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ABSTRACT 

Mesoscale Eddy Dynamics and Scale in the Red Sea 

Michael F. Campbell, Jr. 

Recent efforts in understanding the variability inherent in coastal and offshore waters 

have highlighted the need for higher resolution sampling at finer spatial and temporal 

resolutions.  Gliders are increasingly used in these transitional waters due to their ability 

to provide these finer resolution data sets in areas where satellite coverage may be poor, 

ship-based surveys may be impractical, and important processes may occur below the 

surface.  Since no single instrument platform provides coverage across all needed spatial 

and temporal scales, Ocean Observation systems are using multiple types of instrument 

platforms for data collection.  However, this results in increasingly large volumes of data 

that need to be processed and analyzed and there is no current “best practice” 

methodology for combining these instrument platforms.  In this study, high resolution 

glider data, High Frequency Radar (HFR), and satellite-derived data products 

(MERRA_2 and ARMOR3D NRT Eddy Tracking) were used to quantify: 1) dominant 

scales of variability of the central Red Sea, 2) determine the minimum sampling 

frequency required to adequately characterize the central Red Sea, 3) discriminate 

whether the fine scale persistency of oceanographic variables determined from the glider 

data are comparable to those identified using HFR and satellite-derived data products, 

and 4) determine additional descriptive information regarding eddy occurrence and 

strength in the Red Sea from 2018-2019.  Both Integral Time Scale and Characteristic 

Length Scale analysis show that the persistence time frame from glider data for 
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temperature, salinity, chlorophyll-α, and dissolved oxygen is 2-4 weeks and that these 

temporal scales match for HFR and MERRA_2 data, matching a similar description of a 

”weather-band” level of temporal variability.  Additionally, the description of eddy 

activity in the Red Sea also supports this 2-4-week time frame, with the average duration 

of cyclonic and anticyclonic eddies from 2018-2019 being 22 and 27 days, respectively.  

Adoption of scale-based methods across multiple ocean observation areas can help define 

“best practice” methodologies for combining glider, HFR, and satellite-derived data to 

better understand the naturally occurring variability and improve resource allocation. 
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Chapter 1: Introduction 

1.1 The Red Sea 

The Red Sea is a semi-enclosed basin lying between the Asian and African continents.  

The basin is about 2200 km long, has a maximum depth of about 2900 m, and an average 

width of 280 km (Raitsos et al., 2013; Triantafyllou et al., 2014).  The only major input of  

water in the Red Sea is through the Bab el Mandab (160 m deep) at the southern end of 

the Red Sea (Murray and Johns, 1997).  Surface water from the Gulf of Aden enters the 

Red Sea at a temperature of 25-30° C and salinity of 36-36.5 while intermediate water 

from the Gulf of Aden enters the basin at temperature of 16.5° C and salinity at 37.5 

(Sofianos and Johns, 2015). By the time the waters re-enter the Gulf of Aden salinity 

reaches above 40 (Sofianos and Johns, 2007; Yao et al., 2014a; Yao et al., 2014b).  The 

Red Sea is very warm, with Red Sea Deep Water reaching 21.4-21.5° C and salinity ~ 

40.6.  The Red Sea is also shallow, with approximately 41 percent of the total surface 

covering depths less than 100 m with extensive reef systems on both sides of the basin 

despite the warm temperatures (Churchill et al., 2014a; Gerges, 2002; Rasul and Stewart, 

2015; Silverman et al., 2007; Triantafyllou et al., 2014). 

The overall circulation in the Red Sea is based on a reverse estuarine system, with 

salinity increasing steadily with distance from Bab el Mandab (Berumen et al., 2019b; 

Sofianos and Johns, 2003; Sofianos and Johns, 2007).  Two main modes of interchange 

between the Red Sea and the Gulf of Aden exist, a two-layer system which occurs during 

the winter months (October-April) and dominates the overall annual circulation regime 

for the region, and a three-layer system that occurs during the summer months (June-
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August) (Sofianos and Johns, 2015).  Typically, the months of May and September are 

transitional months that have lighter winds (Langodan et al., 2014; Smeed, 1998). The 

timing is linked to the interchange between the Red Sea and the Gulf of Aden and the 

change in direction of the monsoon winds blowing through Bab el Mandab.  The two-

layer winter-time circulation occurs when the monsoon winds blow into the Red Sea 

from the Gulf of Aden, which drive surface flow into the southern Red Sea (Langodan et 

al., 2014; Sofianos and Johns, 2003; Sofianos and Johns, 2007; Yao et al., 2014a; Yao et 

al., 2014b).  As the northeast monsoon winds weaken and reverse to the southwest 

monsoon, the interchange converts to a three-layer system in which surface water from 

the Red Sea flows into the Gulf of Aden, Gulf of Aden Intermediate Water flows 

underneath the surface water into the basin, and Red Sea Outflow Water flows 

underneath that into the Gulf of Aden (Sofianos and Johns, 2015; Sofianos and Johns, 

2003; Yao et al., 2014a).  Red Sea Outflow Water is an important component of the 

seawater throughout the region and can be found as far south as Mozambique and as far 

east as the Bay of Bengal (Beal et al., 2000; Jain et al., 2017). 

Recent research into circulation within the Red Sea tends to focus on four types of energy 

transfer: surface buoyancy loss due to evaporation, wind-driven circulation, boundary 

currents, and friction caused by the bathymetry of the Red Sea (Triantafyllou et al., 2014; 

Wahr et al., 2014; Yao et al., 2014a; Yao et al., 2014b; Zhai et al., 2015; Zhan et al., 

2016).  Each of these processes have been evaluated in models as contributors to energy 

transfer within the Red Sea, with each method recreating the same type of eddies 

observed in satellite imagery, including Sea-Level Anomaly (SLA) data sets.  These 

papers identify surface buoyancy loss and winds as the primary methods of energy 
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transfer (Triantafyllou et al., 2014; Wahr et al., 2014; Yao et al., 2014a; Yao et al., 

2014b; Zhan et al., 2016). 

Eddies are considered an important factor to the short-term circulation patterns within the 

Red Sea, and each individual eddy typically lasts from two to six weeks (Karimova and 

Gade, 2014; Zhan et al., 2014).  When active, eddies are a dominant mode of kinetic 

energy transfer, with kinetic energy transfer being an order of magnitude higher than 

other modes of kinetic energy transfer (Zhan et al., 2016).  However, the recurrent eddies 

have a small temporal extent, raising the question of what other mechanisms account for 

energy transfer over longer time frames.   

When multi-year averages of surface circulation are examined, the short-term eddies are 

no longer seen, but instead a clear boundary current system is in effect (Figure 1.1) 

(Sofianos and Johns, 2003; Yao et al., 2014b; Zhai et al., 2015).  This long-term 

boundary system is also supported by recent observations from gliders and shore-based 

HF-radar systems (https://portus.kaust.edu.sa/portus/), (Zarokanellos et al., 2017a).  This 

interchange between an eddy dominated system and a boundary current system plays an 

important role in determining the length of a study period needed to answer questions 

related to energy dynamics in the Red Sea, with shorter time frames more focused on 

mesoscale eddy events.  One of the important factors in research design is to understand 

the relevant scale of dynamic processes. 

  

https://portus.kaust.edu.sa/portus/
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Figure 1.1: Nine-year composite map of sea surface circulation resulting from thermo-

haline fields only in the Red Sea.  This figure is copied from Sofianos and Johns (2003) 

and is a result from the Miami Isopycnic Coordinate Ocean Model simulation experiment 

discussed in their paper. 

 

1.2: Characteristic Length Scale and variability 

Scale is not a new concept within marine science.  Initial discussions about the role of 

scale within ecosystems were introduced with the Stommel sea level variability plot, 

(Figure 1.2) and included discussion of other parameters, including temperature, tides, 

and current velocities (Stommel, 1963).  Many different types of plots have been based 

on this initial discussion, covering ideas from effective sampling techniques to instrument 

limitations and other topics (Hedley et al., 2016; Phinn et al., 2010; Turner et al., 2001; 

Vance, 2007; Wu, 1999).  The many variations of these plots show a general positive 

trend with longer time scale events extending over greater spatial distances.  The 

Stommel diagram also indicates how sampling needs to match the spatio-temporal 
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extents of the processes involved, as the variation can shift drastically between different 

spatio-temporal extents. 

 

Figure 1.2: Stommel Diagram of sea level variability over time and space.  Copied from 

Stommel (1963). 

 

This research utilizes a variety of measurement techniques, focusing on the spatio-

temporal constraints applicable to each method, and how these constraints affect the 

research and analysis of the Red Sea.  These results aim to establish that the data needed 

for analysis matches up with the logistical limitations of the data collection methods 

(Ellis and Schneider, 2008; Hewitt et al., 2007; Holland et al., 2004).  When data can 

only be collected at fixed intervals, for example on a weekly basis, then processes that 

occur at a higher frequency cannot be accurately resolved.  For time series data, this 
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limitation is known as the Nyquist frequency, in which time series data can only be 

analyzed accurately when the observations frequency is at least twice the desired analysis 

frequency due to the typical periodic nature of time series data sets (Thomson and Emery, 

2014).  In the case of data collected weekly, the Nyquist frequency enabling correct 

interpretation would be every two weeks or greater.  Spati0-temporal data of a periodic 

nature has a similar trend. Observations must be made at a sufficiently high resolution to 

fully resolve features, such as measuring both the crest and trough of a wave.  However, 

the data has an additional limitation due to the concept of autocorrelation, in which 

observations that are made at closer distances tend to be similar to each other, which can 

create a non-standard distribution (Getis and Ord, 1992; Mitchell, 2005; Quattrochi and 

Goodchild, 1997).  The most efficient data collection occurs when collected at resolutions 

that either avoid or explain spatio-temporal autocorrelation while still sufficiently 

detailed to fully describe any feature of interest. 

