literature
including numerical models, machine learning and deep
learning models, and geospatial statistics models [21], [22],
[23], [24], [25]. Numerical models solve a complex set of
partial differential equations and generate large volumes
of predictions on the quantities of interest, such as the
concentrations of pollutants in the atmosphere [26], [27].
The strength in using numerical models in prediction lies in
their physically consistent representations of the phenom-
ena or systems being analyzed. However, numerical models
cannot accurately predict on very fine spatial resolutions
[28]. Machine learning and deep learning models capture
the spatial relationships among environmental variables
through feature representation learning using neural net-
works [29]. Image inpainting with transfer learning has
been used to impute missing global surface temperature
measurements in HadCRUT4 [30]. Generative adversarial
network (GAN) was used in [31] to reconstruct the missing
sea surface temperature readings in satellite images due
to cloud disturbances. Several other machine learning and
deep learning solutions to the missing data problem are
listed in [28]. Although machine learning and deep learning
have shown high prediction capabilities, they are devoid of
physical knowledge of the process being modeled and pre-
dicted [25]. Furthermore, they suffer the drawback of being
unable to describe explicitly the spatial relationship among
environmental variables [32], i.e., absence of interpretability.

In this work, we adopt the multivariate geospatial
statistical approach due to its ability to characterize the
dependence structure of the underlying spatial data. The
geospatial statistical models are also very easy to inter-
pret and yield very high prediction accuracy. Multivariate
geospatial statistics can interpolate environmental variables
at unsampled locations by modeling the multivariate spa-
tial dependencies using a multivariate covariance function,
whose parameters are calibrated with the aid of a log-
likelihood function. While every variable of interest can be
modeled and predicted separately, it has been shown that
more accurate predictions can be produced when modeling
dependent variables jointly [33], [34].

Modeling the variables as realizations from a multivari-
ate Gaussian random field is the cornerstone of multivari-
ate geospatial statistics. Multivariate random fields are the
equivalent of multivariate random variables, where a vector
of variables is measured at each location [35]. Mathemati-
cally, this means that at location s 2 Rd; d � 1, each vari-
able is considered as one component of the p-dimensional
vector Z(s), i.e., Z(s) = fZ1(s); : : : ; Zp(s)g>, where > is
the transpose operator, p is the number of variables, and
Zi(s) 2 R indicates the value of the ith variable at location
s, i = 1; : : : ; p. When Z(s) is Gaussian, it is completely
characterized by its mean vector and multivariate covari-
ance function, which is more commonly known as cross-
covariance function in geospatial statistics and multivariate
kernel in computer science.

Cokriging is the prediction of multiple variables using
an optimal predictor [33], [34]. To perform cokriging on

a multivariate Gaussian random field, one only needs to
specify a mean vector and a cross-covariance function. In
this work, we assume that the multivariate Gaussian ran-
dom field has mean zero and focus our attention on the
cross-covariance function, which introduces considerable
computational challenges. This zero-mean assumption is
reasonable since regression can be used to remove the mean.
Furthermore, we restrict our attention to a specific cross-
covariance function that is stationary and isotropic. These
assumptions on the cross-covariance function are building
blocks to more sophisticated ones including nonstationary
and anisotropic cross-covariance functions, which can be
readily accommodated by our proposed framework. They
do not present significant limitations on the large-scale
multivariate geospatial analysis aimed at this work.

In practice, a class of cross-covariance functions is first
selected and its unknown parameters are estimated from
the data [33], [36], [37]. Estimation relies on the maximum
likelihood estimation (MLE) approach [38], [39]. Suppose
� 2 Rq collects all the q true unknown parameters of the
cross-covariance function. The MLE of �, denoted by b� 2
Rq , is the q-dimensional vector which maximizes the log-
likelihood function

l(�) = �np
2

log(2�)� 1

2
log j�(�)j � 1

2
Z>�(�)�1Z; (1)

with respect to all q parameters in �. Here Z 2 Rpn
collects all the p-dimensional vectors Z(s) at n locations,
s1; s2; : : : ; sn, i.e., Z =

�
Z(s1)>;Z(s2)>; : : : ;Z(sn)>

	>
.

�(�) is the pn�pn cross-covariance matrix for Z and j�(�)j
denotes the determinant of �(�). The entries of �(�) are
calculated from the cross-covariance function that is known
up to �. The procedure in constructing this cross-covariance
matrix is discussed in more detail in Section 5.2.

The MLE involves the computation of the log-likelihood
function in Equation (1) for each iteration in the opti-
mization. In large-scale multivariate problems with irreg-
ularly spaced locations, the log-likelihood requires O(p2n2)
memory and O(p3n3) operations per iteration, due to the
Cholesky decomposition of �(�). The prohibitive compu-
tational cost and corresponding storage of computing the
log-likelihood function can be reduced by relying on low-
rank approximation techniques that exploit the low-rank
representations of the cross-covariance matrix, for instance,
the Tile Low-Rank (TLR) approximation [40], [41], [42]. TLR
is the preferred approximation approach in case of parallel
execution and it involves dividing the matrix into a set of
tiles, then applying low-rank approximation separately to
each tile.

The quality of the predictions can be assessed using the
mean square prediction error (MSPE) [42] and the mean
square relative prediction error (MSRP) [43]. However, it
has been shown that these commonly used criteria cannot
adequately assess the prediction efficiency when different
approximation methods are involved and are up for com-
parisons [44]. As an alternative, under univariate modeling,
the authors in [44] proposed two criteria, namely, the mean
loss of efficiency (MLOE) and the mean misspecification of
the mean square error (MMOM), to more appropriately as-
sess the loss of prediction efficiency when an approximated
version of the model was used instead of the exact one. In

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 3

this work, we first present a parallel implementation based
on our software stack of the univariate MLOE/MMOM
criteria, and then we propose a modified algorithm that
extends these criteria to assess the multivariate approxima-
tions modeling on large-scale multivariate spatial datasets.

The remainder of the paper is as follows. Section 2
summarizes the contribution of this work. Section 3 recalls
some of the established approaches in large-scale multivari-
ate geospatial modeling and inference. Section 4 contains
a brief discussion on multivariate geospatial statistics, an
introduction to the log-likelihood estimation problem, and a
review to some approximation techniques which ameliorate
the complexities encountered in MLE operations. Section 5
establishes the research contributions of this paper. Section 6
provides detailed illustrations of our proposed modeling
framework on synthetic and real datasets. Section 7 delivers
an overall summary and conclusion.

2 CONTRIBUTIONS

The six-fold contributions of the paper are as follows:

� We present multivariate geospatial modeling and in-
ference in large-scale systems on both exact and TLR-
based approximation computations with reduced
complexity on the log-likelihood for both estimation
and spatial prediction.

� We propose a novel multivariate assessment algo-
rithm based on existing univariate criteria to evaluate
our TLR-based parameter estimation accuracy.

� We implement a parallel version of the univariate
and the new multivariate criteria to assess the pre-
diction efficiency on synthetic and real datasets.

� We port the proposed implementation on shared-
memory, GPUs, and distributed-memory systems us-
ing a modular software stack.

� We evaluate the performance of both the parallel
exact and TLR-based MLE computations, as well as
the proposed multivariate assessment criteria, us-
ing different parallel platforms such as Intel Xeon
Skylake/Cascade Lake, AMD EPYC (Rome), ARM
ThunderX2, NVIDIA V100 GPU, and a distributed-
memory Cray XC40 system.

� We conduct a set of experiments designed to assess
the accuracy of our implementation in terms of in-
ference and prediction on both synthetic and real
datasets.

3 RELATED WORK

Scalable large-scale geospatial statistical modeling has been
attempted mostly in the univariate (p = 1) setting. The
authors in [45], [46], [47], [48], [49] worked on paralleliz-
ing the predictions routines using MPI, OpenMP, Parallel
Virtual Machines (PVMs) and/or Graphics Processing Units
(GPUs). However, their proposals did not include paral-
lelization strategies for computing the inverse of the co-
variance matrix, which consumes approximately 70% of the
execution time. Nevertheless, they expect a better speedup
when the number of locations to be predicted is large.

In parallel kriging literature (p = 1), parallel imple-
mentations of the Cholesky factorization of the kriging

process depend on blocking algorithms and run on a single
hardware architecture. For instance, in [50], a parallel im-
plementation of kriging was developed completely on GPU
architectures. They proposed an out-of-core GPU implemen-
tation of the kriging process using a block-based pivoted
Cholesky algorithm which is considered more suitable for
GPU compared to CPU. Another example is the parallel
framework in [51] which provides end-to-end geospatial
analysis from maximum likelihood estimation to kriging
using ScaLAPACK to perform distributed-memory imple-
mentation on CPUs. However, their framework does not
include any GPU implementation. Other strategies focused
on replacing the computation of the full covariance matrix
with low-rank approximation methods; see Section 4.4 for a
review.

When p > 1, the computations become much more
challenging. In light of this, we introduce a framework
to deal with large-scale multivariate geospatial statistical
modeling that provides both the dense and the TLR-based
approximate versions of MLE operations on very large
problem sizes. In this work, we depend on the unified
software in [42] which is powered by dense linear algebra
task-based algorithms and dynamic runtime systems and
especially designed for geospatial statistical modeling. The
software in [42] also has an equivalent R implementation
described in [52]. The framework we propose depends on
the asynchronous task-based dense linear algebra library
CHAMELEON [53] and the Hierarchical Computations linear
algebra library HICMA [54] for support in dense and low-
rank matrix computations, respectively. Both libraries rely
on the dynamic runtime system STARPU [55] to exploit the
computing power on shared and distributed-memory sys-
tems based on multi-core, many-core, and hybrid hardware
architectures.

4 OVERVIEW OF THE PROBLEM

This section describes multivariate spatial modeling and
inference based on a given cross-covariance function, with
a brief background on low-rank approximation techniques
that have been used in the literature to reduce the complex-
ity of log-likelihood function computations.

