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ABSTRACT  

Mesoscale Eddy Dynamics and Scale in the Red Sea 

Michael F. Campbell, Jr. 

Recent efforts in understanding the variability inherent in coastal and offshore waters 

have highlighted the need for higher resolution sampling at finer spatial and temporal 

resolutions.  Gliders are increasingly used in these transitional waters due to their ability 

to provide these finer resolution data sets in areas where satellite coverage may be poor, 

ship-based surveys may be impractical, and important processes may occur below the 

surface.  Since no single instrument platform provides coverage across all needed spatial 

and temporal scales, Ocean Observation systems are using multiple types of instrument 

platforms for data collection.  However, this results in increasingly large volumes of data 

that need to be processed and analyzed and there is no current ñbest practiceò 

methodology for combining these instrument platforms.  In this study, high resolution 

glider data, High Frequency Radar (HFR), and satellite-derived data products 

(MERRA_2 and ARMOR3D NRT Eddy Tracking) were used to quantify: 1) dominant 

scales of variability of the central Red Sea, 2) determine the minimum sampling 

frequency required to adequately characterize the central Red Sea, 3) discriminate 

whether the fine scale persistency of oceanographic variables determined from the glider 

data are comparable to those identified using HFR and satellite-derived data products, 

and 4) determine additional descriptive information regarding eddy occurrence and 

strength in the Red Sea from 2018-2019.  Both Integral Time Scale and Characteristic 

Length Scale analysis show that the persistence time frame from glider data for 
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temperature, salinity, chlorophyll-Ŭ, and dissolved oxygen is 2-4 weeks and that these 

temporal scales match for HFR and MERRA_2 data, matching a similar description of a 

òweather-bandò level of temporal variability.  Additionally, the description of eddy 

activity in the Red Sea also supports this 2-4-week time frame, with the average duration 

of cyclonic and anticyclonic eddies from 2018-2019 being 22 and 27 days, respectively.  

Adoption of scale-based methods across multiple ocean observation areas can help define 

ñbest practiceò methodologies for combining glider, HFR, and satellite-derived data to 

better understand the naturally occurring variability and improve resource allocation. 
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Chapter 1: Introduction  

1.1 The Red Sea 

The Red Sea is a semi-enclosed basin lying between the Asian and African continents.  

The basin is about 2200 km long, has a maximum depth of about 2900 m, and an average 

width of 280 km (Raitsos et al., 2013; Triantafyllou et al., 2014).  The only major input of  

water in the Red Sea is through the Bab el Mandab (160 m deep) at the southern end of 

the Red Sea (Murray and Johns, 1997).  Surface water from the Gulf of Aden enters the 

Red Sea at a temperature of 25-30° C and salinity of 36-36.5 while intermediate water 

from the Gulf of Aden enters the basin at temperature of 16.5° C and salinity at 37.5 

(Sofianos and Johns, 2015). By the time the waters re-enter the Gulf of Aden salinity 

reaches above 40 (Sofianos and Johns, 2007; Yao et al., 2014a; Yao et al., 2014b).  The 

Red Sea is very warm, with Red Sea Deep Water reaching 21.4-21.5° C and salinity ~ 

40.6.  The Red Sea is also shallow, with approximately 41 percent of the total surface 

covering depths less than 100 m with extensive reef systems on both sides of the basin 

despite the warm temperatures (Churchill et al., 2014a; Gerges, 2002; Rasul and Stewart, 

2015; Silverman et al., 2007; Triantafyllou et al., 2014). 

The overall circulation in the Red Sea is based on a reverse estuarine system, with 

salinity increasing steadily with distance from Bab el Mandab (Berumen et al., 2019b; 

Sofianos and Johns, 2003; Sofianos and Johns, 2007).  Two main modes of interchange 

between the Red Sea and the Gulf of Aden exist, a two-layer system which occurs during 

the winter months (October-April) and dominates the overall annual circulation regime 

for the region, and a three-layer system that occurs during the summer months (June-
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August) (Sofianos and Johns, 2015).  Typically, the months of May and September are 

transitional months that have lighter winds (Langodan et al., 2014; Smeed, 1998). The 

timing is linked to the interchange between the Red Sea and the Gulf of Aden and the 

change in direction of the monsoon winds blowing through Bab el Mandab.  The two-

layer winter-time circulation occurs when the monsoon winds blow into the Red Sea 

from the Gulf of Aden, which drive surface flow into the southern Red Sea (Langodan et 

al., 2014; Sofianos and Johns, 2003; Sofianos and Johns, 2007; Yao et al., 2014a; Yao et 

al., 2014b).  As the northeast monsoon winds weaken and reverse to the southwest 

monsoon, the interchange converts to a three-layer system in which surface water from 

the Red Sea flows into the Gulf of Aden, Gulf of Aden Intermediate Water flows 

underneath the surface water into the basin, and Red Sea Outflow Water flows 

underneath that into the Gulf of Aden (Sofianos and Johns, 2015; Sofianos and Johns, 

2003; Yao et al., 2014a).  Red Sea Outflow Water is an important component of the 

seawater throughout the region and can be found as far south as Mozambique and as far 

east as the Bay of Bengal (Beal et al., 2000; Jain et al., 2017). 

Recent research into circulation within the Red Sea tends to focus on four types of energy 

transfer: surface buoyancy loss due to evaporation, wind-driven circulation, boundary 

currents, and friction caused by the bathymetry of the Red Sea (Triantafyllou et al., 2014; 

Wahr et al., 2014; Yao et al., 2014a; Yao et al., 2014b; Zhai et al., 2015; Zhan et al., 

2016).  Each of these processes have been evaluated in models as contributors to energy 

transfer within the Red Sea, with each method recreating the same type of eddies 

observed in satellite imagery, including Sea-Level Anomaly (SLA) data sets.  These 

papers identify surface buoyancy loss and winds as the primary methods of energy 
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transfer (Triantafyllou et al., 2014; Wahr et al., 2014; Yao et al., 2014a; Yao et al., 

2014b; Zhan et al., 2016). 