One of the goals of initial planning of an ocean observation system-based study is to 

determine the scales at which the variables in the system are either homogenous or 

heterogenous, where homogeneity indicates the sameness or persistency of the system 

and heterogeneity describes the variability of the system (Rahbek, 2005; Thompson and 

McGarigal, 2002; Turner et al., 2001).  The degree of either homogeneity or 

heterogeneity affects the variety of statistical analyses that can be performed to describe 

and summarize the data.  The typical approach to improve efficient utilization of time and 

money is to establish a spatio-temporal sampling methodology that ensures collected 

samples will maximize heterogeneity (Hedley et al., 2016; Hewitt et al., 2015; Hewitt et 

al., 2007).  Heterogeneity has two different defined components, the measured scale of 
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heterogeneity and the functional scale of heterogeneity.  The measured scale of 

heterogeneity is the easier to define of the two components, as it is simply the “grain 

size” of the collected data (Turner et al., 2001).  Grain is the resolution of the data or the 

spatio-temporal region represented by each data unit.  Any data collected at a finer scale 

than the grain is considered homogenous within that unit and can be considered as a part 

of the natural bounds of variability.  The functional scale of heterogeneity is the spatio-

temporal range that is important and affects changes across the entire system and has 

been described as the Characteristic Length Scale (CLS), which will be used throughout 

this research (Keeling et al., 1997; Pascual and Levin, 1999; Thompson and McGarigal, 

2002; Turner et al., 2001; Ward et al., 2018).  CLS can be calculated for individual 

variables within a system with sufficient data (Crowder and Norse, 2008; Habeeb et al., 

2005; Holland et al., 2004; Hurlbert and White, 2005).  CLS for an entire system rather 

than for a few variables is typically determined by examining the interactions and 

importance of each of the variables as a part of the whole. 

The relationship between grain and CLS has three main aspects.  Data collected below 

the range of the grain can be considered a threshold (homogenous) within the examined 

system, indicating a minimum aggregation of data needed within the system.  An 

example of this is seen in the working definition of the mixed layer in oceanography.  In 

the mixed layer, the density changes only slightly with depth until the pycnocline is 

reached indicating a high degree of similarity (Zervakis et al., 2016).  The mixed layer 

depth is important because data recorded within the mixed layer is considered 

homogenous, and presents the threshold values of parameters necessary for 
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phytoplankton production, which in turn is the basis for several other aspects of the 

mixed layer habitat (Brainerd and Gregg, 1995).   

The second case is examining data at a scale between the grain and the CLS, where the 

grain size has an adequate resolution to measure the variability of a natural system, the 

grain needs to match the same spatial and temporal scales being studied, as is the case 

when using Synthetic Aperture Radar to measure eddy size and rotations to determine 

variability in sub-mesoscale eddies, where the images had a spatial grain size of 150 m 

(Dreschler-Fischer et al., 2014; Karimova and Gade, 2014).  These sub-mesoscale eddies 

occur at spatial scales typically less than 70 km and for time periods less than 2 weeks, 

which limits detection in current global eddy tracking data products.  In these studies, the 

spatial and temporal scale of the collected datasets fall within the spatial and temporal 

scale of the eddies, which allows for the characterization of the events of interest. 

The final case is when grain is above the CLS.  In this final situation, the descriptive 

information collected from the grain establishes the available limits within the system, or 

the carrying capacity.  Measurements to determine carrying capacity do not have to occur 

as frequently as other types of measurements and are typically used as a part of the initial 

descriptions of a new system.  An example of this can be seen in the Red Sea through the 

series of numerical simulations that have been run and continued to be developed in the 

Red Sea.  Initial descriptions of Red Sea circulation have included various details of the 

interactions of eddies within the basin, going from permanent eddies to reoccurring to 

semi-permanent as the grain of the numerical simulations has reached finer spatio-

temporal resolutions (Patzert, 1974; Sofianos and Johns, 2003; Yao et al., 2014a; Yao et 

al., 2014b; Zarokanellos et al., 2017b; Zhan et al., 2014).  Both threshold and carrying 
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capacity values do not have to be monitored as closely as variables that fall within the 

functional heterogeneity (Turner et al., 2001). 

This study addresses the CLS examining mesoscale activity in the Red Sea, with a 

primary focus on the north central part of the basin.  For marine systems, the CLS is 

defined as a volume of water in which measured variables are at a steady state, with less 

variability within the defined spatio-temporal unit of water than between adjacent, 

equivalent sized units.  The series of topics discussed within this dissertation bring a 

better understanding of the CLS of the spatio-temporal variables including temperature, 

salinity, chlorophyll-α, dissolved oxygen, and eddy occurrence and strength that are 

currently being measured as a part of an oceanic observation system in the Red Sea.  This 

project also establishes a framework to determine the impact that new technology will 

have on the ability to understand circulation within the Red Sea and develop methods to 

re-assess CLS as new data sources become available.  As circulation is a major 

component of marine habitat health, these variables play an important role in 

understanding processes that affect the entire Red Sea ecosystem.  A recent trend in 

economic development within the Red Sea as a part of Saudi Arabian nation policy 

associated with Vision 2030 also indicates the need for a deeper understanding of the 

overall marine system (Almahasheer and Duarte, 2020).  As development and utilization 

of the Red Sea increases due to projects related to Vision 2030, the need to understand in 

greater detail the interactions that occur both in the localized areas of the Red Sea and the 

entire basin as a whole will increase.   
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1.3: Research Goals 

The goal of this dissertation is to examine the effects of the introduction of data collected 

at finer scale to an overall understanding of the Red Sea to provide an initial framework 

for planning future studies in the Red Sea, with the goal of establishing an adaptive 

methodology for oceanographic observations, where sampling locations and frequencies 

can be adjusted while maintaining continuity with previously existing data collection.  In 

addition, effort must be made to ensure that analysis methods for the different types of 

data are comparable, indicating the need for highly flexible and accurate statistical 

analysis.  Recent efforts in the Red Sea have introduced two tools for examining spatio-

temporal scale in the Red Sea.  The first tool is buoyancy-propelled, autonomous 

underwater vehicles (gliders), which collect oceanographic data across the entire water 

column along user-defined transect lines.  The second tool is surface current mapping 

through High Frequency Radar (HFR), which provides hourly information on the speed 

and direction of surface currents over an extended area on an hourly basis.  The addition 

of these tools allows for the collection of data at sufficient detail to describe events 

occurring on a spatial scale of several kilometers and a temporal scale of one to five 

hours.  One goal of this dissertation is to examine the feasibility of using a non-linear, 

non-uniform CLS calculation with glider and HFR data sets in the Red Sea.  A second 

goal is to examine some of the potential processes involved with variability in sea surface 

temperature, eddy occurrence, and physical structure in the Red Sea.  Oceanographic 

information will be analyzed at both mesoscale (70-300 km) and basin wide levels of 

scale.  Chapters 2 and 3 are focused on the application of CLS to short-term data sets 

collected by gliders and HFR. Chapter 4 is focused on basin wide dynamics, examining 
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the link between sea surface temperature and eddies.  The successful application of the 

methods can then be used for further analysis over longer time series and as a starting 

point for developing an adaptive observation system in the Red Sea. 
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Chapter 2: Characterizing temporal scales of temperature, salinity, and 

chlorophyll variability using high-resolution glider data in the Red Sea 

2.1: Introduction 

The importance of scale across both time and space was introduced by Henry Stommel 

for marine research in the early 1960s.  His initial discussion focused on the logistical 

processes that were relevant to sampling the spatio-temporal variation of sea level. Of 

course, other physical variables such as temperature and current velocities are 

additionally associated with sea level fluctuations (Stommel, 1963). The central concept 

was to demonstrate how oceanic processes varied across scales and that sampling efforts 

had to be planned with consideration of this variation.  Issues of scale have become 

increasingly important in both seascape ecology and ocean observation systems, two 

areas of research that aim to characterize the marine environment (Ellis and Schneider, 

2008; Kavanaugh et al., 2016; Nickols et al., 2015).  The Stommel diagram has been 

adapted many times since the initial discussion, providing the key paradigms for 

understanding the interaction between length and time within marine systems.  

Derivatives of Stommel’s initial diagram have focused on pelagic trophic levels (Dickey, 

2003), predictive capabilities of marine observational platforms at various scales (Hedley 

et al., 2016), and have even extended to topics outside of marine science (Rose et al., 

2017; Turner et al., 2001).  One general pattern apparent in the derivatives of the original 

Stommel diagram is a positive trend of increasing time scale associated with increasing 

spatial scales.  As new technologies for observation in the marine environment emerge, a 

range of processes can be measured and analyzed at increasingly finer spatio-temporal 
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resolutions. However, an increasing volume of data does not a priori result in a better 

understanding of the underlying marine system (Little et al., 2018). Marine systems are a 

complex interplay between physical processes and biological response, which can vary 

dramatically across multiple levels of scale (Hidalgo et al., 2016; Kavanaugh et al., 2016; 

Mazloff et al., 2018).  With this increase in available data, it is important to define the 

appropriate spatio-temporal scales required to resolve the key physical and biological 

processes.  Identifying and defining these discrete units allows for direct analysis of 

processes measured by different instruments at a uniform spatio-temporal scale (Davis et 

al., 2019; Hedley et al., 2016; Hewitt et al., 2015). 

As the density of spatio-temporal data for an area increases, conclusions can be drawn 

about the important, naturally occurring scales that affect the study area, as can be seen in 

the CalCOFI project (McClatchie, 2016; Rudnick et al., 2017), the global Argo program 

(Holte et al., 2017), and BGC Argo program (Terzic et al., 2019).  The CalCOFI project 

has been ongoing with regular observations since 1951, and is the longest running, 

geographically extensive ocean observation project.  The data collected has been 

important for identifying and refining regionality and variability in the California Current 

system (McClatchie, 2016).  The addition of autonomous vehicles to the project through 

the California Underwater Glider Network has increased the availability of fine-scale 

data and revealed new oceanographic features in the project area (McClatchie, 2016; 

Rudnick et al., 2017).  The Argo program has been influential in understanding the 

features of the global ocean.  As of 2017, over 1,250,000 Argo profiles were used to 

characterize the temperature, salinity, and mixed layer depth of all the oceans, providing 

a global climatology as well as monthly data (Holte et al., 2017).  This data has provided 
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insight into circulation and large-scale oceanographic structures.  The Argo 

Biogeochemical program has similar aims to the Argo program, but with instrumentation 

specifically designed for biogeochemical measurements.  Until recently, optical 

properties have largely been excluded or simplified in biogeochemical models due to a 

lack of in situ sampling (Terzic et al., 2019).  Additional data from biogeochemical floats 

in the Mediterranean Sea describe the vertical, spatial, and temporal variability of zonal 

gradients in the basin. These studies highlight the need for high-resolution sampling at 

fine spatial (meso- to sub-mesoscale) and temporal scales (intra-seasonal) to understand 

longer-term variability of oceanographic processes.  

One of the important aspects of each of these projects has been the amount of information 

collected to differentiate between different regions of the study areas.  While many 

different methods of classification can be used to determine regionality, most forms of 

classification tend to rely on defining both the absolute value and variance associated 

with each measurement location over time compared to spatially close sample locations.  