4.1 Cross-Covariance Function

Quantifying spatial dependence of multiple variables is one
of the main foci of multivariate geospatial statistical mod-
eling. The key tool for this purpose is the cross-covariance
function. It is a matrix-valued function of dimension p � p,
parameterized by � 2 Rq , that describes the degree of
dependence between values at two locations s1 and s2,
and is of the form C(khk; �) = fCij(khk; �)gpi;j=1 un-
der the isotropy assumption, where h = s1 � s2 2 Rd,
k � k denotes the Euclidean norm, and Cij(khk; �) =
cov fZi(s1); Zj(s2)g : When i = j, Cii(khk; �) is called the
marginal covariance function and it measures the spatial
dependence between the i-th variable at s1 and at s2. When
i 6= j,Cij(khk; �) is called the cross-covariance function and
it measures the spatial dependence between the i-th variable
at s1 and the j-th variable at s2, for i; j = 1; : : : ; p. The
choice of cross-covariance function Cij(khk; �) is data and

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 4

application-driven. However, Cij(khk; �) needs to ensure
that the �(�) it builds is a positive definite matrix for any
n 2 N and any finite set of points s1; : : : ; sn.

4.2 Matérn Cross-Covariance Function

The Gaussian geospatial statistical modeling landscape is
replete with cross-covariance function models. A compre-
hensive review on the available models can be found in [33].
The parsimonious multivariate Matérn is a popular cross-
covariance function [56], [57] and has the form

Cij(khk; �) =
�ij�ii�jj

2�ij�1� (�ij)

�khk
a

��ij

K�ij

�khk
a

�
; (2)

for i; j = 1; : : : ; p, where K�(�) is the modified Bessel
function of the second kind of order � and �(�) is the
gamma function. Here � includes, for i = j, the marginal
variance (�2

ii > 0), smoothness (�ii > 0), and spatial range
(a > 0) parameters, and for i 6= j, the colocated correlation
(�ij) and cross smoothness (�ij > 0) parameters, such that
�ij = 1

2 (�ii + �jj) and

�ij = �ij
�(�ii + d

2 )1=2

�(�ii)1=2

�(�jj + d
2 )1=2

�(�jj)1=2

�
�

1
2 (�ii + �jj)

	1=2

�
�

1
2 (�ii + �jj) + d

2

	 ;
for any �2

ii; a; �ii > 0, d � 1. Here (�ij)
p
i;j=1 is a symmetric

and positive definite correlation matrix.
The parameter �ij describes the dependence or corre-

lation between the i-th and j-th components situated at
the same location, through the latent parameter �ij . When
�ij = 0, Zi(s) and Zj(s) are independent. Otherwise, when
�ij > 0 (�ij < 0), the two are positively (negatively)
dependent. Sample realizations from the parsimonious bi-
variate Matérn model above are shown in Fig. 12 where
� = (�2

11; �
2
22; a; �11; �22; �)> = (1; 1; 0:2; 0:5; 1; 0:5)>.

4.3 Multivariate Prediction

The cross-covariance matrix �(�) is crucial in obtaining pre-
dictions of unknown variables at a prediction location and
measuring the uncertainty of these predictions. A prediction
location may have all or some variables that are missing.
The first case happens when there are locations with sensors
that collect measurements for atmospheric variables like
temperature, precipitation, and wind speed, for example,
and one might be interested in predicting the values of
these variables at locations with no sensors. The second case
occurs when measurements of one variable are difficult or
expensive to obtain while measurements of another vari-
able, correlated with the first one, are easy to collect. In this
scenario, there will be more locations with data collection in-
struments for the cheaper variable, while observations will
be sparse for the expensive one. The first case is more preva-
lent in environmental applications wherein sensors mea-
suring different variables simultaneously were deployed at
predetermined sites. Hence, in this work, we assume that
all prediction locations are missing the measurements for
all p variables. Multivariate geospatial prediction proceeds
as follows. Suppose s0 2 Rd is a prediction location with an
unknown vector of p variables Z(s0). Under the squared-
error loss criterion, the best linear unbiased predictor of

Z(s0), given Z =
�
Z(s1)>; : : : ;Z(sn)>

	>
; also called the

cokriging predictor, is

bZ(s0) = c>0 �(�)�1Z: (3)

Here c0 is the pn � p matrix formed by taking the cross-
covariance between Z(s0) and Z(sr), at all sampled loca-
tions sr , r = 1; : : : ; n, i.e.,

c0 = fC(s0 � s1; �); : : : ;C(s0 � sn; �)g> : (4)

4.4 Low-Rank Approximation

Gaussian geospatial statistical modeling relies heavily on
the operations done on �(�). In the early stages of mod-
eling, �(�) has to be formed by evaluating the cross-
covariance function at n locations, for all p variables. Param-
eters then have to be estimated, with the cross-covariance
function evaluated every time new sets of parameters are as-
sumed. Further, the Gaussian log-likelihood in Equation (1)
requires the inverse and the determinant of �(�). Prediction
also involves the inverse of �(�).

Several techniques to bypass these computing obstacles
by exploiting data sparsity have been proposed. Low-rank
approximations have been widely used for data modeling.
Several low-rank representations of the original Gaussian
processes had been proposed during recent years, including
predictive process [58], where a select set of knots is used to
approximate the original process and a low-rank model is
obtained. Later, the modeling approaches were extended to
multi-resolution approximation [59] to capture spatial struc-
tures from different scales. A low-rank approximation can
also be applied to Vecchia’s representation for the composite
likelihood [60], resulting in reduced computational burden
in obtaining the composite likelihood. Moreover, the low-
rank approximation can also be applied to cross-covariance
matrices with limited loss of information. Another possi-
bility to facilitate computations for exascale modeling is to
reduce the complexity of �(�) directly. Covariance taper-
ing [61], for example, forces �(�) to be sparse by intro-
ducing a compact support. This technique is also known
as the Diagonal Super Tile (DST) wherein the entries of
the tiles that are very far from the diagonal are annihilated
or reduced to zero [3]. Bayesian hierarchical models have
also been championed in large-scale geospatial statistical
analyses [62], [63].

4.5 Univariate MLOE/MMOM

A common metric used to assess the quality of the
predictions is the MSPE and is computed as MSPE =

1
npred

Pnpred

l=1 kbZ(s0;l) � Z(s0;l)k2; where s0;1; s0;2; : : : ; s0;npred

are the npred prediction locations. When the predictions are
obtained through an approximated cross-covariance matrix,
e.g., the TLR version of the exact covariance matrix, an
appropriate metric should be used. The authors in [44]
suggested the use of the MLOE and MMOM. However, their
formulations are only available for univariate predictions
(p = 1). The formulas and the algorithm for the univariate
MLOE/MMOM can be found in [44]. In Section 5.4, we
extend these metrics and the algorithm to multivariate.

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 5

Fig. 1: One Shot of the Block Cholesky Factorization Algo-
rithm.

5 PROPOSED FRAMEWORK

In this section, we explain in detail our software dependen-
cies, proposed multivariate modeling and inference imple-
mentation, and multivariate MLOE/MMOM criteria which
are used to assess the accuracy of the multivariate modeling.

5.1 Parallel Software Architecture
Our proposed framework internally relies on a list
of software dependencies including CHAMELEON [53],
STARPU [55], HICMA [54], STARS-H [64], and NLOPT [65],
as demonstrated in Fig. 2. CHAMELEON is a tile-based
high-performance numerical library based on task-parallel
programming models which offer a more structured way
of expressing parallelism using three backend runtime sys-
tems, namely, QUARK [66], PARSEC [67], and STARPU.

In the literature, parallel linear algebra operations were
performed in parallel systems using block-column algo-
rithms. These algorithms disband the given matrix, repre-
sented in column-major format, into a successive panel and
update the computational phases. Assuming that Cholesky
factorization is performed, the factorization is applied to
each panel, and the matrix transformations are blocked and
applied together at one time during the update phase; see
Fig. 1. LAPACK and ScaLAPACK are examples of dense
linear algebra library on shared-memory and distributed-
memory systems, respectively. CHAMELEON adopts tile al-
gorithms methodology by splitting the given matrix into a
set of tiles, instead of panels, which allows updating the
trailing submatrix before factorization is complete. These
algorithms aim at weakening the synchronization points
while performing matrix operations and maximization of
the utilization of underlying hardware resources. The nu-
merical algorithm can then be translated into a Directed
Acyclic Graph (DAG), where the nodes represent tasks and
the edges define data dependencies (e.g., read, write, and
read-write), as shown in Fig. 2 with a 4 � 4 Cholesky fac-
torization DAG example. Runtime systems lead the rudder
of utilizing the usage of underlying hardware resources
in CHAMELEON, allowing tile algorithms to run efficiently
on different parallel hardware with homogeneous and het-
erogeneous architectures. DAG tasks are scheduled across
different hardware resources to ensure that the data depen-
dencies rules predefined by the user are not violated. Run-
time systems enhance software productivity by abstracting
the hardware complexity from the end-user. They are also
capable of mitigating data movement overhead, reducing
load imbalance, and increasing hardware utilization.

Fig. 2: Software architecture based on NLOPT, CHAMELEON,
HICMA, and STARPU for climate/weather applications
with a 4� 4 Cholesky factorization DAG example.

Here, we use the STARPU dynamic runtime system
because of its ability to support a wide range of parallel
heterogeneous hardware architectures from different ven-
dors like Intel, AMD, NVIDIA, and ARM. STARPU executes
defined generic task graphs, generated by a built-in sequen-
tial task flow (STF) programming model. STARPU scheduler
pushes the set of tasks to the available processing unit based
on these dependencies which may lead to asynchronous
execution. STARPU supports different programming lan-
guages (e.g., Pthreads, CUDA, OpenCL, and MPI) and
runs on different hardware architectures (e.g., CPU/GPU,
shared/distributed-memory). STARPU may decide at run-
time to execute the tasks on different hardware based on
performance models.

HICMA supports parallel TLR matrix computation. It
relies on CHAMELEON with STARPU as the runtime and
STARS-H as the compressed matrix generator. NLOPT is an
open-source C/C++ nonlinear optimization toolbox which
we rely on to perform the optimization task for the MLE op-
eration. STARPU runtime system handles both exact dense
and TLR computational workloads to perform the required
linear algebra operations in parallel.