Eddies are considered an important factor to the short-term circulation patterns within the 

Red Sea, and each individual eddy typically lasts from two to six weeks (Karimova and 

Gade, 2014; Zhan et al., 2014).  When active, eddies are a dominant mode of kinetic 

energy transfer, with kinetic energy transfer being an order of magnitude higher than 

other modes of kinetic energy transfer (Zhan et al., 2016).  However, the recurrent eddies 

have a small temporal extent, raising the question of what other mechanisms account for 

energy transfer over longer time frames.   

When multi-year averages of surface circulation are examined, the short-term eddies are 

no longer seen, but instead a clear boundary current system is in effect (Figure 1.1) 

(Sofianos and Johns, 2003; Yao et al., 2014b; Zhai et al., 2015).  This long-term 

boundary system is also supported by recent observations from gliders and shore-based 

HF-radar systems (https://portus.kaust.edu.sa/portus/), (Zarokanellos et al., 2017a).  This 

interchange between an eddy dominated system and a boundary current system plays an 

important role in determining the length of a study period needed to answer questions 

related to energy dynamics in the Red Sea, with shorter time frames more focused on 

mesoscale eddy events.  One of the important factors in research design is to understand 

the relevant scale of dynamic processes. 

  

https://portus.kaust.edu.sa/portus/
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Figure 1.1: Nine-year composite map of sea surface circulation resulting from thermo-

haline fields only in the Red Sea.  This figure is copied from Sofianos and Johns (2003) 

and is a result from the Miami Isopycnic Coordinate Ocean Model simulation experiment 

discussed in their paper. 

 

1.2: Characteristic Length Scale and variability  

Scale is not a new concept within marine science.  Initial discussions about the role of 

scale within ecosystems were introduced with the Stommel sea level variability plot, 

(Figure 1.2) and included discussion of other parameters, including temperature, tides, 

and current velocities (Stommel, 1963).  Many different types of plots have been based 

on this initial discussion, covering ideas from effective sampling techniques to instrument 

limitations and other topics (Hedley et al., 2016; Phinn et al., 2010; Turner et al., 2001; 

Vance, 2007; Wu, 1999).  The many variations of these plots show a general positive 

trend with longer time scale events extending over greater spatial distances.  The 

Stommel diagram also indicates how sampling needs to match the spatio-temporal 



17 

 

extents of the processes involved, as the variation can shift drastically between different 

spatio-temporal extents. 

 

Figure 1.2: Stommel Diagram of sea level variability over time and space.  Copied from 

Stommel (1963). 

 

This research utilizes a variety of measurement techniques, focusing on the spatio-

temporal constraints applicable to each method, and how these constraints affect the 

research and analysis of the Red Sea.  These results aim to establish that the data needed 

for analysis matches up with the logistical limitations of the data collection methods 

(Ellis and Schneider, 2008; Hewitt et al., 2007; Holland et al., 2004).  When data can 

only be collected at fixed intervals, for example on a weekly basis, then processes that 

occur at a higher frequency cannot be accurately resolved.  For time series data, this 
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limitation is known as the Nyquist frequency, in which time series data can only be 

analyzed accurately when the observations frequency is at least twice the desired analysis 

frequency due to the typical periodic nature of time series data sets (Thomson and Emery, 

2014).  In the case of data collected weekly, the Nyquist frequency enabling correct 

interpretation would be every two weeks or greater.  Spati0-temporal data of a periodic 

nature has a similar trend. Observations must be made at a sufficiently high resolution to 

fully resolve features, such as measuring both the crest and trough of a wave.  However, 

the data has an additional limitation due to the concept of autocorrelation, in which 

observations that are made at closer distances tend to be similar to each other, which can 

create a non-standard distribution (Getis and Ord, 1992; Mitchell, 2005; Quattrochi and 

Goodchild, 1997).  The most efficient data collection occurs when collected at resolutions 

that either avoid or explain spatio-temporal autocorrelation while still sufficiently 

detailed to fully describe any feature of interest. 

One of the goals of initial planning of an ocean observation system-based study is to 

determine the scales at which the variables in the system are either homogenous or 

heterogenous, where homogeneity indicates the sameness or persistency of the system 

and heterogeneity describes the variability of the system (Rahbek, 2005; Thompson and 

McGarigal, 2002; Turner et al., 2001).  The degree of either homogeneity or 

heterogeneity affects the variety of statistical analyses that can be performed to describe 

and summarize the data.  The typical approach to improve efficient utilization of time and 

money is to establish a spatio-temporal sampling methodology that ensures collected 

samples will maximize heterogeneity (Hedley et al., 2016; Hewitt et al., 2015; Hewitt et 

al., 2007).  Heterogeneity has two different defined components, the measured scale of 
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heterogeneity and the functional scale of heterogeneity.  The measured scale of 

heterogeneity is the easier to define of the two components, as it is simply the ñgrain 

sizeò of the collected data (Turner et al., 2001).  Grain is the resolution of the data or the 

spatio-temporal region represented by each data unit.  Any data collected at a finer scale 

than the grain is considered homogenous within that unit and can be considered as a part 

of the natural bounds of variability.  The functional scale of heterogeneity is the spatio-

temporal range that is important and affects changes across the entire system and has 

been described as the Characteristic Length Scale (CLS), which will be used throughout 

this research (Keeling et al., 1997; Pascual and Levin, 1999; Thompson and McGarigal, 

2002; Turner et al., 2001; Ward et al., 2018).  CLS can be calculated for individual 

variables within a system with sufficient data (Crowder and Norse, 2008; Habeeb et al., 

2005; Holland et al., 2004; Hurlbert and White, 2005).  CLS for an entire system rather 

than for a few variables is typically determined by examining the interactions and 

importance of each of the variables as a part of the whole. 

The relationship between grain and CLS has three main aspects.  Data collected below 

the range of the grain can be considered a threshold (homogenous) within the examined 

system, indicating a minimum aggregation of data needed within the system.  An 

example of this is seen in the working definition of the mixed layer in oceanography.  In 

the mixed layer, the density changes only slightly with depth until the pycnocline is 

reached indicating a high degree of similarity (Zervakis et al., 2016).  The mixed layer 

depth is important because data recorded within the mixed layer is considered 

homogenous, and presents the threshold values of parameters necessary for 
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phytoplankton production, which in turn is the basis for several other aspects of the 

mixed layer habitat (Brainerd and Gregg, 1995).   