Typically, a difference metric is used to organize the data, with locations that are 

statistical dependent typically classified into the same region.  Several different terms are 

used to characterize this naturally occurring organization of variables, including Integral 

Time Scale (ITS), Characteristic Length Scale (CLS), correlation length, scale of 

variability and others, each with a slightly different associated calculation (Habeeb et al., 

2005; Keeling et al., 1997; Thomson and Emery, 2014; Ward et al., 2018).  Each of these 

terms seek to determine the distance at which consecutively collected data points remain 

statistically dependent to each other, which for the purposes of this research will be 

defined as “persistency” and considered in the context of persistent monitoring of areas 
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of interest while maintaining as much of the variability in the system as possibly (Davis 

et al., 2002; Davis et al., 2019; Habeeb et al., 2005; Rudnick, 2016; Rudnick et al., 2017).  

Defining persistency for a study area is an important step in understanding the logistics 

necessary to provide continuous monitoring.  By better understanding the natural, 

dynamic processes in an area, monitoring efforts can be adjusted to provide comparable 

data quality optimizing the allocation of observing resources (Rudnick et al., 2017).  

Uniform time series data tend to be sinusoidal and to properly characterize events 

sampling must occur at a frequency at least twice as often as the event.  This sampling 

frequency is known the Nyquist frequency.  As long as the Nyquist frequency for each 

defined station in the study area is maintained, monitoring resources can be adjusted 

without losing data quality (Thomson and Emery, 2014).  In the past, accurate analysis 

into persistency has only occurred over large-scale studies, either covering a large spatial 

extent or an extensive time frame, but seldom both at the same time (Habeeb et al., 2005; 

Keeling et al., 1997; Pascual and Levin, 1999; Ward et al., 2018). 

In recent years, autonomous platforms have greatly increased in capability and 

deployment duration and are able to provide continuous data sets for extended periods of 

time (Davis et al., 2019; Testor et al., 2019).  Depending on the mission parameters, the 

onboard instrumentation, and the frequency of data collection; these platforms sustain 

observations for extended durations with minimal or infrequent human interaction 

necessary (Rudnick et al., 2004).  These persistent monitoring missions have enabled 

resolution of much larger spatial and temporal scales than previously available, which in 

turn permits understanding kilometer length scales of variability within the study area 

(Rudnick et al., 2017).  While many types of autonomous platforms currently exist for 
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oceanic research, this discussion only focuses on observations from passively powered, 

buoyancy-propelled autonomous underwater vehicle Seaglider (gliders).  Gliders use 

changes in buoyancy and hydrodynamic lift to produce forward motion.  While in 

motion, gliders collect subsurface oceanographic data along a sawtooth path, providing 

information that cannot be collected by other autonomous platforms that measure surface 

values.  Gliders are particularly useful for long-term studies because the battery life can 

extend from 6 weeks to 3 months, with some missions exceeding over a year for a single 

deployment (Pelland et al., 2013; Rudnick, 2016).  These passively powered platforms 

are particularly effective for oceanic research in the Red Sea due to their effective 

duration and their ability to access areas or conditions that would limit ship based 

scientific surveys. 

Gliders have been effective in examining the water column in the Red Sea, a semi-

enclosed basin lying between the Asian and African continents.  The basin is about 2200 

km long, has a maximum depth of about 2800 m, and an average width of 280 km 

(Raitsos et al., 2013; Triantafyllou et al., 2014).  The basin is considered very saline and 

warm, and like most tropical waters is oligotrophic (Brewin et al., 2015; Gittings et al., 

2019).  The overall circulation in the Red Sea is based on a reverse estuarine system, with 

salinity increasing steadily with distance from Bab el Mandab (Sofianos and Johns, 2015; 

Sofianos and Johns, 2003; Sofianos and Johns, 2007).  Primary energy transfer in the Red 

Sea is due to surface buoyancy loss and winds (Triantafyllou et al., 2014; Wahr et al., 

2014; Yao et al., 2014a; Yao et al., 2014b; Zhan et al., 2016).  The energy transfer is 

often expressed through semi-permanent eddies that occur throughout the basin 

(Karimova and Gade, 2014; Zhan et al., 2019; Zhan et al., 2014; Zhan et al., 2016).  
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Additional research has also described three characteristics of both wind forcing and sea 

level variability in the Red Sea and the associated temporal scales with each process 

(Churchill et al., 2018; Churchill et al., 2014b; Sultan et al., 1995).  The first process is 

seasonal variability linked to the shift in the monsoonal winds over the Gulf of Aden 

flowing into the Red Sea.  The second described component of sea level variability is the 

semi-diurnal tide.  The third source of sea level variability, and the highest in magnitude 

of variability, is described as a weather system, with a duration of two to four weeks 

(Churchill et al., 2018). 

As gliders are continually used as a tool within marine research, the primary roles and 

capabilities of the platform are expanding across several additional research fields.  

Several different practices in deployment patterns, data analysis, and intended targets are 

under development for operating gliders due to the context-dependent nature of sampling 

(Davis et al., 2019; Rudnick, 2016; Testor et al., 2019).  One method for glider 

deployments is in conjunction with a marine observations system, which often includes a 

variety of shore-based data collection methods, modelling, and periodic ship-based 

research (Chao et al., 2017; Rudnick et al., 2017; Zarokanellos et al., 2017a; Zarokanellos 

et al., 2017b).  Additionally, gliders are often used in conjunction with satellite derived 

data, typically to extend patterns observed on the surface deeper into the water column 

(Frajka-Williams et al., 2009; Little et al., 2018; Testor et al., 2019).  These different 

oceanographic platforms collect data at different spatio-temporal resolution, which can 

confuse a clear analysis with mismatched spatio-temporal binning.  Given the increasing 

use of gliders to compliment other forms of marine observation systems this study aims 

to identify the frameworks that are able to quantify the finest temporal range of data to 
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resolve oceanographic features while maintaining data independence across multiple 

spatio-temporal resolutions.  We present a method to integrate gliders, High Frequency 

Radar (HFR, Chapter 2.2.1.4), and an atmospheric reanalysis product MERRA_2 

(Modern-Era Retrospective Analysis for Research and Applications-2, Chapter 2.2.1.3) 

data to define short-term persistency, within the north central Red Sea.  Notably this 

study used high resolution glider data, HFR and MERRA_2 data to test methods to 

quantify: 1) dominant scales of variability of the glider time series, 2) determine the 

minimum sampling frequency required to adequately characterize the glider time series 

and 3) discriminate whether the temporal variations measured from the glider are similar 

to variations determined from the HFR and MERRA_2 data.  

2.1.1 Study Area 

The chosen study area for this analysis is a portion of the north central Red Sea offshore 

from King Abdullah University of Science and Technology (KAUST, Figure 2.1).  This 

study area was chosen for several reasons, including the frequency of eddies near the 

area, a semi-persistent boundary current, the sustained mapping of surface currents using 

HFR, coverage of recently validated data from the MERRA_2 data set (Al Senafi et al., 

2019), and proximity to the university for access.  The glider was deployed through the 

month of October 2017 with the intent to resolve the fine scale persistency of 

oceanographic variables in the region.  October is an important time as it is part of the 

transitional period between the southwest monsoonal forcing in summer and the winter 

northeast monsoonal conditions for the Red Sea (Bower and Farrar, 2015; Sofianos and 

Johns, 2015; Yao et al., 2014a; Yao et al., 2014b).  Because both the glider and the water 

it is sampling are moving both in time and space, this data set will be compared to two  
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data sets at fixed locations from the region.  The first is the hourly recorded surface 

current velocities from HFR and the second is the hourly reported values from the 

MERRA_2 dataset (Rienecker et al., 2011) .  Since these data sets are at fixed locations, 

they provide resources to cross validate the results from the glider collected data. 

 

Figure 2.1: Location of the study area within the Red Sea.  The glider transect (KAUST 

Line) is the solid line, the sites used from the HFR data are the diamonds (Sites A-D), 

and the locations for the MERRA_2 East and West sites are the hexagons, slightly south 

of the glider line.  All three data sets run from October 1 -31, 2017. 

 

Previous work utilizing in situ observations, satellite remote sensing, and modelling has 

shown that eddies are an important characteristic of the circulation in the Red Sea 

(Zarokanellos et al., 2017a; Zhan et al., 2018; Zhan et al., 2014; Zhan et al., 2016).  These 

works have provided a basic description of the size, location, frequency, and duration of 

eddies in the Red Sea, and are indicative of the magnitude of eddies resulting primarily 

from thermohaline circulation and wind forcing.  Eddies in the Red Sea typically last 

from two to six weeks, with smaller diameter eddies tending to occur more frequently, 

yet dissipate more quickly than larger eddies.  However, when multi-year averages of 
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surface circulation are examined, the short-term eddies are no longer seen, but instead a 

clear boundary current system is in effect (Sofianos and Johns, 2003).  This eastern 

boundary current has been observed in numerical models and with in situ observations 

and is under continuing investigation using both glider and HFR observations.  These 

observations indicate that the eastern boundary current can typically defined by a sharp 

decrease in values for salinity (<39.5), indicating water that recently entered the Red Sea 

from Bab el Mandeb. The water in the boundary current also has increased values for 

temperature and chlorophyll-α when compared to the surrounding water, as can be seen 

in Figures 2.2 and 2.3, along the western part of the transect line.  The exact location that 

the eastern boundary current crosses the KAUST transect (Figure 2.1) can shift between 

the nearshore and offshore region depending on the influence of local eddies.   Over time, 

persistency measurements can show when a major shift in the underlying dynamics of a 

system occurs.  Within the context of the north central Red Sea, it is expected that the 

transition between the eastern boundary current and its interruption by local eddies will 

have an impact on the persistence in the study area, providing an ideal system to develop 

methodologies to measure the dominant scales of variability. 
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Figure 2.2: Temperature-salinity and σ-θ dissolved oxygen values for selected times of 

the glider mission.  The data shows two diverging water masses for the middle range of 

the water column based on longitude in the early part of the month.  Over time, these two 

water masses start to intermix. 
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Figure 2.3: Chlorophyll-α concentrations for the KAUST glider line over the month of 

October.  The isopycnal location of the peak in chlorophyll-α is different for the 

nearshore region (higher longitude) than the offshore region.  Towards the end of the 

month, the two maxima appear to be merging. 