5.2 Exact Multivariate Modeling

In multivariate modeling, there are two ways to build
�(�) [33]. The first approach (Representation I) is to build
an n � n matrix with block elements of p � p matrices
C(sl � sr; �), l; r = 1; : : : ; n. The second approach (Rep-
resentation II) is to build a p� p matrix with block elements
of n � n matrices fCij(sl � sr; �)gnl;r=1, i; j = 1; : : : ; p. To
illustrate, suppose p = 2 and n = 3. Fig. 3 shows �(�) of
dimension 6� 6 under the two representations.

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 6

Fig. 3: The order of the elements of �(�) is drawn under the
two different cross-covariance matrix representations.

The two representations in Fig. 3 yield a symmetric pos-
itive definite matrix. Cholesky factorization, the backbone
of MLE, is performed on this symmetric positive definite
matrix to obtain its inverse and log determinant required
for maximizing the log-likelihood function in Equation (1).

A simulation study on the parsimonious bivariate
Matérn was conducted to assess the efficiency in parameter
estimation and accuracy of predictions under the two rep-
resentations via comparison of the medians and standard
deviations of the estimated parameters and the MSPE of the
predictions. The results indicate that the two representations
are numerically equivalent in exact computation and either
one can substitute for the other. Thus, only Representation I
of the exact multivariate model is utilized in this work.

To hasten parameter estimation of the exact parsimo-
nious Matérn cross-covariance function, we maximize the
profile log-likelihood in lieu of the full log-likelihood in
Equation (1). The profile likelihood is a variant of the full
log-likelihood wherein the number of parameters to be
estimated is effectively reduced [68]. Under this approach,
the marginal variance parameters �2

ii, for i = 1; : : : ; p,
are no longer included in the estimation and can be de-
rived after all the other parameters were estimated, i.e.,
�̂2
ii = n�1fZ>i Rii(�̂i)

�1Zig, where �̂i 2 Rqi , qi � 1, is
the set of qi estimated marginal parameters for Zi, except
the marginal variance parameter �2

ii, i.e., �̂ii; â, and Rii(�̂i)
is the correlation matrix formed by evaluating the cross-
covariance function for i = j, using �̂i and �2

ii = 1, for
i = 1; : : : ; p. Here Zi is the vector formed by all the values
pertaining to variable i, i.e., Zi = fZi(s1); : : : ; Zi(sn)g>.

5.3 TLR-Based Multivariate Modeling

Through the last decade, tile algorithms were created to
adapt to parallel architectures that require data sharing [69].
The tiling mechanism improved block-based algorithm
which suffers from the existence of numerous synchroniza-
tion points that slow down the overall performance.

TLR approximation algorithms have been implemented
based on the tiling technique. Instead of applying the low-
rank approximation to the whole matrix, each tile is com-
pressed as a separate unit. Here, we rely on the TLR im-
plementation of [70], where the authors have implemented
the TLR approximation by performing the singular value
decomposition (SVD) algorithm for each off-diagonal tile by
preserving the most significant values and vectors in the
corresponding tile, i.e., the tile rank. The diagonal tiles are
kept dense since they cannot be approximated. Ranks of

Fig. 4: An example of TLR approximation tile: T2;1 with
dimension nb � nb is approximated by two matrices U2;1

and V2;1 with dimension nb� k2;1

Fig. 5: Rank distributions of a 7200�7200 bivariate covariance
matrix using nb = 720 with parsimonious bivariate Matérn
parameters � = (1; 1; 0:09; 0:5; 1; 0:5)> under (a) TLR5, (b)
TLR7, and (c) TLR9.

the off-diagonal tiles are determined based on the accuracy
requirement of the application. Fig. 4 shows an example of
compressing an off-diagonal tile T2;1 to two matrices U2;1

and V2;1.
The effectiveness of the TLR mechanism depends on

the ranks of the matrix tiles, which in turn depend on the
accuracy requirements of the given application. To reduce
the ranks of the covariance matrix tiles, we ordered the
matrix based on the Morton ordering approach [71], which
matches with Representation I in Fig. 3. To validate the us-
age of the TLR approximation with multivariate modeling,
we estimate the ranks of the generated covariance matrix
tiles with different accuracy levels, namely, TLR5 (10�5),
TLR7 (10�7), and TLR9 (10�9), on a 7200 � 7200 bivariate
covariance matrix; see Fig. 5. The ranks distribution shows
that the off-diagonal ranks grow as the tiles get closer to the
diagonal. It can also be observed that even with a higher
accuracy, e.g., TLR9, the ranks are still small compared to
the ranks of the full dense tiles in the diagonal (in red).
The example was drawn from a synthetic set of parame-
ters � = (�2

11; �
2
22; a; �11; �22; �)> = (1; 1; 0:09; 0:5; 1; 0:5)>,

which represents a moderate spatial dependence between
two variables, Z1 and Z2. Other sets of parameters repre-
senting varying strengths of spatial dependence were also
examined and the results do not differ significantly from
what is shown in Fig. 5.

Fig. 6 shows the memory footprint of the requirement
of full MLE operation for dense, TLR5, TLR7, and TLR9 on
various multivariate problem sizes. The memory footprint
involves �(�) of dimension 2n� 2n and two measurement
vectors, Z1 and Z2. The measurement vectors are always
represented in the exact format since there is no benefit
in compressing them. As shown, the TLR-based compres-
sion requires less memory footprint with respect to the
dense representation. On average, the TLR representations
require 6.68X, 4.93X, and 3.86X less memory than the dense

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 7

3600 4900 6400 8100 10000 12100
Spatial Locations (n)

10 2

10 3

10 4

Memory (MB) in log-scale
Multivariate-exact
Multivariate-tlr-acc9
Multivariate-tlr-acc7
Multivariate-tlr-acc5

Fig. 6: Memory footprint of exact and TLR-based MLE with
varying size of n and two measurement vectors Z1 and Z2.

representation for 10�5, 10�7, and 10�9, respectively. The
memory saving increases with larger problem sizes, as seen
in the figure.

The performance model of TLR is driven by the most
time-consuming kernel, i.e., the TLR matrix-matrix multi-
plication (TLR-MM). The arithmetic complexity of a single
TLR-MM is 36� nb� k2 [72], with nb the tile size and k the
tile rank that depends on the number of significant singular
values after compression. The total number of operations
is O(n2k), attained when nb = O(

p
n). This tile size is a

trade-off between the arithmetic intensity of the kernel and
the degree of parallelism of the algorithm. The performance
model of TLR is driven by a quadratic regime, which
contrasts with the cubic regime for exact computations. The
detailed complexity analysis of TLR Cholesky factorization
can be found in [73]. We are also looking into more advanced
matrix compression strategies [74], [75], [76] that exhibit
better arithmetic complexity but these may be challenging
to implement on massively parallel systems due to their
hierarchical structures.

5.4 Proposed Multivariate MLOE/MMOM Criteria

Assessing the estimation accuracy of the modeling approach
is challenging and requires a well-developed algorithm. Our
novel multivariate prediction assessment metrics depend
on the MLOE/MMOM [44]. There are two possible mul-
tivariate versions of the MLOE/MMOM. The first version
is a naive extension and it is simply the mean of the
MLOE/MMOMs of all the variables. This approach requires
univariate covariance models and the univariate version
of the cokriging equation (3). Another version, which we
propose, is to utilize cross-covariance functions and the
cokriging equation (3). Denote the cokriging error vector
by e(s0) = (e1; : : : ; ep)

>, where ei = Ẑi(s0) � Zi(s0) and
Ẑi(s0) is the predictor for variable i, i = 1; : : : ; p, at a predic-
tion location s0, obtained using the cokriging equation (3),
with the true cross-covariance function parameters, �. The
mean square error of this predictor is

Et = tr
n
C(0; �)� ct0

>
�(�)�1ct0

o
; (5)

where the subscript t in ct0 specifies that the parameters used
in Equation (4) are the true parameters � and tr indicates the
trace of the matrix. Suppose now that the set of estimated
parameters derived from using a certain approximation of

the covariance matrix, �̂
a

, were used to build the cokriging
equation (3). The error introduced by the approximation is
ea(s0) = (ea;1; : : : ; ea;p)

>, where ea;i = Ẑai (s0)�Zi(s0) and
Ẑai (s0) is the predictor for variable i at a prediction location
s0, obtained using the cokriging equation in (3) with �̂

a
. The

mean square error of this predictor is

Et;a = tr
�
C(0; �)� 2ct0

>
�(�̂

a
)�1ca0

+ ca0
>�(�̂

a
)�1�(�)�(�̂

a
)�1ca0

	
(6)

where ca0 is Equation (4) evaluated using �̂
a

and �(�̂
a
) is

the cross-covariance matrix also evaluated using �̂
a

. The
subscript t; a in Et;a specifies that given the true parameters
�, the estimated parameters �̂

a
from the approximated

model are used instead.
The multivariate MLOE/MMOM, denoted as MLOECK

and MLOECK , respectively, are as follows:

MLOECK=
1

npred

npredX
l=1

LOECK(s0;l) (7)

MMOMCK=
1

npred

npredX
l=1

MOMCK(s0;l); (8)

where LOECK(s0) =
Et;a

Et
� 1 and MOMCK(s0) = Ea

Et;a
� 1.

The superscript CK stipulates that the multivariate exten-
sions were derived from the cokriging equation (3) and Ea
in Equation (5) evaluated using �̂

a
and ca0 .

The algorithm implementing this approach for p =
2 is outlined in Algorithm 1. This new algorithm is
similar to [44] except now the matrix-valued Matérn
cross-covariance function is utilized instead of the
scalar-valued univariate Matérn covariance function, e.g.,
BiMatérn(s1; s2; �) returns a 2� 2 matrix.

Algorithm 1: Algorithm for Parallel Bivariate
MLOE/MMOM.