The second case is examining data at a scale between the grain and the CLS, where the 

grain size has an adequate resolution to measure the variability of a natural system, the 

grain needs to match the same spatial and temporal scales being studied, as is the case 

when using Synthetic Aperture Radar to measure eddy size and rotations to determine 

variability in sub-mesoscale eddies, where the images had a spatial grain size of 150 m 

(Dreschler-Fischer et al., 2014; Karimova and Gade, 2014).  These sub-mesoscale eddies 

occur at spatial scales typically less than 70 km and for time periods less than 2 weeks, 

which limits detection in current global eddy tracking data products.  In these studies, the 

spatial and temporal scale of the collected datasets fall within the spatial and temporal 

scale of the eddies, which allows for the characterization of the events of interest. 

The final case is when grain is above the CLS.  In this final situation, the descriptive 

information collected from the grain establishes the available limits within the system, or 

the carrying capacity.  Measurements to determine carrying capacity do not have to occur 

as frequently as other types of measurements and are typically used as a part of the initial 

descriptions of a new system.  An example of this can be seen in the Red Sea through the 

series of numerical simulations that have been run and continued to be developed in the 

Red Sea.  Initial descriptions of Red Sea circulation have included various details of the 

interactions of eddies within the basin, going from permanent eddies to reoccurring to 

semi-permanent as the grain of the numerical simulations has reached finer spatio-

temporal resolutions (Patzert, 1974; Sofianos and Johns, 2003; Yao et al., 2014a; Yao et 

al., 2014b; Zarokanellos et al., 2017b; Zhan et al., 2014).  Both threshold and carrying 
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capacity values do not have to be monitored as closely as variables that fall within the 

functional heterogeneity (Turner et al., 2001). 

This study addresses the CLS examining mesoscale activity in the Red Sea, with a 

primary focus on the north central part of the basin.  For marine systems, the CLS is 

defined as a volume of water in which measured variables are at a steady state, with less 

variability within the defined spatio-temporal unit of water than between adjacent, 

equivalent sized units.  The series of topics discussed within this dissertation bring a 

better understanding of the CLS of the spatio-temporal variables including temperature, 

salinity, chlorophyll-Ŭ, dissolved oxygen, and eddy occurrence and strength that are 

currently being measured as a part of an oceanic observation system in the Red Sea.  This 

project also establishes a framework to determine the impact that new technology will 

have on the ability to understand circulation within the Red Sea and develop methods to 

re-assess CLS as new data sources become available.  As circulation is a major 

component of marine habitat health, these variables play an important role in 

understanding processes that affect the entire Red Sea ecosystem.  A recent trend in 

economic development within the Red Sea as a part of Saudi Arabian nation policy 

associated with Vision 2030 also indicates the need for a deeper understanding of the 

overall marine system (Almahasheer and Duarte, 2020).  As development and utilization 

of the Red Sea increases due to projects related to Vision 2030, the need to understand in 

greater detail the interactions that occur both in the localized areas of the Red Sea and the 

entire basin as a whole will increase.   
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1.3: Research Goals 

The goal of this dissertation is to examine the effects of the introduction of data collected 

at finer scale to an overall understanding of the Red Sea to provide an initial framework 

for planning future studies in the Red Sea, with the goal of establishing an adaptive 

methodology for oceanographic observations, where sampling locations and frequencies 

can be adjusted while maintaining continuity with previously existing data collection.  In 

addition, effort must be made to ensure that analysis methods for the different types of 

data are comparable, indicating the need for highly flexible and accurate statistical 

analysis.  Recent efforts in the Red Sea have introduced two tools for examining spatio-

temporal scale in the Red Sea.  The first tool is buoyancy-propelled, autonomous 

underwater vehicles (gliders), which collect oceanographic data across the entire water 

column along user-defined transect lines.  The second tool is surface current mapping 

through High Frequency Radar (HFR), which provides hourly information on the speed 

and direction of surface currents over an extended area on an hourly basis.  The addition 

of these tools allows for the collection of data at sufficient detail to describe events 

occurring on a spatial scale of several kilometers and a temporal scale of one to five 

hours.  One goal of this dissertation is to examine the feasibility of using a non-linear, 

non-uniform CLS calculation with glider and HFR data sets in the Red Sea.  A second 

goal is to examine some of the potential processes involved with variability in sea surface 

temperature, eddy occurrence, and physical structure in the Red Sea.  Oceanographic 

information will be analyzed at both mesoscale (70-300 km) and basin wide levels of 

scale.  Chapters 2 and 3 are focused on the application of CLS to short-term data sets 

collected by gliders and HFR. Chapter 4 is focused on basin wide dynamics, examining 
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the link between sea surface temperature and eddies.  The successful application of the 

methods can then be used for further analysis over longer time series and as a starting 

point for developing an adaptive observation system in the Red Sea. 
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Chapter 2: Characterizing temporal scales of temperature, salinity, and 

chlorophyll variability using high-resolution glider data in the Red Sea 

2.1: Introduction  

The importance of scale across both time and space was introduced by Henry Stommel 

for marine research in the early 1960s.  His initial discussion focused on the logistical 

processes that were relevant to sampling the spatio-temporal variation of sea level. Of 

course, other physical variables such as temperature and current velocities are 

additionally associated with sea level fluctuations (Stommel, 1963). The central concept 

was to demonstrate how oceanic processes varied across scales and that sampling efforts 

had to be planned with consideration of this variation.  Issues of scale have become 

increasingly important in both seascape ecology and ocean observation systems, two 

areas of research that aim to characterize the marine environment (Ellis and Schneider, 

2008; Kavanaugh et al., 2016; Nickols et al., 2015).  The Stommel diagram has been 

adapted many times since the initial discussion, providing the key paradigms for 

understanding the interaction between length and time within marine systems.  