 

2.2: Methods 

2.2.1: Measurements used in this study 

2.2.1.1: Glider data 

The primary data source for this research is from a glider (Seaglider®) deployment that 

occurred from September 2017 into November 2017.  The glider was equipped with a 

CTD, a dissolved oxygen sensor, a 3-wavelength fluorometer, and a 3-wavelength 



35 

 

backscatter sensor (Table 2.1).  The glider traversed an 80 km east-west transect between 

a starting waypoint approximately 20 km offshore to an offshore waypoint approximately 

100 km from the coast. The glider was set to dive to 500 m depth which represents a safe 

dive depth along the transect where the bottom depth varied from less than 600 m to more 

than 1000 m, and a dive depth which optimized horizontal resolution at about 2 km per 

dive with a dive interval of about 2.33 hours along the majority of the transect.  Data 

from the glider were collected from the entire dive cycle. However, the sampling 

frequency varied as a function of depth. The sampling frequency was once every 10 

seconds in the upper 100 meters, then once every 50 seconds between 100 and 250 m, 

and was reduced to once every 100 seconds between 250 m and 500 m. The sampling 

frequency corresponds to data collected once every 1.3 m for the upper 100 m, once 

every 6.5 m from 100 to 250 m, and one every 13 m from 250 to 500 m.  For this analysis 

three representative depths (6 m, 75m, and 150 m) and isopycnals (25.75 kg/m3, 26.75 

kg/m3, and 27.75 kg/m3) were chosen for analysis.  Since the goal of this research is to 

compare spatio-temporal patterns from glider collected data to existing data sets at the 

surface, the selected depth and isopycnal layers were selected to be in the upper portion 

of the water column extending into the upper portion of the subpycnocline layer.  The 

depth of 6 m represents the upper limit of consistent measurements from the glider since 

the vehicle can take several meters to reach steady flight, where the different response of 

the sensors (temperature, salinity, chlorophyll α, dissolved oxygen) can be accurately 

accounted and corrected for.  The depth layer of 75 m represents the typical depth of the 

chlorophyll-α maximum from the collected data and the 150 m depth layer is below the 

deepest recorded mixed layer depth from the data set.  The isopycnals were selected for a 
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different reason, the 25.75 kg/m3 isopycnal is the shallowest isopycnal that extends 

through the entire collection period, and the other two isopycnals were selected as an 

even incremental increase until the denser waters located below 28.00 kg/m3.  These 

depths and isopycnals bracket the upper and lower extents of the water column 

experiencing greatest variability.   

Equipment Parameters 
Excitation 

[nm] 
Emission 

[nm] 

CTD  Temperature     

(Seabird CT-sail, Conductivity     

unpumped)       

        

WET Labs Chlorophyll-α 470 695 

ECO Puck CDOM 370 460 

(FL3) Phycocyanin 630 680 

        

WET Labs Optical 532 532 

ECO Puck backscatter at 3 650 650 

(BB3) wavelengths 880 880 

        

Oxygen sensor  Dissolved Oxygen     
(Aanderaa 

optode,       

model 4331)       

 

Table 2.1:  Summary of the glider equipment used in this study. 

2.2.1.2: Processing and quality control of glider data 

Raw instrument measurements (counts) for each parameter were transformed into 

geophysical quantities by applying the manufacturer-provided scaling factor and dark 

count.  Then, each profile was quality controlled by applying methods that have been 

specifically developed for each parameter (Organelli et al., 2017; Thierry et al., 2018) 
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following Argo’s ‘real-time’ quality control procedure and data management (Wong et 

al., 2020). 

Following Schmechtig et al. (2014), vertical profiles of chlorophyll-α were adjusted for 

non-zero deep values and corrected for non-photochemical quenching according to Xing 

et al. (2012) (Schmechtig et al., 2014; Xing et al., 2012; Xing et al., 2017).  Furthermore, 

the chlorophyll-α values were then divided by a factor of two to correct the 

overestimation observed by standard Wet Lab fluorometers as described in Roesler et al. 

(2017) (Roesler et al., 2017).  Spikes were removed from the chlorophyll-α 

measurements using a low-pass median filter.  Correction of O2 measurements were 

performed by applying a factor deduced from the comparison between the O2 values 

obtained via Winkler titration and analysis (Carpenter, 1965; Winkler, 1888) and those 

from the glider.  During the glider deployment, water samples were collected at nominal 

depths (5, 10, 30, 50, 100, 150, 200, 300, 400, and 600 m) and stored in 125 mL iodine 

titration flasks following standard operating procedures (Langdon, 2010).  The samples 

within the surface (5 and 10 m) were collected in triplicate.  The amount of O2 in each 

sample volume was converted in μmol·kg-1 using the measured density of seawater.  

Finally, temperature, salinity, chlorophyll-α and O2 quality-controlled vertical profiles 

were binned in 2 m depth intervals and interpolated onto a grid with a 2.33-hour temporal 

spacing in this study, a regular data set needed for statistical analysis as described in 

2.2.2.  Additionally, these same quality-controlled files were binned in 0.125 kg/m3 

density intervals at the same 2.33-hour temporal spacing.  The time series for the upper 

250m from the glider deployment is shown in Figure 2.4 and the density-based profiles 

from 24.5 to 28.5 kg/m3 are presented in Figures 2.5. 
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Figure 2.4: Kaust glider line time series plots of temperature, salinity, chlorophyll-α, 

dissolved oxygen, and sigma-theta from 0-250 m.  The white line indicates the mixed 

layer depth based on the de Boyer index (de Boyer Montégut et al., 2004).  The red 

vertical lines indicate when the glider is inshore, the blue lines indicate when the glider is 

offshore. All color ramps used for the figures in this research are using color ramps from 

cmocean (Thyng et al., 2016). 
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Figure 2.5: Kaust glider line time series plots of temperature, salinity, chlorophyll-α, and 

dissolved oxygen from 24.5 - 28.5 kg/m3.  The red vertical lines indicate when the glider 

is inshore, the blue lines indicate when the glider is offshore. 

 

2.2.1.3: MERRA_2 data 

Since the introduction of NASA’s Modern-Era Retrospective Analysis for Research 

Applications version 2 (MERRA_2) (Gelaro et al., 2017; Rienecker et al., 2011) several 
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publications have examined the application of this new reanalysis data set to provide 

additional understanding of the seasonality occurring in the Red Sea.  The reanalysis data 

from MERRA_2 is especially useful for the region due to the lack of long-term 

meteorological measurements within the region.  Three recent publications have 

described in detail the degree of correlation between the reanalysis data from MERRA_2 

and data from a meteorological buoy that was deployed for two years near the study area.  

Al Senafi et al. (2019) demonstrated that MERRA_2 data shows a high degree of 

correlation (r = 0.97-0.98) for heat flux when compared with buoy data (Al Senafi et al., 

2019).  Menezes et al. (2019) describes the correlation (r = 0.89 – 0.92) for wind speed, 

zonal velocity, meridional velocity, and evaporation rates (Menezes et al., 2019). Sun et 

al. (2019)  has used MERRA_2 as an independent data set for the verification of a new 

predictive model called SKRIPS (Sun et al., 2019).  Based on the validation of the 

MERRA-2 data by other investigators, the data set is used here as a complementary data 

set that will facilitate interpretation of our results. 

MERRA_2 data (MERRA2_400.tavg1_2d_ocn_Nx files) from two locations nearest to 

the KAUST glider line (38.75 E, 22.000 N and 38.125 E, 22.000 N, Figure 2.1) are used 

to compare persistency calculations from of the glider and HFR data set from October 

2017.  The parameters selected for analysis are air temperature and wind velocity at 10 

m, wind curl, and the water skin temperature (3-day average).  This data set provides a 

resource to understand additional forcing components that contribute to eddy driven 

dynamics. 
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2.2.1.4: CODAR data 

The HFR system is located on the central western coast of Saudi Arabian and consists of 

two CODAR Seasonde® sites in operation since July 2017 (Solabarrieta et al., in 

review).  The HFR system transmits at the 16.12 MHz frequency with hourly data 

provided over a 120 km range with a spatial resolution of 3 km.  The received backscatter 

signal was converted into radial velocities using the MUltiple SIgnal Classification 

algorithm (Schmidt, 1986).  The MATLAB package HF Progs 

(https:cencalarchive.org/~cocpmb/COCMPwiki) was then used to combine radial 

currents and generate gap-filled total, two dimensional currents using Open Modal 

Analysis (Kaplan and Lekien, 2007) for the entire month of October 2017.  Both before 

and after October 2017, errors in the HFR limited the amount of data available to create 

gap filled currents using Open Modal Analysis.  Four evenly spaced locations across the 

KAUST glider line were selected for time series analysis, as seen in Figure 2.1 (Sites A-

D). 

2.2.2: Time series analysis used in this study 

One of the difficulties of working with data collected during glider missions is that the 

glider is likely not sampling the system synoptically (Rudnick and Cole, 2011; Thomson 

and Emery, 2014).  The lack of synopticity increases the amount of inherent dependency 

that occurs within the study area, which then increases the minimum length of time data 

is needed to understand the system.  While an increase in available information in an area 

can greatly improve the understanding of the physical processes, many areas across the 

world have limited time series data due to a lack of previous observation opportunities 



42 

 

(Davis et al., 2002; Davis et al., 2019; Rudnick et al., 2004).  Many of the new 

observation platforms were specifically designed to be deployed in areas that lack long-

term time series data, and the presented analysis methods were designed to operate in 

systems that may not be data rich (Lee et al., 2012; Lermusiaux et al., 2017; Webster et 

al., 2014).  Because gliders travel at approximately 0.25 m/s (20km/day), it can be 

difficult to separate out which portion of the observed variation is due to a change in 

time, longitude, latitude, density, or depth.  In the case of this study, latitudinal variation 

was limited by maintaining the same latitude within a data set as closely as possible.  

While mission planning is potentially able to minimize the observed variation of some of 

these dimensions, minimizing these features a priori risks an incorrect characterization of 

the natural variability in the system, especially when the sampling locations are located 

too close to each other in time or space (Ellis and Schneider, 2008; Hewitt et al., 2007; 

Holland et al., 2004).  This study presents two statistical methods that can be used to 

determine the natural framework of time analysis within the study area.  This study seeks 

to define the optimal sampling frequency to provide both an effective characterization of 

the system and ensure that the full range of natural variation is also described. 

2.2.2.1: Autocorrelation analysis 

Autocorrelation is defined as the normalized cross covariance of a time series data set at 

increasing distant time lags, and can be calculated from non-linear but uniform data sets 

(Habeeb et al., 2005; Thomson and Emery, 2014).  Autocorrelation analysis identifies the 

time lags at which the time series data set has significant dependencies or correlations.  