Input: npred: number of prediction locations; n: number of sampled loca-
tions; s0;1; : : : ; s0;npred : prediction locations; s1; : : : ; sn: sampled locations;
dist(a;b): function that computes the distance between a and b; �: true
parameters for the bivariate Matérn; �̂

a
: estimated parameters for the

approximated bivariate Matérn; BiMatérn(a;b; �): bivariate Matérn co-
variance function evaluated at locations a and b (Equation 2); CovMat(�):
2n� 2n cross-covariance matrix;

Result: MLOE := mean of LOECK , MMOM := mean of MOMCK

1: � = CovMat(�);
2: �a = CovMat(�̂

a
);

3: LL> = �; fcholesky factorizationg
4: La(La)> = �a; fcholesky factorizationg
5: for l = 1 to npred do
6: for r = 1 to n do
7: ct0[(2r � 1) : (2r); 1 : 2] = BiMatérn(sr; s0;l; �); fEq. (4)g
8: ca0 [(2r � 1) : (2r); 1 : 2] = BiMatérn(sr; s0;l; �̂

a
); fEq. (4)g

9: end for
10: tmp1 = tr

�
BiMatérn(s0;l; s0;l; �) � 2ct0

>
(La)�>(La)�1ca0 +

ca0
>(La)�>(La)�1LL>(La)�>(La)�1ca0

	
; fEq. (6)g

11: tmp2 = tr
n

BiMatérn(s0;l; s0;l; �)� ct0
>

L�>L�1ct0

o
; fEq. (5)g

12: tmp3 = tr
n

BiMatérn(s0;l; s0;l; �̂
a
)� ca0

>(La)�>(La)�1ca0

o
; fEq. (5)g

13: LOECK [l] = tmp1=tmp2� 1; fEq. (7)g
14: MOMCK [l] = tmp3=tmp1� 1; fEq. (8)g
15: end for

Assuming npred � n, the memory footprint and the
arithmetic complexity of Algorithm 1 for any values of p

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 8

depends solely on the Cholesky factorizations of � and �a

(lines 3 and 4). Each Cholesky factorization requires p2n2

memory footprint and (1=3)p3n3 number of operations.
Indeed, the code section containing the nested loops (lines 5-
15) carries only Level-1 and Level-2 BLAS operations involv-
ing several dot products and triangular solves. Since these
matrix operations account for the lower order terms [77], the
overall memory footprint then is 2p2n2 and the arithmetic
complexity is (2=3)p3n3.

6 PERFORMANCE RESULTS

In this section, we assess the performance and accuracy of
the TLR approximation to �(�) on large-scale simulations
and real datasets. The performance assessment involves a
wide range of parallel hardware systems while the accuracy
assessment entails simulating synthetic datasets from the
parsimonious Matérn cross-covariance function, estimating
the model parameters, and predicting values at screened
locations. Estimation and prediction accuracy are also as-
sessed on real datasets. The designed experiments show
that the TLR approximation outperforms the exact bivariate
computation while maintaining the accuracy required by
geospatial statistics applications.

6.1 Testbed and Methodology

All experiments described in this paper were performed us-
ing a variety of shared-memory systems, including a dual-
socket 28-core Intel Skylake Intel Xeon Platinum 8,176 CPU
running at 2.10 GHz, a dual-socket 20-core Intel Cascade
Lake Intel Xeon Gold 6,248 CPU running at 2.50 GHz, a
dual-socket 64-core AMD EPYC (Rome) 7702, a dual-socket
20-core Intel Skylake/V100 GPU Intel Xeon Gold 6,148 CPU
running at 2.40 GHz, and 32-core ARM ThunderX2 Cavium
at 2.10 GHz. For the distributed-memory experiments, we
use a Cray XC40 system, with 6,174 16-core Intel dual-socket
Haswell processors running at 2.3 GHz, where each node
has 128 GB of DDR4 memory. The KAUST Shaheen-II Cray
XC40 system has a total of 197,568 processor cores and 790
TB of aggregate memory.

To obtain timing results, we run each simulation three
times on every single hardware with the same configuration
and report the average. We find runtime variations between
0.1% and 0.5% on shared-memory systems and between 1%
and 3% on distributed-memory system. The latter is slightly
higher since the runs are subject to network fluctuations
depending on the current load of the system.

6.2 TLR-Based Bivariate MLE Performance

In this section, we evaluate the TLR-based multivariate MLE
performance and compare it to the performance of the exact
MLE. All the experiments show one iteration of the MLE
optimization since all the iterations have the same complex-
ity for both exact and TLR-based computation. Fig. 7 shows
the TLR performance on different shared-hardware architec-
tures. The execution time is shown in the Y-axis (identical for
all hardware) while the number of spatial locations is shown
in the X-axis. We use TLR5 as the benchmark of the speedup
gained by the TLR computation.

With an Intel 56-core Skylake system, TLR5 can achieve
on average 4X speedup compared to exact MLE, while on
an Intel 40-core Cascade Lake system, the average speedup
can reach 4.3X. With a 128-core AMD EPYC (Rome) system
and a 64-core ThunderX2 ARM system, the average speedup
reaches to 6X and 5.5X, respectively. All figures reveal
more gains from the TLR-based approximation with larger
problem sizes. Moreover, with a larger number of cores, the
average speedup factor achieved increases.

To compare the gained speedup from each hardware
architecture in Fig. 7, we use the same number of locations
n = 63; 001 as a reference. The execution time of one full
bivariate TLR-based MLE iteration (TLR5) is 61.38, 65.65,
35.75, and 113.21 seconds on Intel Skylake, Intel Cascade
lake, AMD EPYC (Rome), and ThunderX2 ARM chips,
respectively. From the speedup perspective, AMD EPYC
chip achieves the best performance compared to the other
systems. It obtains 1.7X, 1.8X, and 3.17X speedup compared
to Intel Skylake, Intel Cascade lake, and ThunderX2 ARM
systems.

The target hardware systems have different number of
cores which makes comparing them more difficult. Given
that the implementation is memory-bound, we rely on the
sustained bandwidth on each system to give more insights
into the obtained performance. Intel Skylake, Intel Cascade
lake, AMD EPYC (Rome), and ThunderX2 ARM have a
sustained bandwidth (measured by STREAM benchmark
[78]) 178, 140, 300, 236 GB/s. Based on these memory
bandwidth values, we can expect that AMD EPYC (Rome)
satisfies 300/178 = 1.68X speedup compared to Intel Sky-
lake, 300/140 = 2.14X compared to Intel Cascade Lake,
and 1.3X compared to ThunderX2 ARM. The calculations
show close values to the obtained speedup except for the
ThunderX2 ARM chip. The speedup discrepancy shows that
more parallelism needs to be exposed to the ThunderX2
ARM chip to take more advantage of its 64 cores.

On the Cray XC40 distributed-memory system, TLR
achieves lower speedup compared to the exact but still
outperforms it with different problem size and number of
nodes. Tuning the tile size (nb) is challenging on distributed-
memory systems and it seems that our baseline runtime
systems, i.e., STARPU, impacts performance with a large
number of nodes. Fig. 8a shows the performance of different
TLR accuracy with problem size up to 325K on 64 nodes.
The average speedup gained is about 2X. With 128 nodes,
the average speedup gained is about 1.8X as shown by
Fig. 8b.

Fig. 9 shows the strong scalability results using single
node 40-core Intel Cascade Lake system with different num-
ber of cores and Cray XC40 machine using different number
of nodes (up to 128 nodes). In Fig. 9a, the Cascade Lake
system shows decent parallel speedup as we increase the
numbers of threads with n = 63; 001. The parallel efficiency
on average is around 72%, (i.e., Tmin=(N�TN )�100%, where
one thread execution time is T1 and N threads execution
time is TN ), compared to single thread executions and across
different computation variants, i.e., exact, TLR5, TLR7, and
TLR9. In Fig. 9b, the exact computation achieves around
66.7X speedup, while the TLR approximation with different
accuracy levels obtains around 51.7X speedup on average
with different number of nodes using n = 168; 100. The

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 9

28900 34225 40000 46225 51076 55225 59536 63001
Spatial Locations (n)

0
100
200
300
400
500
600
700
800
900

Execution Time (Secs)

Multivariate-exact
Multivariate-tlr-acc9
Multivariate-tlr-acc7
Multivariate-tlr-acc5

(a) 56-core Intel Skylake

28900 34225 40000 46225 51076 55225 59536 63001
Spatial Locations (n)

0
100
200
300
400
500
600
700
800
900

Execution Time (Secs)

Multivariate-exact
Multivariate-tlr-acc9
Multivariate-tlr-acc7
Multivariate-tlr-acc5

(b) 40-core Intel Cascade Lake

28
90

0

34
22

5

40
00

0

46
22

5

51
07

6

55
22

5

59
53

6

63
00

1

Spatial Locations (n)

0

100

200

300

400

500

600

700

800

900

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Multivariate-exact

Multivariate-tlr-acc9

Multivariate-tlr-acc7

Multivariate-tlr-acc5

(c) 128-core AMD EPYC

28
90

0

34
22

5

40
00

0

46
22

5

51
07

6

55
22

5

59
53

6

63
00

1

Spatial Locations (n)

0

100

200

300

400

500

600

700

800

900

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Multivariate-exact

Multivariate-tlr-acc9

Multivariate-tlr-acc7

Multivariate-tlr-acc5

(d) 64-core ThunderX2 ARM

Fig. 7: One bivariate exact and TLR-based MLE iteration using different matrix sizes on various shared-memory systems.

78
40

0

10
24

00

12
96

00

15
21

00

16
24

50

Spatial Locations (n)

0

50

100

150

200

250

300

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Multivariate-exact

Multivariate-tlr-acc9

Multivariate-tlr-acc7

Multivariate-tlr-acc5

(a) Cray XC40 - 64 nodes

10
24

00

12
96

00

15
21

00

17
64

00

20
25

00

Spatial Locations (n)

0

50

100

150

200

250

300

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Multivariate-exact

Multivariate-tlr-acc9

Multivariate-tlr-acc7

Multivariate-tlr-acc5

(b) Cray XC40 - 128 nodes

Fig. 8: One bivariate exact and TLR-based MLE iteration
using different matrix sizes on various shared-memory sys-
tems.

1 4 8 16 24 32 40

Numer of cores

10 2

10 3

10 4

E
xe

cu
tio

n 
tim

e 
(S

ec
s)

 in
 lo

g-
sc

al
e

Multivariate-exact

Multivariate-tlr-acc9

Multivariate-tlr-acc7

Multivariate-tlr-acc5

(a) 40-core Intel Cascade Lake
with different number of
cores.