Derivatives of Stommelôs initial diagram have focused on pelagic trophic levels (Dickey, 

2003), predictive capabilities of marine observational platforms at various scales (Hedley 

et al., 2016), and have even extended to topics outside of marine science (Rose et al., 

2017; Turner et al., 2001).  One general pattern apparent in the derivatives of the original 

Stommel diagram is a positive trend of increasing time scale associated with increasing 

spatial scales.  As new technologies for observation in the marine environment emerge, a 

range of processes can be measured and analyzed at increasingly finer spatio-temporal 
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resolutions. However, an increasing volume of data does not a priori result in a better 

understanding of the underlying marine system (Little et al., 2018). Marine systems are a 

complex interplay between physical processes and biological response, which can vary 

dramatically across multiple levels of scale (Hidalgo et al., 2016; Kavanaugh et al., 2016; 

Mazloff et al., 2018).  With this increase in available data, it is important to define the 

appropriate spatio-temporal scales required to resolve the key physical and biological 

processes.  Identifying and defining these discrete units allows for direct analysis of 

processes measured by different instruments at a uniform spatio-temporal scale (Davis et 

al., 2019; Hedley et al., 2016; Hewitt et al., 2015). 

As the density of spatio-temporal data for an area increases, conclusions can be drawn 

about the important, naturally occurring scales that affect the study area, as can be seen in 

the CalCOFI project (McClatchie, 2016; Rudnick et al., 2017), the global Argo program 

(Holte et al., 2017), and BGC Argo program (Terzic et al., 2019).  The CalCOFI project 

has been ongoing with regular observations since 1951, and is the longest running, 

geographically extensive ocean observation project.  The data collected has been 

important for identifying and refining regionality and variability in the California Current 

system (McClatchie, 2016).  The addition of autonomous vehicles to the project through 

the California Underwater Glider Network has increased the availability of fine-scale 

data and revealed new oceanographic features in the project area (McClatchie, 2016; 

Rudnick et al., 2017).  The Argo program has been influential in understanding the 

features of the global ocean.  As of 2017, over 1,250,000 Argo profiles were used to 

characterize the temperature, salinity, and mixed layer depth of all the oceans, providing 

a global climatology as well as monthly data (Holte et al., 2017).  This data has provided 
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insight into circulation and large-scale oceanographic structures.  The Argo 

Biogeochemical program has similar aims to the Argo program, but with instrumentation 

specifically designed for biogeochemical measurements.  Until recently, optical 

properties have largely been excluded or simplified in biogeochemical models due to a 

lack of in situ sampling (Terzic et al., 2019).  Additional data from biogeochemical floats 

in the Mediterranean Sea describe the vertical, spatial, and temporal variability of zonal 

gradients in the basin. These studies highlight the need for high-resolution sampling at 

fine spatial (meso- to sub-mesoscale) and temporal scales (intra-seasonal) to understand 

longer-term variability of oceanographic processes.  

One of the important aspects of each of these projects has been the amount of information 

collected to differentiate between different regions of the study areas.  While many 

different methods of classification can be used to determine regionality, most forms of 

classification tend to rely on defining both the absolute value and variance associated 

with each measurement location over time compared to spatially close sample locations.  

Typically, a difference metric is used to organize the data, with locations that are 

statistical dependent typically classified into the same region.  Several different terms are 

used to characterize this naturally occurring organization of variables, including Integral 

Time Scale (ITS), Characteristic Length Scale (CLS), correlation length, scale of 

variability and others, each with a slightly different associated calculation (Habeeb et al., 

2005; Keeling et al., 1997; Thomson and Emery, 2014; Ward et al., 2018).  Each of these 

terms seek to determine the distance at which consecutively collected data points remain 

statistically dependent to each other, which for the purposes of this research will be 

defined as ñpersistencyò and considered in the context of persistent monitoring of areas 
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of interest while maintaining as much of the variability in the system as possibly (Davis 

et al., 2002; Davis et al., 2019; Habeeb et al., 2005; Rudnick, 2016; Rudnick et al., 2017).  

Defining persistency for a study area is an important step in understanding the logistics 

necessary to provide continuous monitoring.  By better understanding the natural, 

dynamic processes in an area, monitoring efforts can be adjusted to provide comparable 

data quality optimizing the allocation of observing resources (Rudnick et al., 2017).  

Uniform time series data tend to be sinusoidal and to properly characterize events 

sampling must occur at a frequency at least twice as often as the event.  This sampling 

frequency is known the Nyquist frequency.  As long as the Nyquist frequency for each 

defined station in the study area is maintained, monitoring resources can be adjusted 

without losing data quality (Thomson and Emery, 2014).  In the past, accurate analysis 

into persistency has only occurred over large-scale studies, either covering a large spatial 

extent or an extensive time frame, but seldom both at the same time (Habeeb et al., 2005; 

Keeling et al., 1997; Pascual and Levin, 1999; Ward et al., 2018). 

In recent years, autonomous platforms have greatly increased in capability and 

deployment duration and are able to provide continuous data sets for extended periods of 

time (Davis et al., 2019; Testor et al., 2019).  Depending on the mission parameters, the 

onboard instrumentation, and the frequency of data collection; these platforms sustain 

observations for extended durations with minimal or infrequent human interaction 

necessary (Rudnick et al., 2004).  These persistent monitoring missions have enabled 

resolution of much larger spatial and temporal scales than previously available, which in 

turn permits understanding kilometer length scales of variability within the study area 

(Rudnick et al., 2017).  While many types of autonomous platforms currently exist for 
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oceanic research, this discussion only focuses on observations from passively powered, 

buoyancy-propelled autonomous underwater vehicle Seaglider (gliders).  Gliders use 

changes in buoyancy and hydrodynamic lift to produce forward motion.  While in 

motion, gliders collect subsurface oceanographic data along a sawtooth path, providing 

information that cannot be collected by other autonomous platforms that measure surface 

values.  Gliders are particularly useful for long-term studies because the battery life can 

extend from 6 weeks to 3 months, with some missions exceeding over a year for a single 

deployment (Pelland et al., 2013; Rudnick, 2016).  These passively powered platforms 

are particularly effective for oceanic research in the Red Sea due to their effective 

duration and their ability to access areas or conditions that would limit ship based 

scientific surveys. 