Stochastic processes are time dependent and show a decreasing correlation with time 

(Thomson and Emery, 2014).  One method of eliminating stochastic processes in time 



43 

 

series data sets is to average the data set over regular intervals.  If the selected interval is 

short enough to be highly correlated, then the assumption of data independence is 

violated.  The time that this data dependency occurs over can be determined by 

comparing the correlation at increasingly distant data points within the time series data 

(Thomson and Emery, 2014).  At a lag of zero, data is perfectly correlated with itself.  In 

a typical system, the magnitude of autocorrelation tends to decrease as the time lag 

increases, and the correlation remains close to zero and no longer crosses the threshold 

into significant dependency.  Data collected at such lags are considered independent for 

statistical analysis (Thomson and Emery, 2014).  In situations in which data follows a 

cyclical pattern, like a diurnal cycle, then the autocorrelation analysis will typically 

oscillate between regions of positive and negative correlation until the correlation values 

fall below significant levels, with each peak in the correlation indicating the duration of 

the cycle.  The time lag at which the last significant autocorrelation peak is called the 

Integral Time Scale (ITS).  ITS defines the scale where lag transitions from dependency 

to independency, and indicates lag at which the time series data no longer has a 

significant level of either positive or negative correlation (Thomson and Emery, 2014). 

2.2.2.2: Characteristic Length Scale (Error X) analysis 

The Characteristic Length Scale (CLS) analysis for this research is an adaptation of the 

method published in Ward et al. (2018), which described Error X as a way to calculate 

CLS from existing transects and further suggested that the method could be applied to 

glider and tow vehicle data sets (Habeeb et al., 2005; Keeling et al., 1997; Ward et al., 

2018).  The layers selected are from the upper portion of the water column which are 

most influenced by surface conditions, and thus relevant for comparisons with 
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MERRA_2 and HFR data.  This focus allows for a better analysis of the relevant time-

space scales for the upper portion of the water column by incorporating the surface 

forcing (MERRA_2) and the surface current maps recorded at finer spatial resolution.   

Two circumstances were described in which Error X can be used to calculate CLS 

(Habeeb et al., 2005; Ward et al., 2018), where both methods are using changes in the 

spatial dimension as a replacement for time.  The first circumstance is a short-time series 

approach, and the second is adapting measurements over space as a replacement for 

measurements over time.  Even though the transect line developed for this research was 

set up to examine both transitions through time and space, this paper will only focus on 

the short time series approach, which includes a combination of relatively few time steps 

coupled with the spatial displacement across a single time step (Habeeb et al., 2005).  

This is limited due to the relatively small spatial extent of the glider deployment mission, 

which prevented determining only the spatial CLS.  CLS calculation is an iterative 

process comparing the difference between the recorded value and the predicted value for 

increasing larger separation distances.  Predictive values are calculating by using a k 

Nearest Neighbor (kNN) approach.  examining the difference between a single point in 

the data set and the average of values located both before and after the data point at 

increasing distances.  This difference is calculated at all distances up to half of the overall 

length of the data set.  The error curve is then calculated by using a Monte Carlo chain 

simulation (100 runs) averaging twenty randomly selected error measurements at each 

distance bin.  These 100 Error X results are then averaged together to produce a final 

mean CLS calculation with an associated 95% confidence interval (Habeeb et al., 2005; 

Keeling et al., 1997; Ward et al., 2018).  As measurements are further removed in either 
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space or time (or both) from a point of interest, the error between the prediction method 

and the actual values is expected to steadily increase until the error becomes asymptotic.  

CLS is typically defined as the distance at which the error curve becomes asymptotic.  

While other prediction methods instead of kNN moving mean have been described since 

Keeling et al. 1997, this method was selected as a proof of concept in extending the CLS 

approach into glider related studies. 

2.3: Results 

The KAUST glider line shows evidence of a transitional period within the month-long 

data set presented.  As seen in Figure 2.2, in early October the KAUST line shows a 

sharp difference between the nearshore and offshore regions in both the temperature-

salinity diagrams and dissolved oxygen.  These figures have the longitudinal location of 

each sample shaded to highlight the difference between the two regions.  The two 

sections of the line show different characteristics through the water column, with the 

nearshore region exhibiting less saline water with lower dissolved oxygen.  Over the 

course of the month, the ends of the line become less distinctive.  Figure 2.3 shows the 

time series data for chlorophyll-α and density across the full time of the glider mission.  

This figure is also shaded by longitudinal location, using the same range as Figure 2.2.  

This figure also shows a similar result when comparing between the density location of 

the peak chlorophyll-α concentration in the water column.  The nearshore region shows a 

shallower peak, located between 26.00 – 26.25 kg/m3, while the offshore region shows a 

deeper peak at the 28.00 kg/m3 isopycnal. Both Figures 2.2 and 2.3 show that these 

differences become less distinct towards the end of the month. 
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Both the 0-250 m and the 24.5 – 29.00 kg/m3 time series figures (Figures 2.4-2.5) for the 

KAUST transect line show a difference between the nearshore region and the offshore 

region during the start of the month of October.  These differences indicate that the two 

regions of the transect line are experiencing different conditions.  The time series figures 

also show a transitional region between the ends of the transect, indicating the potential 

of interchange between the nearshore and offshore region.  This idea is further supported 

by the decrease in the difference of the nearshore and offshore regions towards the end of 

the month of October.  The variance seen in temperature, salinity, chlorophyll-α, and 

dissolved oxygen over the course of this single month supports the idea presented by 

Churchill et al. of the weather band (2-4 weeks) playing an important role in 

understanding the natural variance occurring within the Red Sea (Churchill et al., 2018).  

The time series data set for each variable at each of the three depths (6, 76, and 150 m) 

and the three density layers (25.75, 26.25, 28.00 kg/m3) are presented in Figures 2.6 and 

2.7. 
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Figure 2.6: KAUST glider line time series profiles for temperature, salinity, dissolved 

oxygen, chlorophyll-α, and density anomaly at 6, 76, and 150 m depth.   

 

 

Figure 2.7:  Kaust glider line time series profiles for temperature, salinity, dissolved 

oxygen, and chlorophyll-α at the 25.75, 26.25, and 28.00 kg/m3 isopycnals. 
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The HFR data set (Figure 2.8) presents a similar story with differences between the 

nearshore region and the offshore region along the KAUST transect.  As with the glider 

data, the HFR data in the nearshore region (Site A) is different from the rest of the HFR 

sites (B, C, and D).  Velocity from the HFR is recorded as two directional velocity 

vectors, the u vector (- west, + east), and the v vector (- south, + north).  Overall, the 

surface currents recorded are predominantly northward over the transect line, with both 

higher magnitudes and variance in the north/south direction.  The magnitude of 

northward surface currents also increases going from east to west.  Diel variation is also 

apparent throughout the time series dataset, typically more noticeable in the east/west 

direction.  A final item of note is a relatively extreme event that occurred on October 29th, 

in which the typical northward currents shifted southward over the course of a few hours.  

This shift occurred at sites B, C, and D, missing the nearshore region of the transect. 

The time series figures for the MERRA_2 data (Figures 2.9 and 2.10) also show a 

difference between the east and west site.  In this data, the east site has a higher degree of 

variability in the diel signal, especially with regards to the 10 m air temperature.  The east 

site, which is closer to the shore, shows that the wind flows are predominately eastward 

and southward during the study period, with higher variation in the magnitude of the 

eastward flow.  The western site overall shows less variability through the study period, 

indicating that the location has higher stability than the east site potentially due to 

increased distance from the shore. 
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Figure 2.8: HFR surface velocities time series at the four sites located across the KAUST 

glider line. Location of the sample sites can be found in table 2. 

 

 

 

Figure 2.9: MERRA_2 time series for East Site (38.75 E, 22.000 N). 
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Figure 2.10: MERRA_2 time series for West Site (38.125 E, 22.000 N). 

 

Figure 2.11 presents the results of both the ITS and CLS calculations for the two glider 

derived data sets, and Figure 2.12 presents the results for the ITS and CLS calculations 

for the HFR and MERRA_2 data sets.  The full results from the ITS and CLS (with 95% 

confidence intervals) from this chapter can be found in Appendix A.  Each variable was 

used directly for both the ITS and CLS calculations.  The ITS was calculated by selecting 

the last significant (95% confidence interval) positive or negative autocorrelation peak.  

The CLS was calculated for each variable by visually estimating the time distance that 

the Error X plot became asymptotic as a function of time lag.  The results for ITS fall in 

the 2-4-week range, with a mean time lag of 19.1 days (std 4.6, median 16) for the glider 

data and 21.9 days (std 2.8, median 21.5) for the HFR and MERRA_2 data sets.  The 

CLS calculation also matches the 2-4-week range expected, with a mean time lag of 19.6 

days (std 4.0, median 19) for the glider data and 21.5 days (std 4.1, median 22) for the 
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HFR/MERRA_2 data.  The glider ITS and CLS do not show any significant difference 

between the different depth or density layers.  Four of the variables did not have a 

sufficiently long time series to reach an asymptote.  These four variables are chlorophyll-

α and dissolved oxygen at 76 m, chlorophyll-α at 6 m, and temperature at the 26.25 kg/m3 

isopycnal.  Three of these variables are a part of biogeochemical processes.  Salinity, 

temperature, dissolved oxygen, and chlorophyll-α show variations that coincide with the 

position of the glider in the study area, with these differences decreasing over the course 

of the study period.  This time frame matches with the expected weather system time 

period as described  and is within the typical duration of eddies within the Red Sea 

(Churchill et al., 2018; Karimova and Gade, 2014; Zhan et al., 2014). 