32 64 96 12
8

Number of nodes

10 2

10 3

10 4

E
xe

cu
tio

n 
tim

e 
(S

ec
s)

in
 lo

g-
sc

al
e 

multivariate-tlr-acc5

multivariate-tlr-acc9

multivariate-tlr-acc7

multivariate-exact

(b) Cray XC40 with different
number of nodes.

Fig. 9: Strong scalability plot of one bivariate exact and TLR-
based MLE iteration.

parallel efficiency of the TLR approximation varies between
60% and 43%. This is lower than the efficiency of the exact
computation but expected due to the memory-bound versus
compute-bound regime of executions opposing TLR and
exact computations, respectively.

6.3 Univariate/Bivariate MLOE/MMOM Criteria Perfor-
mance
In this set of experiments, we aim at assessing the perfor-
mance of the proposed multivariate MLOE/MMOM cri-
teria algorithm. We choose the bivariate as an example
of a multivariate case with synthetic datasets generated
by our framework. The experiments were performed on
different shared-memory hardware architectures. We pro-
vide the time breakdown of the assessment operation of
Algorithm 1 and split them into three parts: matrices
generation time (GEN TIME) in lines 1-2, factorization
time (FACT TIME) in lines 3-4, and computation time

(COMP TIME) in lines 5-15. Figs. 10 and 11 show the
time for each operation on both parallel univariate and
bivariate MLOE/MMOM implementations.

As shown in both figures, the COMP TIME is the
most time-consuming part of Algorithm 1 as it requires
an iterative execution loop equal to the number of missing
locations, i.e., 100 in this set of experiments. However, with
a larger matrix size, the FACT TIME takes more time
for the whole operation. One striking observation from
Fig. 10d is that using a system with V100 GPU speeds
up the FACT TIME compared to COMP TIME. This
is because the computation part involves several matrix-
vector operations (i.e., Level-2 BLAS) that cannot exploit the
computational power of the enclosed GPU.

6.4 TLR-Based Bivariate MLE Accuracy Assessment
Here, we assess the accuracy of the proposed TLR-based
bivariate MLE using synthetic datasets.

6.4.1 Synthetic Datasets
We perform large-scale simulations from the parsimonious
Matérn cross-covariance function. Fig. 12 shows a bivariate
random field simulated from Equation (2) at n = 24; 964
locations using our synthetic data generator with the fol-
lowing configuration:

� � = 0:5, i.e., Z1 and Z2 are positively correlated.
This parameter controls how correlated Z1 and Z2 at
any location. The effect of this parameter is visually
detectable since wherever there are red (blue) spots
in Z1, red (blue) spots in Z2 tend to also be seen.

� �11 = 0:5 and �22 = 1, i.e., Z2 is smoother than Z1.
The smoothness parameters show through observing
that the values of Z2 changes more slowly than the
values of Z1 from one pixel or location to another.

� a = 0:2. This parameter affects Z1 and Z2 in differ-
ent ways. For Z1, this value of the scale parameter
suggests that the marginal covariance of Z1 drops to
0.05 when the locations are 0.6 units apart. For Z2, it
takes 0.8 units separation for its marginal covariance
to drop to 0.05. Visually, this parameter dictates the
sizes of the red and blue spots. The larger the a
becomes, the bigger the sizes of the spots are.

To validate the accuracy of the TLR approximation, we
simulate 50 different bivariate Gaussian random fields of the
same configuration as the example in Fig. 12 and perform
three kinds of experiments:

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 10

22
50

0

28
90

0

34
22

5

40
00

0

46
22

5

51
07

6

55
22

5

59
53

6

63
00

1

71
28

9

Spatial Locations (n)

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(a) 56-core Intel Skylake

22
50

0

28
90

0

34
22

5

40
00

0

46
22

5

51
07

6

55
22

5

59
53

6

63
00

1

71
28

9

Spatial Locations (n)

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(b) 40-core Intel Cascade Lake

22
50

0

28
90

0

34
22

5

40
00

0

46
22

5

51
07

6

55
22

5

59
53

6

63
00

1

71
28

9

Spatial Locations (n)

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(c) 128-core AMD EPYC

22
50

0

28
90

0

34
22

5

40
00

0

46
22

5

51
07

6

55
22

5

59
53

6

63
00

1

71
28

9

Spatial Locations (n)

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(d) 40-core Intel Skylake +V100

Fig. 10: Time breakdown of the univariate MLOE/MMOM criteria using 100 missing locations on different shared-memory
systems.

22
50

0

28
90

0

34
22

5

40
00

0

Spatial Locations (n)

0

100

200

300

400

500

600

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(a) 56-core Intel Skylake

22
50

0

28
90

0

34
22

5

40
00

0

Spatial Locations (n)

0

100

200

300

400

500

600

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(b) 40-core Intel Cascade Lake

22
50

0

28
90

0

34
22

5

40
00

0

Spatial Locations (n)

0

100

200

300

400

500

600

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(c) 128-core AMD EPYC

22
50

0

28
90

0

34
22

5

40
00

0

Spatial Locations (n)

0

100

200

300

400

500

600

E
xe

cu
tio

n 
T

im
e 

(S
ec

s)

Alg.1 (lines 1-2), GEN_TIME

Alg.1 (lines 3-4), FACT_TIME

Alg.1 (lines 5-15), COMP_TIME

(d) 40-core Intel Skylake +V100

Fig. 11: Time breakdown of the bivariate MLOE/MMOM criteria using 100 missing locations on different shared-memory
systems.

Fig. 12: Spatial images of the simulated bivariate realizations
from the parsimonious Matérn cross-covariance model on a
158�158 regular grid on a unit square. Here �2

11 = �2
22 = 1,

a = 0:2, �11 = 0:5, �22 = 1, and � = 0:5.

� Experiment 1: We show the merits of bivariate spa-
tial modeling in the exact computations by varying
the degree of colocated dependence between Z1

and Z2, controlled by � through �, and examining
whether there is a gain in prediction when using the
parsimonious bivariate Matérn for different values
of �, while fixing the other parameters as follows.
�2

11 = �2
22 = 1; �11 = 0:5; �22 = 1, and a = 0:09.

� Experiment 2: We examine the quality of parame-
ter estimates for the exact and TLR under differ-
ent accuracies (TLR5, TLR7, and TLR9), using the
available data in n = 22; 464 locations (chosen ran-
domly) and reserving the remaining npred = 2; 500 as
prediction locations. Furthermore, we contrast these
with the estimation results to another approximation
technique aforementioned, the Diagonal Super Tile
(DST). Fixing �11 = 0:5 and �22 = 1, we vary

the value of the remaining parameter responsible
for spatial dependence over long distances, i.e., the
range parameter, a. Different values of a were chosen
to represent weak (a = 0:03), moderate (a = 0:09),
and strong (a = 0:20) spatial dependencies.

� Experiment 3: Predictions are made at the 2; 500 pre-
diction locations and the errors produced by the ex-
act and the approximation models are assessed using
the newly proposed multivariate MLOE/MMOM.

Fig. 14 summarizes the results of Experiment 1. The
figure shows that the higher the value of the parameter
responsible for the colocated dependence (�), the lower the
prediction error becomes. In bivariate datasets, the inclusion
of a second variable effectively increases the number of
samples available for any of the two variables when the
colocated dependence between them is high (positive or
negative). The more correlated Z1 and Z2 are, through �,
the more information we get about Z1 from Z2, and vice
versa. This echoes the theoretical results in [34], where it
was shown that the colocated correlation parameter dictates
the improvement introduced by cokriging (multivariate pre-
diction) over kriging (univariate prediction). Similar conclu-
sions were derived using other values of a, the parameter
controlling the long range spatial dependence. This suggests
that bivariate or multivariate (p > 2) modeling should
be pursued regardless because while the gain in using a
bivariate model is not so pronounced when the colocated
dependence is not so high in the positive or negative direc-
tion, there is significant error reduction when the variables
turn out to be highly correlated.

Fig. 13, plots the accuracy of our estimation procedure
under the different TLR and exact implementations at differ-
ent strengths of spatial dependence controlled by the range
parameter, a. It also includes the results of the parameter
estimation under the two different sizes of the DST. DST

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 11

ll

l

l

l

lll

0.
0

1.
0

2.
0

ER = 0.1
T

LR
5

l

l

l

l

l

ll
l

l
lll

lll

llll

l

l

ER = 0.3

l
l

l

ll
l

ll
l
lll

l
l
ll

l
l

ER = 0.7

lll l

l

lll

0.
0

1.
0

2.
0

T
LR

7

l
l
l

l

l

l

l

lll

l

l

l

l

l

ll

l

l

lll

lll

0.
0

1.
0

2.
0

T
LR

9 l

l

l

lll

l

l

l

l

l
l
l

l
l

l

l

l
l

ll

l

ll

l

l
l

l

0.
0

1.
0

2.
0

D
S

T
 4

0/
60

l

lll
l

l

l

l
l

l
l
l

l

l

l

l

l

l

ll

l
l

l

ll

ll l

l

l
l
ll

l ll

l
lll
l

l

l

ll
l

l

l

l

l

l

ll

l
l
l

l

ll

l

l

ll

l

l

l

l

l lll

l

l

l

l

l
l
l
l

0.
0

1.
0

2.
0

D
S

T
 7

0/
30 l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

lll
l

l

l

ll

l

l

lllllll

l

l
l

l

l

lll

l

l
l
l
ll

lll

l

l

l

l
ll

l
l

ll
l

l

l

l l

lll

ll

0.
0

1.
0

2.
0

E
xa

ct

s 11
2 s22

2
a n11 n22 b

l
l l

l

lll

ll

lll

ll

s 11
2 s22

2
a n11 n22 b

l

ll

lll

s 11
2 s22

2
a n11 n22 b

Fig. 13: Boxplots of parameter estimates under the ex-
act, TLR, and DST implementations. The true parameters
are highlighted in red. ER refers to effective range or the
distance at which the marginal covariance drops to ap-
proximately 0.05. Here ER = f0:1; 0:3; 0:7g corresponds to
a = f0:03; 0:09; 0:2g.