Gliders have been effective in examining the water column in the Red Sea, a semi-

enclosed basin lying between the Asian and African continents.  The basin is about 2200 

km long, has a maximum depth of about 2800 m, and an average width of 280 km 

(Raitsos et al., 2013; Triantafyllou et al., 2014).  The basin is considered very saline and 

warm, and like most tropical waters is oligotrophic (Brewin et al., 2015; Gittings et al., 

2019).  The overall circulation in the Red Sea is based on a reverse estuarine system, with 

salinity increasing steadily with distance from Bab el Mandab (Sofianos and Johns, 2015; 

Sofianos and Johns, 2003; Sofianos and Johns, 2007).  Primary energy transfer in the Red 

Sea is due to surface buoyancy loss and winds (Triantafyllou et al., 2014; Wahr et al., 

2014; Yao et al., 2014a; Yao et al., 2014b; Zhan et al., 2016).  The energy transfer is 

often expressed through semi-permanent eddies that occur throughout the basin 

(Karimova and Gade, 2014; Zhan et al., 2019; Zhan et al., 2014; Zhan et al., 2016).  
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Additional research has also described three characteristics of both wind forcing and sea 

level variability in the Red Sea and the associated temporal scales with each process 

(Churchill et al., 2018; Churchill et al., 2014b; Sultan et al., 1995).  The first process is 

seasonal variability linked to the shift in the monsoonal winds over the Gulf of Aden 

flowing into the Red Sea.  The second described component of sea level variability is the 

semi-diurnal tide.  The third source of sea level variability, and the highest in magnitude 

of variability, is described as a weather system, with a duration of two to four weeks 

(Churchill et al., 2018). 

As gliders are continually used as a tool within marine research, the primary roles and 

capabilities of the platform are expanding across several additional research fields.  

Several different practices in deployment patterns, data analysis, and intended targets are 

under development for operating gliders due to the context-dependent nature of sampling 

(Davis et al., 2019; Rudnick, 2016; Testor et al., 2019).  One method for glider 

deployments is in conjunction with a marine observations system, which often includes a 

variety of shore-based data collection methods, modelling, and periodic ship-based 

research (Chao et al., 2017; Rudnick et al., 2017; Zarokanellos et al., 2017a; Zarokanellos 

et al., 2017b).  Additionally, gliders are often used in conjunction with satellite derived 

data, typically to extend patterns observed on the surface deeper into the water column 

(Frajka-Williams et al., 2009; Little et al., 2018; Testor et al., 2019).  These different 

oceanographic platforms collect data at different spatio-temporal resolution, which can 

confuse a clear analysis with mismatched spatio-temporal binning.  Given the increasing 

use of gliders to compliment other forms of marine observation systems this study aims 

to identify the frameworks that are able to quantify the finest temporal range of data to 
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resolve oceanographic features while maintaining data independence across multiple 

spatio-temporal resolutions.  We present a method to integrate gliders, High Frequency 

Radar (HFR, Chapter 2.2.1.4), and an atmospheric reanalysis product MERRA_2 

(Modern-Era Retrospective Analysis for Research and Applications-2, Chapter 2.2.1.3) 

data to define short-term persistency, within the north central Red Sea.  Notably this 

study used high resolution glider data, HFR and MERRA_2 data to test methods to 

quantify: 1) dominant scales of variability of the glider time series, 2) determine the 

minimum sampling frequency required to adequately characterize the glider time series 

and 3) discriminate whether the temporal variations measured from the glider are similar 

to variations determined from the HFR and MERRA_2 data.  

2.1.1 Study Area 

The chosen study area for this analysis is a portion of the north central Red Sea offshore 

from King Abdullah University of Science and Technology (KAUST, Figure 2.1).  This 

study area was chosen for several reasons, including the frequency of eddies near the 

area, a semi-persistent boundary current, the sustained mapping of surface currents using 

HFR, coverage of recently validated data from the MERRA_2 data set (Al Senafi et al., 

2019), and proximity to the university for access.  The glider was deployed through the 

month of October 2017 with the intent to resolve the fine scale persistency of 

oceanographic variables in the region.  October is an important time as it is part of the 

transitional period between the southwest monsoonal forcing in summer and the winter 

northeast monsoonal conditions for the Red Sea (Bower and Farrar, 2015; Sofianos and 

Johns, 2015; Yao et al., 2014a; Yao et al., 2014b).  Because both the glider and the water 

it is sampling are moving both in time and space, this data set will be compared to two  
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data sets at fixed locations from the region.  The first is the hourly recorded surface 

current velocities from HFR and the second is the hourly reported values from the 

MERRA_2 dataset (Rienecker et al., 2011) .  Since these data sets are at fixed locations, 

they provide resources to cross validate the results from the glider collected data. 

 

Figure 2.1: Location of the study area within the Red Sea.  The glider transect (KAUST 

Line) is the solid line, the sites used from the HFR data are the diamonds (Sites A-D), 

and the locations for the MERRA_2 East and West sites are the hexagons, slightly south 

of the glider line.  All three data sets run from October 1 -31, 2017. 

 

Previous work utilizing in situ observations, satellite remote sensing, and modelling has 

shown that eddies are an important characteristic of the circulation in the Red Sea 

(Zarokanellos et al., 2017a; Zhan et al., 2018; Zhan et al., 2014; Zhan et al., 2016).  These 

works have provided a basic description of the size, location, frequency, and duration of 

eddies in the Red Sea, and are indicative of the magnitude of eddies resulting primarily 

from thermohaline circulation and wind forcing.  Eddies in the Red Sea typically last 

from two to six weeks, with smaller diameter eddies tending to occur more frequently, 

yet dissipate more quickly than larger eddies.  However, when multi-year averages of 
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surface circulation are examined, the short-term eddies are no longer seen, but instead a 

clear boundary current system is in effect (Sofianos and Johns, 2003).  This eastern 

boundary current has been observed in numerical models and with in situ observations 

and is under continuing investigation using both glider and HFR observations.  These 

observations indicate that the eastern boundary current can typically defined by a sharp 

decrease in values for salinity (<39.5), indicating water that recently entered the Red Sea 

from Bab el Mandeb. The water in the boundary current also has increased values for 