Figure 2.12 shows the comparison for ITS and CLS for the MERRA_2 and HFR data 

sets.  One of the key items to note is the lack of a CLS estimate for the MERRA_2 data at 

the west site.  This is due to the Error X plots not converging to an asymptote, which 

indicates that the time series data was not sufficiently long to resolve the CLS.  Aside 

from the non-resolved time series, both methods show that the typical persistence time is 

in the 3 – 4-week range, with only one value, u surface velocity at HFR site B showing a 

persistence value of 15 days. 
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Figure 2.11: Integral Time Scale (ITS) and Characteristic Length Scale (CLS) results 

from the glider time series data.  The average time lag is 19.1 days for ITS and 19.6 days 

for CLS, which is within the 2 – 4-week weather band period.  While some results 

between the two methods are contradictory, the averages are similar.  CLS values marked 

with an asterisk did not reach an asymptote. 
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Figure 2.12: Integral Time Scale and Characteristic Length Scale results from the HFR 

and MERRA_2 data.  The average time lag is 21.9 days for ITS and 21.5 days for CLS, 

which is within the 2 – 4-week weather band period.  While some results between the two 

methods are contradictory, the averages are similar.  CLS values marked with an asterisk 

did not reach an asymptote. 
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2.4: Discussion  

This analysis of glider, HFR, and MERRA_2 data has successfully trialed two different 

analytical methods to determine the dominant scales of temporal variability (persistency) 

in the central Red Sea.  Both methods, the Integral Time Scale (ITS) and Characteristic 

Length Scale (CLS) calculations, were successfully used to determine the short-term 

persistence from transect based marine data across several important platforms for ocean 

observation systems.  When considered together, both the ITS and CLS methods arrived 

at similar values for the persistence scale over the month-long data set, with a mean time 

lag of 19.06 (ITS) and 19.59 (CLS) days for the glider data and 21.93 (ITS) and 21.5 

(CLS) days for the HFR/MERRA_2 data.  Differences between some of the physical 

variables (surface velocity, wind speed, salinity, temperature) and biogeochemical 

variables (dissolved oxygen and chlorophyll-α) potentially do exist, but the presented 

data set is too small to draw any conclusions at this point.  However, the two methods 

were able to achieve results that support previous analysis into persistency within the 

study area and that match with our current understanding of the dominant physical 

processes occurring with the study area.  Furthermore, this analysis was able to show that 

even processes that started out under different initial conditions were still influenced at 

the same time scales previously identified.  These results show that these two analysis 

methods can be further applied to other similar ocean observation data sets that cover 

different spatial and temporal extents.  The CLS calculation will be useful moving 

forward, as the method is designed to handle higher dimensional data sets.  An additional 

benefit of the CLS calculations is that the method functions even with small data gaps, 

which is not true of some other time lagged variance measurements, including ITS.  As a 
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part of mission planning, the persistence scales identified using CLS can be used to 

ensure that planned transect lines are able to fully meet the Nyquist frequency 

requirement for time series data sets, by establishing at what time frame a transect line 

can be considered synoptic. 

2.4.1: Temporal Scales 

One of the more difficult aspects of working with glider data is the inherent spatio-

temporal blurring due to the movement of both the glider and the water it is sampling.  

Gliders provide detailed information across their entire range of operation, however 

specific events seen from glider data can be difficult to match with data from other 

platforms.  This difficultly in matching data from different platforms indicates the 

importance of developing adaptive systems that can maintain data quality while adjusting 

sampling frequencies or locations.  This fact has been a topic of research for many ocean 

observation systems, trying to find the best way to tie in the multiple instrument 

platforms to produce a highly detailed and accurate representation of the spatial and 

temporal processes occurring within the area of interest.  The persistence measurements 

presented here have been able to corroborate with previous studies using different 

instrument platforms, indicating the importance of the 2-4 week-long weather system.  

This information is important to resolve some of the issues with spatio-temporal blurring 

between instrument platforms by providing an initial time bin to ensure independence 

between measurements.  While this initial approach is only applicable for the short time 

frame considered for a small portion of the Red Sea, it does provides an initial framework 

to be able to compare multiple platforms, by setting a uniform initial scale to examine the 

varied data sets.  As more data is both collected and analyzed, this persistence 
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measurement can be updated as needed.  Within the context of this study, the transect line 

showed differences at the beginning of the study period between the inshore and offshore 

sections.  However, over the course of the month both sections show similar persistence 

values, indicating that external forcing on the two sections is producing the same degree 

of variation.  Additionally, evidence suggests that towards the end of the month of 

October consistency increases in the water column along the entire transect, suggesting 

either that the transect line has become more well mixed or that the differences noted 

earlier in the month had moved away from the transect line.  While the conditions 

appeared to be different at the start of the study period, the entire transect was influenced 

by the same factors, indicating a degree of dependency between the inshore and offshore 

regions. 

2.4.2: Comparisons between Glider, HFR, and MERRA_2 

As more variables are included in an ocean observation system, it becomes increasingly 

difficult to incorporate the available data sets into a single unified snapshot of the 

oceanographic condition.  Even when only considering surface-based measurements, 

there are limitations to the level that satellite and in situ measurements can be integrated.  

These integration methods require either spatial or temporal averaging or applying an 

offset to either the in situ data or satellite derived products (Bouffard et al., 2012; Liblik 

et al., 2016; Little et al., 2018; Pascual et al., 2017; Testor et al., 2019).  Trying to 

integrate surface conditions to processes occurring at depth is an equally important 

challenge.  The addition of gliders to ocean observation systems is specifically targeting 

the need to extend surface-based measurements into the water column at high temporal 

resolution.  Recent work with ocean observation systems has been focused on comparing 
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glider derived data with surface measurements including comparing geostrophic 

velocities from satellite derived altimetry, numerical simulations, and gliders to reduce 

errors in coastal waters.  In coastal areas, satellite derived data sets tend to have reduced 

quality due to different factors, such as cloud coverage, complicated sub surface 

structuring of the water column, or interference from land.  The Red Sea presents an ideal 

location to test new methodologies in multi-platform integration due to the relatively 

simple conditions present.  This aspect of the Red Sea has led it to be of interest in many 

numerical simulation studies and is applicable for this study as well.  Given our current 

understanding of the forcing processes in the Red Sea, it is expected and confirmed by 

this study that the typical processes occurring in the north central Red Sea should be 

consistent throughout the at least the upper 150 m of the water column, as is 

demonstrated in both the ITS and CLS analysis.  We have shown that the previously 

described persistence time frames are replicated not just at the surface, but also extend 

deeper into the water column, with the weather band time frame consistent down to 150 

m and the 28.00 isopycnal, with no significant difference between the two methods or the 

different depth and density layers.  We also see that the persistence time frame of eddies 

matches with the persistence seen through the ITS and CLS calculations, providing 

further evidence of the importance of eddies in the circulation patterns in the central Red 

Sea. 

2.4.3: Conclusion 

While the study is small in both spatial and temporal extent, we were able to find a 

persistence time frame for many of the measured variables.  This persistence time frame 

is the distance between two individual time steps that we can ensure independence 
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between the data points.  Both the ITS and CLS analysis can be used to give an 

understanding of the typical time frame or cycle of natural variation within a system.  In 

this study area, previous research has shown that most of the circulation energetics are 

based on eddy dynamics.  Both the ITS and CLS calculations fall within the expected 

time frame based on eddy persistence in the Red Sea (2 – 6 weeks) with a mean time lag 

of 19.1 (ITS) and 19.6 (CLS) days for the glider data, and 21.9 (ITS) and 21.5 (CLS) for 

the HFR/MERRA_2 data.  While this initial study encompasses a relatively short time 

series over a small spatial extent, this method of analysis still matches the current 

understanding of the local dynamics and thus shows potential for examining larger 

spatio-temporal data sets. 

As seen from this research, marine data sets are typically both non-linear and non-

regular, as both the natural movement of water and the logistics with collecting data often 

preventing fully systematic data collection plans.  The non-linear and non-regular nature 

of marine data limits the types of statistical analysis that can be performed, either by 

averaging data to remove non-linear patterns or using gap filling methods to ensure 

regularity.  In this research, the ITS analysis requires that data been both detrended and 

set to a uniform time step, which introduces a degree of information loss.  In contrast, the 

CLS method was specifically developed with non-linear and non-regular data in mind, 

increasing the overall information retained through analysis.  One of the typical 

considerations for any spatio-temporal analysis is finding the right balance between 

resolving fine scale details and managing to fill in gaps in coverage by either averaging 

or interpolation.  One of the important findings from this research is that the CLS 

calculation was more robust to gaps than the ITS calculation, giving a greater degree of 
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flexibility over data that includes gaps.  This can be an important factor within marine 

systems, where often even with the best efforts result in occasional gaps. 

Local and regional conditions play an important role on marine systems across the world.  

The Red Sea itself has a unique set of conditions, especially when considering the 

temperature and salinity ranges recorded in the basin.  Even within the Red Sea, 

conditions are very different depending on the location within the basin. While the 

information presented for this study only directly applies to this glider mission, the 

methods presented can be adopted to other similar data sets both within the Red Sea and 

across the world. 
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Chapter 3: Localized influence of two counter-rotating eddies in the north 

central Red Sea as seen by two parallel AUVs 

3.1: Introduction 

In recent years interest has increased in the Red Sea as a resource for scientific 

investigation.  This recent increase has been driven in part by an increase in the 

availability of remotely sensed data from satellite, accessibility of the Red Sea for in situ 

research, and the relative simplicity of the basin as an entire system (Jones and Kattan, 

2017; Raitsos et al., 2013; Sofianos and Johns, 2015; Yao et al., 2014a; Yao et al., 

2014b).  The basin has often been described as a reverse estuary, in which the salinity 

gradually increases to a maximum of 40.6 in the main basin with distance from the 

interchange with the Gulf of Aden at Bab el Mandab, which has been an area of interest 

for research for many years (Asfahani et al., 2020; Berumen et al., 2019b; Chaidez et al., 

2017; Sofianos and Johns, 2015; Zarokanellos et al.).  The Red Sea is also very warm, 

representing some of the highest known temperatures that coral reefs survive at (Chaidez 

et al., 2017; Ellis et al., 2019).  With increasing global pressure on coral systems coming 

from multiple factors, developing a deeper understanding of the context in which coral 

reefs are surviving in the Red Sea can drive a better understanding of coral reefs in other 

parts of the world (Ellis et al., 2019; Hewitt et al., 2015; Raitsos et al., 2017).  The recent 

trend in economic development within the Red Sea as a part of Saudi Arabian nation 

policy associated with Vision 2030 also indicates the need for a deeper understanding of 

the overall marine system (Almahasheer and Duarte, 2020). 
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This understanding comes when we can characterize both the short-term and long-term 

variability within the system and its effect on the underlying biological and physical 

processes (Jones and Kattan, 2017; Raitsos et al., 2013; Thomson and Emery, 2014).  

Indeed, reaching a better characterization of system variability across multiple levels of 

scale is one of the goals of a typical marine observation system (Guinehut et al., 2012; 

Holte et al., 2017; McClatchie, 2016; Rudnick et al., 2017).  While this characterization is 

easier to accomplish for areas that have a long running time series data set, recent oceanic 

questions require comparisons between areas of the oceans that have not had the benefit 

of a consistently maintained long-term observation system (Centurioni et al., 2017; 

Hernández-Carrasco et al., 2018; Jones and Kattan, 2017).  There is an increased need to 

characterize short-term and long-term variability with relatively recently establish ocean 

observation systems (Borrione et al., 2019; Liblik et al., 2016; Pascual et al., 2017).  At 

this time, the Red Sea is developing a consistent long-term time series data set focused on 

the central part of the basin.  Included in the development of this data set is an integrated 

ocean observation system using satellite-derived data, ship-based measurements, High 

Frequency Radar, biogeochemical floats, and Autonomous Underwater Vehicles (gliders) 

(Jones and Kattan, 2017). 