40/60 means that 40% of the tiles from the diagonal are kept
and the remaining 60% are annihilated. Similarly, DST 70/30
denotes that 70% of the tiles from the diagonal are kept
and the remaining 30% are annihilated. When the spatial
dependence is weak (a = 0:03), the boxplots across the
different TLRs and the exact are identical, i.e., the medians
and the standard deviations of the parameter estimates are

Fig. 14: Prediction error (MSPE) at different values of � with
�2

11 = �2
22 = 1; �11 = 0:5; �22 = 1; and a = 0:09.

l l l l

-0
.0

05
0.

00
5

0.
01

5
0.

02
5

M
LO

E

l
l l ll
l l ll l l ll l l

l

ER = 0.1

M
LO

E

l l

l l

l

l l ll l l l

l
l

l ll

l l l

ER = 0.3
l

l l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5

ER = 0.7

l
l l l

-0
.4

-0
.2

0.
0

0.
2

M
M

O
M l

l
l ll l l

l

l

l
l l

l

l l
l

TLR5 TLR7 TLR9 Exact

M
M

O
M

l

l
l l

l
l

l
l

l

l l l

l

l

l l

l

l

l
l

TLR5 TLR7 TLR9 Exact

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

TLR5 TLR7 TLR9 Exact

Fig. 15: Multivariate MLOE/MMOM values under exact
and the different TLR models at various effective ranges.

almost equal. While the medians of the parameter estimates
under DST 40/60 and DST 70/30 are close to the true
parameter values, the estimates have more variability. As
the dependence in space increase, i.e., a = 0:09 (moderate)
and a = 0:2 (strong), TLR5 is insufficient and it obtains
parameter estimates that are very far from the true value.
While increasing the accuracy to TLR7 solves the problem
for moderate spatial dependence, this level of accuracy is
still inadequate for simulations with strong spatial depen-
dence as the medians of the parameter estimates still do
not coincide with the true parameter values. TLR9 remedies
this problem. DST 40/60 and DST 70/30 give estimates that
are far from the true values and they perform worse as the
strength of spatial dependence increase. This is expected as
the DST technique throws away significant amount of infor-
mation in the cross-covariance matrix which is vital when
the dependence in space is strong. All in all, while there
are significantly more parameters to estimate in the parsi-
monious bivariate Matérn model, our estimation procedure
can satisfactorily recover all of them. Furthermore, TLR ap-
proximation outperforms another approximation technique,
i.e., the DST, and remains competitive with the exact model
in terms of parameter estimation accuracy when using a
higher accuracy level whenever there is stronger spatial
dependence.

Using the parameter estimates in Experiment 2, we
predict at the 2; 500 unsampled locations and measure the

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 12

Fig. 16: Spatial images of the bivariate dataset on January
1, 2009 (after mean removal) on 116; 100 locations over the
Arabian Sea.

TABLE 1: A summary of the estimated parameters and the
breakdown per variable and average of the prediction error,
denoted by MSPEi, i = 1; 2, and MSPEavg, respectively, of
the bivariate model fitted to the bivariate dataset on January
1, 2009.

Parsimonious Bivariate Matérn

�̂2
11 �̂2

22 â �̂11 �̂22 �̂12

0.718 0.710 0.161 2.283 2.033 0.192

MSPE1 MSPE2 MSPEavg

0.000189 0.000261 0.000225

multivariate MLOE/MMOM for all the TLR approximation
models and the exact using Algorithm 1. Fig. 15 charts the
behavior of the multivariate MLOE/MMOM of 5 randomly
chosen sample bivariate random fields as we increase the ac-
curacy levels. Commensurate to the findings in Experiment
2, bivariate random fields with higher spatial dependence
necessitate TLR approximations with higher accuracy levels
in order to remain competitive with the exact model.

6.4.2 Real Data Application
We obtained datasets with a horizontal spatial resolution
of 5 km from a Weather Research and Forecasting (WRF)
model simulation on the [43�E; 65�E]� [5�S; 24�N ] region
of the earth [79]. We restricted the dataset to the Arabian Sea
to ensure that the measurements exhibit spatial isotropy, i.e.,
the cross-covariance depends only on the distance between
any two locations and not on the locations themselves.
Often, this isotropy assumption holds when the locations
are situated in areas with similar characteristics. As the
locations are all on the ocean, this behavior can be expected.
The resulting subset contains n = 116; 100 locations and
the two locations which are located farthest from each other
have a great circle distance of 2; 681 km.

I. Bivariate Dataset
We fit the parsimonious bivariate Matérn covariance
function on measurements obtained on January 1, 2009,
consisting of two variables, namely, zonal wind compo-
nent, U (variable 1), and meridional wind component,
V (variable 2), both measured in m=s. In order to sat-
isfy the zero-mean assumption, we remove a spatially

Fig. 17: Spatial images of the trivariate dataset on October
1, 2009 (after mean removal) on 116; 100 locations over the
Arabian Sea.

TABLE 2: A summary of the estimated parameters and the
breakdown per variable and average of the prediction error,
denoted by MSPEi, i = 1; 2; 3, and MSPEavg, respectively,
of the trivariate model fitted to the trivariate dataset on
October 1, 2009.

Parsimonious Trivariate Matérn

�̂2
11 �̂2

22 �̂2
33 â �̂11 �̂22 �̂33

0.788 0.874 0.301 0.0822 1.689 1.629 1.234

�̂12 �̂13 �̂23 MSPE1 MSPE2 MSPE3 MSPEavg

0.243 -0.124 -0.059 0.009900 0.012248 0.021073 0.014407

varying mean using the longitudes and latitudes as
covariates. The resulting values after mean removal are
approximately Gaussian and are plotted in Fig. 16.
The parameter estimates for the parsimonious bivariate
Matérn fitted to the dataset at n = 104; 490 observation
locations are presented in Table 1. The MSPE values
for the predictions done on npred = 11; 610 prediction
locations are also shown. From the results, it can be
seen that U and V (variables 1 and 2) are positively
correlated since �̂12 > 0. Furthermore, the estimates of
the smoothness parameters �̂11 and �̂22 suggest that
U and V are very smooth random fields, which is
certainly the case as shown in Fig. 16.

II. Trivariate Dataset
We retrieve another dataset from October 1, 2009 con-
sisting of three variables including the U and V wind
components (in m=s) and temperature (in Kelvin), as
variable 3, and fit a trivariate Matérn covariance func-
tion. Similarly, we remove a spatially varying mean
using the longitudes and latitudes as covariates. The
resulting values after mean removal are approximately
Gaussian and are plotted in Fig. 17.
The parameter estimates for the parsimonious trivari-
ate Matérn are presented in Table 2 with the corre-
sponding MSPE values. It can be seen that U and
V (variables 1 and 2) are positively correlated while
each of them are negatively correlated to variable 3,
the temperature variable. These values obtained for
the correlation coefficients can be visually validated by
Fig. 17. In regions where blue/green spots are observed
in the U and V components, red/yellow spots gener-
ally occur for the temperature variable, especially in

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 13

the [53�E; 65�E] � [13�S; 17�N ] region. This inverse
relationship can also be seen along the coast of Yemen
and Somalia.

Note that the estimates for the smoothness and the range
parameters in the bivariate model, i.e., �̂11, �̂22, and â, are
higher compared to its counterpart in the trivariate model.
This is expected as the spots are larger and smoother in
Fig. 16 than in Fig. 17. These foregoing results definitely
show that our proposed implementation was able to suc-
cessfully fit the models with physically reasonable parame-
ter estimates.

7 CONCLUSION

We proposed a high-performance framework for model-
ing and inference of large spatial datasets based on the
multivariate geospatial statistical modeling concept. In the
context of climate and weather applications, the framework
can operate on the Gaussian log-likelihood function with
three (or more) associated variables, for the purpose of
estimating a parameter vector, in order to predict missing
measurements. Although machine learning and deep learn-
ing techniques can also be used in prediction, geospatial
statistical modeling has better interpretability capabilities
regarding the underlying spatial field. Both the exact and
TLR-based approximation computations of the MLE op-
erations were implemented and evaluated on large-scale
experiments. The TLR-based approximation for the MLE
outperformed the fully double-precision exact MLE coun-
terpart up to 10X and 2X on different hardware architec-
tures. Comprehensive qualitative experiments were con-
ducted to assess the accuracy of the TLR-based estimation
and prediction. We demonstrated the effectiveness of the
approximation technique in achieving high performance,
while preserving a convenient accuracy level. Additionally,
an algorithm to compute the newly proposed multivariate
MLOE/MMOM criteria was devised. This algorithm allows
for the assessment of the quality of the MLE operations
involving approximated models.

Future research will focus on modeling and prediction
of environmental variables which are indexed in space and
time. The spatial and temporal coverage of big geospatial
data can be exploited to improve insights on an environmen-
tal phenomenon. Tackling the space-time problem should
bring more challenges related to the problem dimension and
prediction accuracy in climate/weather applications.

ACKNOWLEDGEMENTS

The authors would like to thank NVIDIA Inc., Cray Inc., and
Intel Corp., the Cray Center of Excellence and Intel Parallel
Computing Center awarded to the Extreme Computing
Research Center (ECRC) at KAUST. For computer time,
this research used GPU-based systems as well as Shaheen
supercomputer, both hosted at the Supercomputing Labora-
tory at King Abdullah University of Science and Technology
(KAUST).

REFERENCES

[1] M. Asch, T. Moore, R. Badia, M. Beck, P. Beckman, T. Bidot,
F. Bodin, F. Cappello, A. Choudhary, B. de Supinski, E. Deelman,
J. Dongarra, A. Dubey, G. Fox, H. Fu, S. Girona, W. Gropp,
M. Heoux, Y. Ishikawa, K. Keahey, D. Keyes, W. Kramer, J.-F.
Lavignon, Y. Lu, S. Matsuoka, B. Mohr, D. Reed, S. Requena,
J. Saltz, T. Schulthess, R. Stevens, M. Swany, A. Szalay, W. Tang,
G. Varoquaux, J.-P. Vilotte, R. Wisniewski, Z. Xu, and I. Zacharov,
“Big data and extreme-scale computing: Pathways to convergence-
toward a shaping strategy for a future software and data ecosys-
tem for scientific inquiry,” The International Journal of High Perfor-
mance Computing Applications, vol. 32, no. 4, pp. 435–479, 2018.