temperature and chlorophyll-Ŭ when compared to the surrounding water, as can be seen 

in Figures 2.2 and 2.3, along the western part of the transect line.  The exact location that 

the eastern boundary current crosses the KAUST transect (Figure 2.1) can shift between 

the nearshore and offshore region depending on the influence of local eddies.   Over time, 

persistency measurements can show when a major shift in the underlying dynamics of a 

system occurs.  Within the context of the north central Red Sea, it is expected that the 

transition between the eastern boundary current and its interruption by local eddies will 

have an impact on the persistence in the study area, providing an ideal system to develop 

methodologies to measure the dominant scales of variability. 
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Figure 2.2: Temperature-salinity and ů-ɗ dissolved oxygen values for selected times of 

the glider mission.  The data shows two diverging water masses for the middle range of 

the water column based on longitude in the early part of the month.  Over time, these two 

water masses start to intermix. 
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Figure 2.3: Chlorophyll-Ŭ concentrations for the KAUST glider line over the month of 

October.  The isopycnal location of the peak in chlorophyll-Ŭ is different for the 

nearshore region (higher longitude) than the offshore region.  Towards the end of the 

month, the two maxima appear to be merging. 

 

2.2: Methods 

2.2.1: Measurements used in this study 

2.2.1.1: Glider data 

The primary data source for this research is from a glider (Seaglider®) deployment that 

occurred from September 2017 into November 2017.  The glider was equipped with a 

CTD, a dissolved oxygen sensor, a 3-wavelength fluorometer, and a 3-wavelength 
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backscatter sensor (Table 2.1).  The glider traversed an 80 km east-west transect between 

a starting waypoint approximately 20 km offshore to an offshore waypoint approximately 

100 km from the coast. The glider was set to dive to 500 m depth which represents a safe 

dive depth along the transect where the bottom depth varied from less than 600 m to more 

than 1000 m, and a dive depth which optimized horizontal resolution at about 2 km per 

dive with a dive interval of about 2.33 hours along the majority of the transect.  Data 

from the glider were collected from the entire dive cycle. However, the sampling 

frequency varied as a function of depth. The sampling frequency was once every 10 

seconds in the upper 100 meters, then once every 50 seconds between 100 and 250 m, 

and was reduced to once every 100 seconds between 250 m and 500 m. The sampling 

frequency corresponds to data collected once every 1.3 m for the upper 100 m, once 

every 6.5 m from 100 to 250 m, and one every 13 m from 250 to 500 m.  For this analysis 

three representative depths (6 m, 75m, and 150 m) and isopycnals (25.75 kg/m3, 26.75 

kg/m3, and 27.75 kg/m3) were chosen for analysis.  Since the goal of this research is to 

compare spatio-temporal patterns from glider collected data to existing data sets at the 

surface, the selected depth and isopycnal layers were selected to be in the upper portion 

of the water column extending into the upper portion of the subpycnocline layer.  The 

depth of 6 m represents the upper limit of consistent measurements from the glider since 

the vehicle can take several meters to reach steady flight, where the different response of 

the sensors (temperature, salinity, chlorophyll Ŭ, dissolved oxygen) can be accurately 

accounted and corrected for.  The depth layer of 75 m represents the typical depth of the 

chlorophyll-Ŭ maximum from the collected data and the 150 m depth layer is below the 

deepest recorded mixed layer depth from the data set.  The isopycnals were selected for a 
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different reason, the 25.75 kg/m3 isopycnal is the shallowest isopycnal that extends 

through the entire collection period, and the other two isopycnals were selected as an 

even incremental increase until the denser waters located below 28.00 kg/m3.  These 

depths and isopycnals bracket the upper and lower extents of the water column 

experiencing greatest variability.   

Equipment Parameters 
Excitation 

[nm] 
Emission 

[nm] 

CTD  Temperature     

(Seabird CT-sail, Conductivity     

unpumped)       

        

WET Labs Chlorophyll-  h 470 695 

ECO Puck CDOM 370 460 

(FL3) Phycocyanin 630 680 

        

WET Labs Optical 532 532 

ECO Puck backscatter at 3 650 650 

(BB3) wavelengths 880 880 

        

Oxygen sensor  Dissolved Oxygen     
(Aanderaa 
optode,       

model 4331)       

 

Table 2.1:  Summary of the glider equipment used in this study. 

2.2.1.2: Processing and quality control of glider data 

Raw instrument measurements (counts) for each parameter were transformed into 

geophysical quantities by applying the manufacturer-provided scaling factor and dark 

count.  Then, each profile was quality controlled by applying methods that have been 

specifically developed for each parameter (Organelli et al., 2017; Thierry et al., 2018) 



37 

 

following Argoôs óreal-timeô quality control procedure and data management (Wong et 

al., 2020). 

Following Schmechtig et al. (2014), vertical profiles of chlorophyll-Ŭ were adjusted for 

non-zero deep values and corrected for non-photochemical quenching according to Xing 

et al. (2012) (Schmechtig et al., 2014; Xing et al., 2012; Xing et al., 2017).  Furthermore, 

the chlorophyll-Ŭ values were then divided by a factor of two to correct the 

overestimation observed by standard Wet Lab fluorometers as described in Roesler et al. 

(2017) (Roesler et al., 2017).  Spikes were removed from the chlorophyll-Ŭ 

measurements using a low-pass median filter.  Correction of O2 measurements were 

performed by applying a factor deduced from the comparison between the O2 values 

obtained via Winkler titration and analysis (Carpenter, 1965; Winkler, 1888) and those 

from the glider.  During the glider deployment, water samples were collected at nominal 

depths (5, 10, 30, 50, 100, 150, 200, 300, 400, and 600 m) and stored in 125 mL iodine 

titration flasks following standard operating procedures (Langdon, 2010).  The samples 

within the surface (5 and 10 m) were collected in triplicate.  The amount of O2 in each 

sample volume was converted in ɛmolĿkg-1 using the measured density of seawater.  