3.1.1: Context of eddies in the Red Sea 

The importance of eddies in the Red Sea as a key feature of circulation and energy 

transfer have been understood for many years.  Past studies have focused on describing 

many of the basic characteristics of Red Sea eddies by using several different methods, 

including numerical simulations, ship-based surveys, remotely sensed data, and gliders.  

Several conclusions have been drawn from this research.  Mesoscale eddies occur 
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frequently within certain regions of the Red Sea (Karimova and Gade, 2014; Yao et al., 

2014a; Yao et al., 2014b; Zhan et al., 2014; Zhan et al., 2016).  Since these eddies tend to 

have centers within a relatively small range, they have been described as semi-permanent, 

with an eddy typically lasting from 2-6 weeks with an average diameter of 100-260 km 

(Karimova and Gade, 2014; Zhan et al., 2014).  Figure 3.1 shows the calculated 

geostrophic velocities over the entire Red Sea for the month of January 2018, which 

shows some of the characteristic patterns of eddies within the basin.  These velocities are 

from the Multi Observation Global Physical Near Real Time data product called 

ARMOR3D, available from Copernicus Marine Services (https://marine.copernicus.eu/).  

The ARMOR3D data product consist of observations collected both by satellite and in 

situ instrumentation to produce global coverage of oceanographic variables (Guinehut et 

al., 2012).     
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Figure 3.1: Surface geostrophic velocities of the entire Red Sea for January 2018 from 

the ARMOR3D data set.  The size and direction of the arrow indicates the magnitude and 

direction of the u-v velocity vector.  The alternating eddy structure often present within 

the Red Sea is visible with a series of counter rotating eddies across the central and 

northern parts of the basin. 
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One aspect of Red Sea eddies is that depending on the location of the eddy center within 

the basin, they can be deformed due either to limited basin width or the presence of 

another eddy in proximity (Karimova and Gade, 2014).  Eddies in the Red Sea occur 

more frequently in the central and northern portions of the Red Sea at latitudes typically 

above 19° N (Karimova and Gade, 2014; Zarokanellos et al., 2017a; Zhan et al., 2014).  

A second aspect of eddies within the Red Sea is that they contribute to a net flow 

throughout the entire basin over extended periods of time (Sofianos and Johns, 2003).  

While this net flow may be obscured in at any given time, the net flow for the Red Sea 

typically starts at Bab el Mandab, where it continues along the western side of the basin.  

The flow continues northward along the west side of the basin until it reaches anywhere 

from 17-20° N, depending on local wind intensity (Bower and Farrar, 2015).  At this 

point, the net flow crosses the basin and proceeds northward along the eastern side until it 

reaches the north Red Sea, where evaporation and cooling increase the surface density of 

the water (Asfahani et al., 2020; Yao et al., 2014a; Yao et al., 2014b).  While this general 

pattern is understood, at any given time this overall pattern can locally be either 

interrupted or in some cases reversed due to the location and rotation of eddies 

(Zarokanellos, 2018).  A third aspect of eddies within the Red Sea is their potential role 

in species distributions for the Red Sea, especially when considering coral, 

phytoplankton, and coral reef fish.  From a biodiversity standpoint, the Red Sea is 

typically broken into either two, dependent on the species composition within the regions.  

The southern-most region, located below 17-19° N has a species composition that is more 

similar to the Gulf of Aden than to the rest of the Red Sea (Berumen et al., 2019a; 

Roberts et al., 2016; Wang et al., 2019).  Numerical simulations have shown that drifting 
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particles originating from the Southern Red Sea are more likely to remain in the region or 

end up if the Gulf of Aden, with a low portion of particles drifting into the more northern 

portions of the Red Sea (Wang et al., 2019).  In contrast, species in the Red Sea north of 

19° N tend to remain within the northern part of the basin and the species composition is 

similar throughout the basin (Berumen et al., 2019a; Raitsos et al., 2017).  It has been 

noted in previous research that these differences are potentially linked to different 

oceanographic processes between the two regions, but that more research into both 

oceanographic and species dynamics are needed before drawing any further conclusions 

(Berumen et al., 2019a). 

Eddy dynamics also play an important role in the distribution of chlorophyll throughout 

the Red Sea.  Based on chlorophyll productivity in the Red Sea, the basin is typically split 

into either three or four categories, typically arranged along the central axis (Gittings et 

al., 2019; Kheireddine et al., 2017; Raitsos et al., 2013).  Chlorophyll values are highest 

in the southern Red Sea, where water from the Gulf of Aden advects into the Red Sea 

basin.  Upwelling and mixing in the gulf contribute to a flux of nutrients into the euphotic 

zone increasing phytoplankton biomass (Dreano et al., 2016; Fratantoni et al., 2006; 

Gittings et al., 2017; Yao and Hoteit, 2015).  As this water moves northward across the 

basin, the available nutrients gradually are utilized, and by the time the water from the 

Gulf of Aden has reached the central Red Sea, the overall productivity is greatly lowered 

(Gittings et al., 2019; Raitsos et al., 2013).  Typically, the central Red Sea is considered 

as either one or two phytoplankton bioregions, with each half of the central region 

associated with its geographic neighbor (Kürten et al., 2019).  In the northern part of the 

basin, phytoplankton concentration gradually increases due to an increase in nutrients in 
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the photic zone from mixing driven by evaporation and cooling (Asfahani et al., 2020; 

Kheireddine et al., 2017).  Figure 3.2, also from the month of January 2018, is a 

composite satellite image for January 2018 of the Red Sea from the Ocean Colour 

Climate Change Initiative, with higher chlorophyll in the southern and northern parts of 

the basin, with some eddy structures seen in the central and northern parts of the basin 

(https://marine.copernicus.eu/). 
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Figure 3.2: Satellite chlorophyll-α monthly composite for January 2018 using the OC-

CCI algorithm.  The color has been adjusted to a logarithmic scale to better highlight 

details across the entire Red Sea.  A higher concentration of chlorophyll-α can be see 

between the two glider lines, a possible effect of the convergent eddies. 
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3.1.2: Study Area 

The study area for this research is a section of the north central Red Sea located at 22° N 

on the Saudi Arabian side of the Red Sea (Figure 3.3).  Several factors led to the selection 

of this study area, including the presence of High Frequency Radar (HFR) sites, 

proximity to King Abdullah University of Science and Technology (KAUST), and the 

presence of semi-permanent eddies in the area.  The study composes of two parallel 

observation lines spaced 40 km apart that run from about 20 km offshore to 100 km 

offshore.  These two lines, located at 22.125° N for the South Line and 22.625° N for the 

North Line, were placed in a way to provide the safest, consistent coverage for glider data 

within the study area.  The inshore portion of the line was placed within 5 km of the reefs 

located along the shoreline to ensure that the glider had sufficient space for navigation 

around waypoints.  The offshore portion of each line was placed to within 5 km of the 

major shipping lanes running along the central axis of the Red Sea.  The latitudinal 

spacing of 40 km was selected to ensure that the two glider lines would not overlap, since 

previous unpublished glider missions in the area have shown that local current conditions 

can cause drift of about 15 km from a given transect line of 80 km in length.  The 

placement of these lines also coincides with data available from both HFR and the Global 

ARMOR3D L4 Reprocessed (ARMOR3D) data set, which are collocated either on or 

proximate to the glider lines (Guinehut et al., 2012; Mulet et al., 2012).  Table 3.1 shows 

the deployment dates of the three gliders used to cover the two transect lines. 
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Figure 3.3: Location of the study area within the Red Sea.  The two glider lines (North 

and South Line) is the solid line, the eight locations for the HFR data are the diamonds 

(North A-D, South A-D) and the circles are the locations used for the ARMOR 3D data.  

The glider and HFR data were analyzed from December 31, 2017 to January 31, 2018.  

The ARMOR 3D data is a four-week average centered on January 15, 2018. 

 

Glider Transect Start Date End Date 

SG 213 North 12/25/2017 2/14/2018 

SG 215 South 1/21/2018 2/25/2018 

SG 216 South 11/13/2017 1/30/2018 

Table 3.1: Glider deployment dates. 

January was selected due to several aspects of Red Sea climatology.  The winter months 

for the north central Red Sea typically show a decrease in the overall stratification typical 

of the summer months in this area (Yao et al., 2014b; Zarokanellos et al., 2017b).  The 

winter months for this part of the basin show the greatest variability and depth of the 

mixed layer, and also have the greatest likelihood for multiple eddies to be close by (Yao 

et al., 2014a; Zarokanellos et al., 2017b).  As seen in Figure 3.1, during this study period, 
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two counter-rotating eddies interface in the study area, with an anticyclonic eddy located 

to the north of the study area and a cyclonic eddy located to the southwest.  The coldest 

seawater temperatures in this region typically occur in late January to mid-February. 

3.1.3: Single glider line results 

All ocean systems are highly dynamic and operate at several different key time scales of 

variability (Thomson and Emery, 2014).  When multiple variables coming from a variety 

sensors need to be compared, as is an increasingly important part of Ocean Observation 

Systems, it is important to understand the effect that sampling frequency can have on the 

data sets being examined (Borrione et al., 2019; Liblik et al., 2016; Pascual et al., 2017).  

Each variable can have a different natural time scale and mismatches between both 

temporal and spatial sampling frequency can confuse the complex interplay of oceanic 

systems and lead to potential mischaracterization of events (Holte et al., 2017; Rudnick, 

2016; Terzic et al., 2019; Testor et al., 2019).  One of the methods for resolving these 

potential mismatches is to identify the periodicity of each of the variables for each 

platform, and then to apply a temporal filter that averages out each variable to the same 

time scale (Thomson and Emery, 2014; Ward et al., 2018).  One of the limitations to this 

approach is that this method works best with an extensive time series record for the area 

of interest.  New areas of interest or recently placed instrument platforms do not 

immediately have access to a long time series to perform highly detailed temporal 

characterization, which limits the techniques that can be used to determine an appropriate 

temporal filter (Habeeb et al., 2005; Keeling et al., 1997; Ward et al., 2018).  Currently, 

techniques are under development to provide appropriate temporal filters over smaller 

time frames until long-term, multiyear data sets can be collected.  Recent work within the 
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study area has examined a method of cross comparison between different types of 

instrument platforms focusing on short-term persistence (Chapter 2).  Two statistical 

methods were used to determine the short-term persistency of biological and physical 

variables in the north central Red Sea to find the dominant scale of variability for each 

variable.  The two methods, Characteristic Length Scale and Integral Time Scale, found 

that the dominant scale of variability during the study period was 19.1 and 19.6 days 

(Chapter 2). This persistence time frame has also been described for other work in the 

area, where the highest magnitude of variation in the north central Red Sea was described 

as a weather band lasting two to four weeks, rather than seasonal or interannual 

variability (Churchill et al., 2018). 