[2] X.-k. Liao, K. Lu, C.-q. Yang, J.-w. Li, Y. Yuan, M.-c. Lai, L.-b.
Huang, P.-j. Lu, J.-b. Fang, J. Ren, and J. Shen, “Moving from
exascale to zettascale computing: challenges and techniques,”
Frontiers of Information Technology & Electronic Engineering, vol. 19,
no. 10, pp. 1236–1244, 2018.

[3] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes, “Exa-
GeoStat: A high performance unified software for geostatistics on
manycore systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 12, pp. 2771–2784, 2018.

[4] N. Doucet, H. Ltaief, D. Gratadour, and D. Keyes, “Mixed-
precision tomographic reconstructor computations on hardware
accelerators,” in 2019 IEEE/ACM 9th Workshop on Irregular Applica-
tions: Architectures and Algorithms (IA3). IEEE, 2019, pp. 31–38.

[5] B. H. Park, H. A. Aziz, A. Morton, and R. Stewart, “High perfor-
mance data driven agent-based modeling framework for simula-
tion of commute mode choices in metropolitan area,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 3779–3784.

[6] H.-T. Chu, “High-performance computing for measurement of
cancer gene signatures,” Application of Omics, AI and Blockchain in
Bioinformatics Research, vol. 21, p. 109, 2019.

[7] J. Drake and I. Foster, “Introduction to the special issue on parallel
computing in climate and weather modeling,” Parallel Computing,
vol. 21, no. 10, pp. 1539–1544, 1995.

[8] N. R. Council et al., From research to operations in weather satellites
and numerical weather prediction: Crossing the valley of death. Na-
tional Academies Press, 2000.

[9] “Earth Science Data Systems (ESDS) Program,” January 2020,
Earthdata.nasa.gov [Online].

[10] P. Burrough, “Gis and geostatistics: Essential partners for spatial
analysis,” Environmental and ecological statistics, vol. 8, no. 4, pp.
361–377, 2001.

[11] X. Shi, V. Kindratenko, and C. Yang, “Modern accelerator tech-
nologies for geographic information science,” in Modern Accelera-
tor Technologies for Geographic Information Science. Springer, 2013,
pp. 3–6.

[12] L. Liu, A. Yang, L. Chen, W. Xiong, Q. Wu, and N. Jing, “Higis-
when gis meets hpc,” in 12th International Conference on GeoCom-
putation, Wuhan, 2013.

[13] N. Stojanovic and D. Stojanovic, “High–performance computing in
gis: techniques and applications,” International Journal of Reasoning-
based Intelligent Systems, vol. 5, no. 1, pp. 42–49, 2013.

[14] J. Zhang, “Parallel primitives-based spatial join of geospatial data
on gpgpus,” in Modern Accelerator Technologies for Geographic Infor-
mation Science. Springer, 2013, pp. 55–67.

[15] C. Yang, K. Clarke, S. Shekhar, and C. V. Tao, “Big spatiotemporal
data analytics: A research and innovation frontier,” International
Journal of Geographical Information Science, vol. 34, no. 6, pp. 1075–
1088, 2020.

[16] J. Li, Y. Jiang, C. Yang, and Q. Huang, “Utilizing cuda-enabled
gpus to support 5d scientific geovisualization: A case study of
simulating dust storm events,” in Modern Accelerator Technologies
for Geographic Information Science. Springer, 2013, pp. 69–82.

[17] X. Kang, J. Liu, C. Dong, and S. Xu, “Using high-performance
computing to address the challenge of land use/land cover change
analysis on spatial big data,” ISPRS International Journal of Geo-
Information, vol. 7, no. 7, p. 273, 2018.

[18] A.-X. Zhu, F.-H. Zhao, P. Liang, and C.-Z. Qin, “Next generation
of gis: must be easy,” Annals of GIS, pp. 1–16, 2020.

[19] M. Bancheri, F. Serafin, M. Bottazzi, W. Abera, G. Formetta, and
R. Rigon, “The design, deployment, and testing of kriging models
in GEOframe with SIK-0.9. 8,” Geoscientific Model Development,
vol. 11, no. 6, pp. 2189–2207, 2018.

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 

https://earthdata.nasa.gov/esds/nasa-earth-science-data-systems-program-highlight-2018


1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 14

[20] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data
reconstruction in remote sensing image with a unified spatial–
temporal–spectral deep convolutional neural network,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 56, no. 8, pp.
4274–4288, 2018.

[21] A. Fouilloy, C. Voyant, G. Notton, F. Motte, C. Paoli, M.-L. Nivet,
E. Guillot, and J.-L. Duchaud, “Solar irradiation prediction with
machine learning: Forecasting models selection method depend-
ing on weather variability,” Energy, vol. 165, pp. 620–629, 2018.

[22] K. J. Bergen, P. A. Johnson, V. Maarten, and G. C. Beroza, “Machine
learning for data-driven discovery in solid earth geoscience,”
Science, vol. 363, no. 6433, 2019.

[23] C. Zhang, I. Sargent, X. Pan, H. Li, A. Gardiner, J. Hare, and
P. M. Atkinson, “Joint deep learning for land cover and land use
classification,” Remote Sensing of Environment, vol. 221, pp. 173–
187, 2019.

[24] V. Demyanov, E. Gloaguen, and M. Kanevski, “A special issue on
data science for geosciences,” Mathematical Geoscience, vol. 52, pp.
1–3, 2020.

[25] C. Irrgang, N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow,
J. Staneva, and J. Saynisch-Wagner, “Will artificial intelligence
supersede earth system and climate models?” arXiv preprint
arXiv:2101.09126, 2021.

[26] F. Binkowski and S. Roselle, “Models-3 community multiscale air
quality (cmaq) model aerosol component 1. model description,”
Journal of geophysical research: Atmospheres, vol. 108, no. D6, 2003.

[27] L. Minet, T. Chowdhury, A. Wang, Y. Gai, I. D. Posen, M. Roorda,
and M. Hatzopoulou, “Quantifying the air quality and health
benefits of greening freight movements,” Environmental Research,
vol. 183, p. 109193, 2020.

[28] S. Yu and J. Ma, “Data-driven geophysics: from dictionary learning
to deep learning,” arXiv preprint arXiv:2007.06183, 2020.

[29] F. Amato, F. Guignard, S. Robert, and M. Kanevski, “A novel
framework for spatio-temporal prediction of environmental data
using deep learning,” Scientific Reports, vol. 10, no. 1, pp. 1–11,
2020.

[30] C. Kadow, D. M. Hall, and U. Ulbrich, “Artificial intelligence re-
constructs missing climate information,” Nature Geoscience, vol. 13,
no. 6, pp. 408–413, 2020.

[31] S.-H. Kang, Y. Choi, and J. Y. Choi, “Restoration of missing
patterns on satellite infrared sea surface temperature images due
to cloud coverage using deep generative inpainting network,”
Journal of Marine Science and Engineering, vol. 9, no. 3, p. 310, 2021.

[32] J. M. McKinley and P. M. Atkinson, “A special issue on the
importance of geostatistics in the era of data science,” Mathematical
Geoscience, vol. 52, pp. 311–315, 2020.

[33] M. G. Genton and W. Kleiber, “Cross-covariance functions for
multivariate geostatistics,” Statistical Science, pp. 147–163, 2015.

[34] H. Zhang and W. Cai, “When doesn’t cokriging outperform krig-
ing?” Statistical Science, pp. 176–180, 2015.

[35] D. T. Hristopulos, Random Fields for Spatial Data Modeling A Primer
for Scientists and Engineers. Springer, 2020.

[36] N. Cressie and A. Zammit-Mangion, “Multivariate spatial covari-
ance models: a conditional approach,” Biometrika, vol. 103, no. 4,
pp. 915–935, 2016.

[37] B. Li and H. Zhang, “An approach to modeling asymmetric
multivariate spatial covariance structures,” Journal of Multivariate
Analysis, vol. 102, no. 10, pp. 1445–1453, 2011.

[38] K. V. Mardia and R. J. Marshall, “Maximum likelihood estimation
of models for residual covariance in spatial regression,” Biometrika,
vol. 71, no. 1, pp. 135–146, 1984.

[39] C. G. Kaufman, M. J. Schervish, and D. W. Nychka, “Covariance
tapering for likelihood-based estimation in large spatial data sets,”
Journal of the American Statistical Association, vol. 103, no. 484, pp.
1545–1555, 2008.

[40] K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes, “Tile low rank
Cholesky factorization for climate/weather modeling applications
on manycore architectures,” in Proceedings of the International Su-
percomputing Conference. Springer, 2017, pp. 22–40.

[41] D. E. Keyes, H. Ltaief, and G. Turkiyyah, “Hierarchical algorithms
on hierarchical architectures,” Philosophical Transactions of the Royal
Society A, vol. 378, no. 2166, p. 20190055, 2020.

[42] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes,
“Parallel approximation of the maximum likelihood estimation
for the prediction of large-scale geostatistics simulations,” in 2018
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2018, pp. 98–108.

[43] Y. Yan and M. G. Genton, “Gaussian likelihood inference on
data from trans-Gaussian random fields with Matérn covariance
function,” Environmetrics, vol. 29, no. 5-6, p. e2458, 2018.

[44] Y. Hong, S. Abdulah, M. G. Genton, and Y. Sun, “Efficiency as-
sessment of approximated spatial predictions for large datasets,”
arXiv preprint arXiv:1911.04109, 2019.

[45] T. L. R. S. G. Goulart, L. G. Tavaresa, M. Loboscoa, R. W. dos
Santosa, and F. de Oliveira Chavesb, “A parallel implementation
of the ordinary kriging algorithm for heterogeneous computing
environments,” Journal of Computational Interdisciplinary Sciences,
vol. 8, no. 3, pp. 143–152, 2017.

[46] L. Pesquer, A. Cortés, and X. Pons, “Parallel ordinary kriging in-
terpolation incorporating automatic variogram fitting,” Computers
and Geosciences, vol. 37, no. 4, pp. 464–473, 2011.

[47] A. J. Rossini, L. Tierney, and N. Li, “Simple parallel statistical
computing in R,” Journal of Computational and Graphical Statistics,
vol. 16, no. 2, pp. 399–420, 2007.

[48] T. Cheng, “Accelerating universal kriging interpolation algorithm
using cuda-enabled GPU,” Computers and Geosciences, vol. 54, no. 2,
pp. 178–183, 2013.