Finally, temperature, salinity, chlorophyll-Ŭ and O2 quality-controlled vertical profiles 

were binned in 2 m depth intervals and interpolated onto a grid with a 2.33-hour temporal 

spacing in this study, a regular data set needed for statistical analysis as described in 

2.2.2.  Additionally, these same quality-controlled files were binned in 0.125 kg/m3 

density intervals at the same 2.33-hour temporal spacing.  The time series for the upper 

250m from the glider deployment is shown in Figure 2.4 and the density-based profiles 

from 24.5 to 28.5 kg/m3 are presented in Figures 2.5. 
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Figure 2.4: Kaust glider line time series plots of temperature, salinity, chlorophyll-Ŭ, 

dissolved oxygen, and sigma-theta from 0-250 m.  The white line indicates the mixed 

layer depth based on the de Boyer index (de Boyer Montégut et al., 2004).  The red 

vertical lines indicate when the glider is inshore, the blue lines indicate when the glider is 

offshore. All color ramps used for the figures in this research are using color ramps from 

cmocean (Thyng et al., 2016). 
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Figure 2.5: Kaust glider line time series plots of temperature, salinity, chlorophyll-Ŭ, and 

dissolved oxygen from 24.5 - 28.5 kg/m3.  The red vertical lines indicate when the glider 

is inshore, the blue lines indicate when the glider is offshore. 

 

2.2.1.3: MERRA_2 data 

Since the introduction of NASAôs Modern-Era Retrospective Analysis for Research 

Applications version 2 (MERRA_2) (Gelaro et al., 2017; Rienecker et al., 2011) several 
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publications have examined the application of this new reanalysis data set to provide 

additional understanding of the seasonality occurring in the Red Sea.  The reanalysis data 

from MERRA_2 is especially useful for the region due to the lack of long-term 

meteorological measurements within the region.  Three recent publications have 

described in detail the degree of correlation between the reanalysis data from MERRA_2 

and data from a meteorological buoy that was deployed for two years near the study area.  

Al Senafi et al. (2019) demonstrated that MERRA_2 data shows a high degree of 

correlation (r = 0.97-0.98) for heat flux when compared with buoy data (Al Senafi et al., 

2019).  Menezes et al. (2019) describes the correlation (r = 0.89 ï 0.92) for wind speed, 

zonal velocity, meridional velocity, and evaporation rates (Menezes et al., 2019). Sun et 

al. (2019)  has used MERRA_2 as an independent data set for the verification of a new 

predictive model called SKRIPS (Sun et al., 2019).  Based on the validation of the 

MERRA-2 data by other investigators, the data set is used here as a complementary data 

set that will facilitate interpretation of our results. 

MERRA_2 data (MERRA2_400.tavg1_2d_ocn_Nx files) from two locations nearest to 

the KAUST glider line (38.75 E, 22.000 N and 38.125 E, 22.000 N, Figure 2.1) are used 

to compare persistency calculations from of the glider and HFR data set from October 

2017.  The parameters selected for analysis are air temperature and wind velocity at 10 

m, wind curl, and the water skin temperature (3-day average).  This data set provides a 

resource to understand additional forcing components that contribute to eddy driven 

dynamics. 
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2.2.1.4: CODAR data 

The HFR system is located on the central western coast of Saudi Arabian and consists of 

two CODAR Seasonde® sites in operation since July 2017 (Solabarrieta et al., in 

review).  The HFR system transmits at the 16.12 MHz frequency with hourly data 

provided over a 120 km range with a spatial resolution of 3 km.  The received backscatter 

signal was converted into radial velocities using the MUltiple SIgnal Classification 

algorithm (Schmidt, 1986).  The MATLAB package HF Progs 

(https:cencalarchive.org/~cocpmb/COCMPwiki) was then used to combine radial 

currents and generate gap-filled total, two dimensional currents using Open Modal 

Analysis (Kaplan and Lekien, 2007) for the entire month of October 2017.  Both before 

and after October 2017, errors in the HFR limited the amount of data available to create 

gap filled currents using Open Modal Analysis.  Four evenly spaced locations across the 

KAUST glider line were selected for time series analysis, as seen in Figure 2.1 (Sites A-

D). 

2.2.2: Time series analysis used in this study 

One of the difficulties of working with data collected during glider missions is that the 

glider is likely not sampling the system synoptically (Rudnick and Cole, 2011; Thomson 

and Emery, 2014).  The lack of synopticity increases the amount of inherent dependency 

that occurs within the study area, which then increases the minimum length of time data 

is needed to understand the system.  While an increase in available information in an area 

can greatly improve the understanding of the physical processes, many areas across the 

world have limited time series data due to a lack of previous observation opportunities 
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(Davis et al., 2002; Davis et al., 2019; Rudnick et al., 2004).  Many of the new 

observation platforms were specifically designed to be deployed in areas that lack long-

term time series data, and the presented analysis methods were designed to operate in 

systems that may not be data rich (Lee et al., 2012; Lermusiaux et al., 2017; Webster et 

al., 2014).  Because gliders travel at approximately 0.25 m/s (20km/day), it can be 

difficult to separate out which portion of the observed variation is due to a change in 

time, longitude, latitude, density, or depth.  In the case of this study, latitudinal variation 

was limited by maintaining the same latitude within a data set as closely as possible.  

While mission planning is potentially able to minimize the observed variation of some of 

these dimensions, minimizing these features a priori risks an incorrect characterization of 

the natural variability in the system, especially when the sampling locations are located 

too close to each other in time or space (Ellis and Schneider, 2008; Hewitt et al., 2007; 

Holland et al., 2004).  This study presents two statistical methods that can be used to 

determine the natural framework of time analysis within the study area.  This study seeks 

to define the optimal sampling frequency to provide both an effective characterization of 

the system and ensure that the full range of natural variation is also described. 

2.2.2.1: Autocorrelation analysis 

Autocorrelation is defined as the normalized cross covariance of a time series data set at 

increasing distant time lags, and can be calculated from non-linear but uniform data sets 

(Habeeb et al., 2005; Thomson and Emery, 2014).  Autocorrelation analysis identifies the 

time lags at which the time series data set has significant dependencies or correlations.  

Stochastic processes are time dependent and show a decreasing correlation with time 

(Thomson and Emery, 2014).  One method of eliminating stochastic processes in time 
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series data sets is to average the data set over regular intervals.  If the selected interval is 

short enough to be highly correlated, then the assumption of data independence is 

violated.  The time that this data dependency occurs over can be determined by 

comparing the correlation at increasingly distant data points within the time series data 

(Thomson and Emery, 2014).  At a lag of zero, data is perfectly correlated with itself.  In 

a typical system, the magnitude of autocorrelation tends to decrease as the time lag 

increases, and the correlation remains close to zero and no longer crosses the threshold 

into significant dependency.  Data collected at such lags are considered independent for 

statistical analysis (Thomson and Emery, 2014).  In situations in which data follows a 

cyclical pattern, like a diurnal cycle, then the autocorrelation analysis will typically 

oscillate between regions of positive and negative correlation until the correlation values 

fall below significant levels, with each peak in the correlation indicating the duration of 

the cycle.  The time lag at which the last significant autocorrelation peak is called the 

Integral Time Scale (ITS).  ITS defines the scale where lag transitions from dependency 

to independency, and indicates lag at which the time series data no longer has a 

significant level of either positive or negative correlation (Thomson and Emery, 2014). 

2.2.2.2: Characteristic Length Scale (Error X) analysis 

The Characteristic Length Scale (CLS) analysis for this research is an adaptation of the 

method published in Ward et al. (2018), which described Error X as a way to calculate 

CLS from existing transects and further suggested that the method could be applied to 

glider and tow vehicle data sets (Habeeb et al., 2005; Keeling et al., 1997; Ward et al., 

2018).  The layers selected are from the upper portion of the water column which are 

most influenced by surface conditions, and thus relevant for comparisons with 
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MERRA_2 and HFR data.  This focus allows for a better analysis of the relevant time-

space scales for the upper portion of the water column by incorporating the surface 

forcing (MERRA_2) and the surface current maps recorded at finer spatial resolution.   

Two circumstances were described in which Error X can be used to calculate CLS 

(Habeeb et al., 2005; Ward et al., 2018), where both methods are using changes in the 

spatial dimension as a replacement for time.  The first circumstance is a short-time series 

approach, and the second is adapting measurements over space as a replacement for 

measurements over time.  Even though the transect line developed for this research was 

set up to examine both transitions through time and space, this paper will only focus on 

the short time series approach, which includes a combination of relatively few time steps 

coupled with the spatial displacement across a single time step (Habeeb et al., 2005).  

This is limited due to the relatively small spatial extent of the glider deployment mission, 

which prevented determining only the spatial CLS.  CLS calculation is an iterative 

process comparing the difference between the recorded value and the predicted value for 

increasing larger separation distances.  Predictive values are calculating by using a k 

Nearest Neighbor (kNN) approach.  examining the difference between a single point in 

the data set and the average of values located both before and after the data point at 

increasing distances.  This difference is calculated at all distances up to half of the overall 

length of the data set.  The error curve is then calculated by using a Monte Carlo chain 

simulation (100 runs) averaging twenty randomly selected error measurements at each 

distance bin.  These 100 Error X results are then averaged together to produce a final 

mean CLS calculation with an associated 95% confidence interval (Habeeb et al., 2005; 

Keeling et al., 1997; Ward et al., 2018).  As measurements are further removed in either 
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space or time (or both) from a point of interest, the error between the prediction method 

and the actual values is expected to steadily increase until the error becomes asymptotic.  

CLS is typically defined as the distance at which the error curve becomes asymptotic.  

While other prediction methods instead of kNN moving mean have been described since 

Keeling et al. 1997, this method was selected as a proof of concept in extending the CLS 

approach into glider related studies. 

2.3: Results 

The KAUST glider line shows evidence of a transitional period within the month-long 

data set presented.  As seen in Figure 2.2, in early October the KAUST line shows a 

sharp difference between the nearshore and offshore regions in both the temperature-

salinity diagrams and dissolved oxygen.  These figures have the longitudinal location of 

each sample shaded to highlight the difference between the two regions.  The two 

sections of the line show different characteristics through the water column, with the 

nearshore region exhibiting less saline water with lower dissolved oxygen.  Over the 

course of the month, the ends of the line become less distinctive.  Figure 2.3 shows the 

time series data for chlorophyll-Ŭ and density across the full time of the glider mission.  

This figure is also shaded by longitudinal location, using the same range as Figure 2.2.  

This figure also shows a similar result when comparing between the density location of 

the peak chlorophyll-Ŭ concentration in the water column.  The nearshore region shows a 

shallower peak, located between 26.00 ï 26.25 kg/m3, while the offshore region shows a 

deeper peak at the 28.00 kg/m3 isopycnal. Both Figures 2.2 and 2.3 show that these 

differences become less distinct towards the end of the month. 
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Both the 0-250 m and the 24.5 ï 29.00 kg/m3 time series figures (Figures 2.4-2.5) for the 

KAUST transect line show a difference between the nearshore region and the offshore 

region during the start of the month of October.  These differences indicate that the two 

regions of the transect line are experiencing different conditions.  The time series figures 

also show a transitional region between the ends of the transect, indicating the potential 

of interchange between the nearshore and offshore region.  This idea is further supported 

by the decrease in the difference of the nearshore and offshore regions towards the end of 

the month of October.  The variance seen in temperature, salinity, chlorophyll-Ŭ, and 

dissolved oxygen over the course of this single month supports the idea presented by 

Churchill et al. of the weather band (2-4 weeks) playing an important role in 

understanding the natural variance occurring within the Red Sea (Churchill et al., 2018).  

The time series data set for each variable at each of the three depths (6, 76, and 150 m) 

and the three density layers (25.75, 26.25, 28.00 kg/m3) are presented in Figures 2.6 and 

2.7. 
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Figure 2.6: KAUST glider line time series profiles for temperature, salinity, dissolved 

oxygen, chlorophyll-Ŭ, and density anomaly at 6, 76, and 150 m depth.   

 

 

Figure 2.7:  Kaust glider line time series profiles for temperature, salinity, dissolved 

oxygen, and chlorophyll-Ŭ at the 25.75, 26.25, and 28.00 kg/m3 isopycnals. 


































































































































































