[49] P. Tahmasebi, M. Sahimi, G. Mariethoz, and A. Hezarkhani,
“Accelerating geostatistical simulations using graphics processing
units (GPU),” Computers & Geosciences, vol. 46, pp. 51–59, 2012.

[50] V. Allombert, D. Michea, F. Dupros, C. Bellier, B. Bourgine,
H. Aochi, and S. Jubertie, “An out-of-core GPU approach for ac-
celerating geostatistical interpolation,” Procedia Computer Science,
vol. 29, pp. 888–896, 2014.

[51] W. Zhuo, C. Paciorek, C. Kaufman, W. Bethel et al., “Parallel
kriging analysis for large spatial datasets,” in 2011 IEEE 11th
International Conference on Data Mining Workshops. IEEE, 2011,
pp. 38–44.

[52] S. Abdulah, Y. Li, J. Cao, H. Ltaief, D. E. Keyes, M. G. Genton,
and Y. Sun, “ExaGeoStatR: A package for large-scale geostatistics
in R,” arXiv preprint arXiv:1908.06936, 2019.

[53] “The Chameleon project: A dense linear algebra software for het-
erogeneous architectures,” May 2020, available at https://project.
inria.fr/chameleon/.

[54] S. Abdulah, K. Akbudak, W. Boukaram, A. Charara, D. Keyes,
H. Ltaief, A. Mikhalev, D. Sukkari, and G. Turkiyyah, “Hierar-
chical computations on manycore architectures (HiCMA),” See
http://github. com/ecrc/hicma, 2019.

[55] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 2, pp. 187–198, 2011.

[56] T. Gneiting, W. Kleiber, and M. Schlather, “Matérn cross-
covariance functions for multivariate random fields,” Journal of
the American Statistical Association, vol. 105, no. 491, pp. 1167–1177,
2010.

[57] T. V. Apanasovich, M. G. Genton, and Y. Sun, “A valid Matérn
class of cross-covariance functions for multivariate random fields
with any number of components,” Journal of the American Statistical
Association, vol. 107, no. 497, pp. 180–193, 2012.

[58] S. Banerjee, A. E. Gelfand, A. O. Finley, and H. Sang, “Gaussian
predictive process models for large spatial data sets,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), vol. 70,
no. 4, pp. 825–848, 2008.

[59] M. Katzfuss, “A multi-resolution approximation for massive spa-
tial datasets,” Journal of the American Statistical Association, vol. 112,
no. 517, pp. 201–214, 2017.

[60] H. Huang and Y. Sun, “Hierarchical low rank approximation of
likelihoods for large spatial datasets,” Journal of Computational and
Graphical Statistics, vol. 27, no. 1, pp. 110–118, 2018.

[61] R. Furrer, M. G. Genton, and D. Nychka, “Covariance tapering for
interpolation of large spatial datasets,” Journal of Computational and
Graphical Statistics, vol. 15, no. 3, pp. 502–523, 2006.

[62] H. Rue, S. Martino, and N. Chopin, “Approximate Bayesian in-
ference for latent Gaussian models by using integrated nested
Laplace approximations,” Journal of the Royal Statistical Society:
Series B (statistical methodology), vol. 71, no. 2, pp. 319–392, 2009.

[63] S. Banerjee, “High-dimensional Bayesian Geostatistics,” Bayesian
analysis, vol. 12, no. 2, p. 583, 2017.

[64] “The STARS-H project: Software for testing accuracy, reliability
and scalability of hierarchical computations,” May 2020, available
at https://github.com/ecrc/stars-h.

[65] S. G. Johnson, “The NLopt nonlinear-optimization package,” 2014,
http://ab-initio.mit.edu/nlopt.

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 

https://project.inria.fr/chameleon/
https://project.inria.fr/chameleon/
https://github.com/ecrc/stars-h
http://ab-initio.mit. edu/nlopt


1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3071423, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MM, YYYY 15

[66] A. Yarkhan, J. Kurzak, and J. Dongarra, “Quark users guide,”
Electrical Engineering and Computer Science, Innovative Computing
Laboratory, University of Tennessee, vol. 268, 2011.

[67] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault,
and J. J. Dongarra, “Parsec: Exploiting heterogeneity to enhance
scalability,” Computing in Science & Engineering, vol. 15, no. 6, pp.
36–45, 2013.

[68] T. A. Severini, Likelihood Methods in Statistics. Oxford University
Press, 2000.

[69] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of par-
allel tiled linear algebra algorithms for multicore architectures,”
Parallel Computing, vol. 35, no. 1, pp. 38–53, 2009.

[70] K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, A. Esposito, and
D. Keyes, “Exploiting data sparsity for large-scale matrix compu-
tations,” in European Conference on Parallel Processing. Springer,
2018, pp. 721–734.

[71] G. Morton, A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing. International Business Machines
Company, New York, 1966.

[72] Q. Cao, Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief,
D. Keyes, and J. Dongarra, “Extreme-Scale Task-Based Cholesky
Factorization Toward Climate and Weather Prediction Applica-
tions,” in Proceedings of the Platform for Advanced Scientific Comput-
ing Conference. ACM, 2020.

[73] T. Mary, “Block Low-Rank Multifrontal Solvers: Complexity, Per-
formance, and Scalability,” Ph.D. dissertation, Paul Sabatier Uni-
versity, Toulouse, France, November 2017.

[74] S. Ambikasaran and E. Darve, “An O(N log N ) fast direct solver
for partial Hierarchically Semiseparable matrices,” Journal of Sci-
entific Computing, vol. 57, no. 3, pp. 477–501, 2013.

[75] A. Aminfar, S. Ambikasaran, and E. Darve, “A fast block low-rank
dense solver with applications to finite-element matrices,” Journal
of Computational Physics, vol. 304, pp. 170–188, 2016.

[76] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis.
Springer, 2015, vol. 49.

[77] E. Anderson, J. Dongarra, and S. Ostrouchov, “LAPACK working
note 41: Installation guide for LAPACK, University of Tennessee,”
CS-92-151, February 1992 (revised June 1999), Tech. Rep., 1992.

[78] “Stream:he de facto industry standard benchmark for measur-
ing sustained memory bandwidth,” Jan 2021, available at https:
//github.com/jeffhammond/STREAM.

[79] C. Yip, “Statistical characteristics and mapping of near-surface and
elevated wind resources in the Middle East,” Ph.D. dissertation,
King Abdullah University of Science and Technology, 2018.

Mary Lai Salvaña is a PhD student in the
Spatio-Temporal Statistics & Data Science group
at King Abdullah University of Science and
Technology (KAUST). She received her BS
and MS degrees in Applied Mathematics in
2015 and 2016 from Ateneo de Manila Univer-
sity, Philippines. Her research interest includes
multivariate spatio-temporal statistics and high-
performance computing for large spatial and
spatio-temporal datasets.

Sameh Abdulah is a research scientist at the
Extreme Computing Research Center, King Ab-
dullah University of Science and Technology,
Saudi Arabia. Sameh received his MS and PhD
degrees from Ohio State University, Columbus,
USA, in 2014 and 2016, His work is centered
around High Performance Computing (HPC) ap-
plications, bitmap indexing in big data, large
spatial datasets, parallel statistical applications,
algorithm-based fault tolerance, and Machine
Learning and Data Mining algorithms.

Huang Huang is a research scientist in the
Spatio-Temporal Statistics & Data Science group
at King Abdullah University of Science and Tech-
nology (KAUST). Before working at KAUST, he
did research on statistical computing for climate
applications as a postdoc at the National Center
for Atmospheric Research (NCAR), the Statisti-
cal and Applied Mathematical Sciences Institute
(SAMSI), and Duke University. He received his
Ph.D. in Statistics in 2017 from KAUST, master,
and bachelor in Mathematics in 2014 and 2011

from Fudan University. His research interest includes spatio-temporal
statistics, functional data analysis, Bayesian modeling, machine learn-
ing, and high-performance computing for large datasets.

Hatem Ltaief is the Principal Research Scien-
tist in the Extreme Computing Research Cen-
ter at King Abdullah University of Science and
Technology, Saudi Arabia. His research interests
include parallel numerical algorithms, fault tol-
erant algorithms, parallel programming models,
and performance optimizations for multicore ar-
chitectures and hardware accelerators. His cur-
rent research collaborators include Aramco, To-
tal, Observatoire de Paris, NVIDIA, and Intel.

Ying Sun received the PhD degree in statis-
tics from Texas A&M University in 2011. She
is an associate professor of statistics with the
King Abdullah University of Science and Tech-
nology (KAUST) in Saudi Arabia. Her research
interests include spatio-temporal statistics with
environmental applications, computational meth-
ods for large datasets, uncertainty quantification
and visualization, functional data analysis, ro-
bust statistics, and statistics of extremes.

Marc Genton received the PhD degree in statis-
tics (1996) from the Swiss Federal Institute of
Technology (EPFL), Lausanne. He is a distin-
guished professor of statistics with the King
Abdullah University of Science and Technology
(KAUST) in Saudi Arabia. He is a fellow of the
American Statistical Association, of the Institute
of Mathematical Statistics, and the American As-
sociation for the Advancement of Science, and
is an elected member of the International Sta-
tistical Institute. His research interests include

statistical analysis, flexible modeling, prediction, and uncertainty quan-
tification of spatio-temporal data, with applications in environmental and
climate science, renewable energies, geophysics, and marine science.

David Keyes received the BSE degree in
aerospace and mechanical sciences from
Princeton University, in 1978, and the PhD de-
gree in applied mathematics from Harvard Uni-
versity, in 1984. He directs the Extreme Com-
puting Research Center, KAUST. He works at
the interface between parallel computing and the
numerical analysis of PDEs, with a focus on
scalable implicit solvers. He helped develop and
popularize the Newton-Krylov-Schwarz (NKS),
Additive Schwarz Preconditioned Inexact New-

ton (ASPIN), and Algebraic Fast Multipole (AFM) methods. He is a fellow
of the SIAM, AMS, and AAAS.

Authorized licensed use limited to: KAUST. Downloaded on April 07,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/jeffhammond/STREAM
https://github.com/jeffhammond/STREAM