3.2: Methods 

3.2.1: Glider deployment and calibration 

Successful maintenance of the two glider lines over the time frame of the study period 

required the deployment of three gliders (Seaglider®).  These deployments were handled 

in a similar manner as described in Chapter 2, with some slight adjustments due to 

multiple gliders in the water.  These adjustments occurred as a variation to a longer-term 

goal to have a perpendicular glider transect in operation over the course of an entire year 

from September 2017 to September 2018.  Partway through the month of January the 

glider that was on station for the transect line needed to have batteries replaced, which 

meant the addition of a third glider to the system.  After the month-long multi-glider 

deployment, the remaining glider was left on station to continue observations.  The 

additional gliders were always launched in proximity to a glider already in the water, and 
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a ship based CTD cast was used to compare the quality of the glider collected data.  Each 

glider was equipped with a CTD, a dissolved oxygen sensor, a 3-wavelength fluorometer, 

and a 3-wavelength backscatter sensor (Table 3.2).  The gliders traversed an 80 km east-

west transect between a starting waypoint approximately 20 km offshore to an offshore 

waypoint approximately 100 km from the coast for both the north and south lines. The 

glider was set to dive to 500 m depth along the south line which represents a safe dive 

depth along the transect where the bottom depth varied from less than 600 m to more than 

1000 m.  The glider along the north line was set to dive to 450 m depth where the bottom 

depth varied from less than 500 m to more than 1000 m.  The dive depth for both lines 

had an optimized horizontal resolution at about 2 km per dive with a dive interval of 

about 2.33 hours along the majority of the transect.  Data from the gliders were collected 

from the entire dive cycle. However, the sampling frequency varied as a function of 

depth. The sampling frequency was once every 10 seconds in the upper 100 meters, then 

once every 50 seconds between 100 and 250 m, and was reduced to once every 100 

seconds between 250 m and 500 m. The sampling frequency corresponds to data 

collected once every 1.3 m for the upper 100 m, once every 6.5 m from 100 to 250 m, 

and one every 13 m from 250 to 500 m.  The data from the glider deployments can be 

seen in Figures 3.4 (North Line) and 3.5 (South Line).  For this analysis three 

representative depths (6 m, 76m, and 150 m) and isopycnals (27.00 kg/m3, 27.50 kg/m3, 

and 28.00 kg/m3) were chosen for analysis.  Since the goal of this research is to contrast 

the spatio-temporal patterns of gliders at a relatively short latitudinal distance, the 

selected depth and isopycnal layers were selected to be in the upper portion of the water 

column extending into the upper portion of the subpycnocline layer.  As a difference 
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from the representative depths and isopycnals as described in Chapter 2, the month of 

January shows an increase in the surface density of both the north and south line, with the 

27.00 kg/m3 isopycnal being the shallowest isopycnal that is present throughout the study 

period.  Further justification for these representative layers can be found in Chapter 2, but 

these depths and isopycnals bracket the upper and lower extents of the water column 

experiencing greatest variability.  All further processing and quality control for the glider 

data followed the same process as described in Chapter 2.  Geostrophic velocities were 

calculated referenced to a depth 400 m for an assumed level of zero motion both in the 

north and south line to directly compare the geostrophic velocities across the two 

transects (McDougall et al., 2009).  A 32-day mean of each of the two lines was used to 

calculate the dynamic height and then geostrophic velocities. 
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Figure 3.4: North Line glider time series plots for Temperature, Salinity, chlorophyll-α, 

dissolved oxygen, and σ- θ from 0-250 m and 25.5 – 28.5 kg/m3.  The white line indicates 

the mixed layer depth based on the de Boyer index.  The red vertical lines indicate when 

the glider is inshore, the blue lines indicate when the glider is offshore.  
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Figure 3.5: South Line glider time series plots for Temperature, Salinity, chlorophyll-α, 

dissolved oxygen, and σ- θ from 0-250 m and 25.5 – 28.5 kg/m3.  The white line indicates 

the mixed layer depth based on the de Boyer index.  The red vertical lines indicate when 

the glider is inshore, the blue lines indicate when the glider is offshore. 
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Equipment Parameters 
Excitation 

[nm] 

Emission 

[nm] 

CTD  Temperature 
  

(Seabird CT-sail, Conductivity 
  

unpumped) 
   

    
WET Labs Chlorophyll-α 470 695 

ECO Puck CDOM 370 460 

(FL3) Phycocyanin 630 680 

    
WET Labs Optical 532 532 

ECO Puck backscatter at 3 650 650 

(BB3) Wavelengths 880 880 

    
Oxygen sensor  Dissolved Oxygen 

  
(Aanderaa 

optode, 
   

model 4331) 
   

Table 3.2:  Summary of the equipment used in this study. 

 

3.2.2: HFR calibration 

The HFR system is located on the central western coast of Saudi Arabian and consists of 

two CODAR Seasonde sites in operation since July 2017 (Solabarrieta et al., in review).  

The HFR system transmits at the 16.12 MHz frequency with hourly data provided over a 

120 km range with a spatial resolution of 3 km.  The received backscatter signal was 

converted into radial velocities using the MUltiple SIgnal Classification algorithm 

(Schmidt, 1986).  The MATLAB package HF Progs 

(https:cencalarchive.org/~cocpmb/COCMPwiki) was then used to combine radial 
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currents and generate gap-filled total, two dimensional currents using Open Modal 

Analysis (Kaplan and Lekien, 2007) for the entire month of January 2018.  Four evenly 

spaced locations across both the north and south glider line were selected for time series 

analysis, as seen in Figure 3.3. 

3.2.3: Short term persistence through Error X analysis 

Deployment conditions for oceanographic instrument platforms are typically far from 

ideal, which leads to serious complications when trying to compare multiple types of 

data.  Due to the dynamic nature of seawater, even slight differences in positioning and 

sampling frequency can cause a high degree of spatio-temporal blurring of recorded 

events (Bouffard et al., 2012; Rudnick, 2016).  To simplify comparisons between data 

sets, a typical practice is to apply a spatio-temporal filter to the data set of interest, which 

characterizes and simplifies variability that occurs within the data set (Thomson and 

Emery, 2014).  Ideally, an appropriate filter can be established detailed time series 

analysis, where details such as diel patterns, seasonal shifts, and interannual variability 

can all be accounted for.  In the absence of long time series data sets, other methods can 

be employed to provide a spatio-temporal filter for data comparison.  In the case of this 

research, Error X analysis was performed as described in (Ward et al., 2018).  In order to 

determine the correct filter to compare the glider and HFR data from both the north and 

south lines, Error X analysis was performed on the glider time series at the three 

representative depths and isopycnals and the HFR time series at each of the eight 

locations as described in Chapter 2.  Figure 3.6-3.8 show each of the individual time 

series used for the Error X analysis and Figure 3.9 shows the time series data from the 

HFR.  The full results from the CLS (with 95% confidence intervals) analysis can be 
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found in Appendix B.  Figure 3.10 shows the Characteristic Length Scale for each of the 

glider variables after the analysis.  The north line has a mean CLS of 22.2 days (std 3.46, 

median 20) and the south line has a mean CLS of 25.2 days (std 3.6, median 26).  Of note 

for this analysis is that some of the variables listed do not actually reach a characteristic 

length scale within the time frame of the study.  This is especially apparent with the HFR 

data, in which none of the variables achieved a CLS for the month of January.  For the 

variables that did achieve a measurable CLS, the length is close to previously reported 

values (Chapter 2) (Churchill et al., 2018) for the weather band period of the Red Sea. 

 

Figure 3.6: North and South Line glider time series data set at 6 m and 27.00 kg/m3 

isopycnal for the month of January 2018 used in the Characteristic Length Scale 

calculation. The light gray shows the values from 76, 150 m and 27.50, 28.00 kg/m3  
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Figure 3.7: North and South Line glider time series data set at 76m and 27.50 isopycnal 

for the month of January 2018.  These data sets were used in the Characteristic Length 

Scale calculation. The light gray shows the values from 6 m and 27.00 kg/m3 as well as 

150 m and 28.00 kg/m3 isopycnal.  Salinity has been rescaled from Figure 3.4. 
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Figure 3.8: North and South Line glider time series data set at 150m and 28.00 isopycnal 

for the month of January 2018.  These data sets were used in the Characteristic Length 

Scale calculation. The light gray shows the values from 6 m and 27.00 kg/m3 as well as 

76 m and 27.50 kg/m3 isopycnal.  Salinity has been rescaled from Figure 3.4. 
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Figure 3.9: HFR time series data across the study area for the month of January 2018.  

These data sets were used in the Characteristic Length Scale calculation.  Over the time 

frame of the study period, the CLS calculation did not reach an asymptote for any of the 

HFR variables measured. 
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Figure 3.10: Short term persistence of glider data from Characteristic Length Scale 

analysis.  Variables labelled with an asterisk did not reach an asymptote.  The north line 

has a mean CLS of 22.2 days (std 3.5) while the south line has a mean CLS of 25.2 days 

(std 3.6).  These time frames fall within the expected 2-4-week weather band period that 

has previously been described for the study area. 
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3.3: Results: 

3.3.1: Water column time series plots (glider) 

Both the north and south glider line show clean signs of winter cooling and increased 

salinity over the month of January (Figure 3.4-3.8).  Both cooling and an increase in 

salinity contribute to the overall increase in density of water across all depths, especially 

since both glider lines exhibit a patch of less saline water at the surface between the 17-

21 of January, which decreases the density of water at the surface to nearly the same 

values as at the start of the month (Figure 3.4, 3.5).  This patch of lower salinity water 

occupies the offshore portion of the glider line and could be related to the transport of 

water from the Gulf of Aden.  The mixed layer depth for the northern line varies between 

20 m and 80 m (Figure 3.4).  One of the times that the mixed layer depth reaches 80 m is 

on January 12, associated with a patch of low salinity water in the upper water column.  

The other time the mixed layer depth deepens to 80 m occurs on January 27th and is 

associated with a shallowing of the 27.00 kg/m3 isopycnal.  The mixed layer depth for the 

southern line shows less variability overall, ranging from 20 to 60 m over the month.  The 

maximum depths for the southern line occur on January 11th and the 18th-22nd (Figure 

3.5).  The mixed layer depth of January 11th occurs between two patches of lower salinity 

water, and the event on the 18th-22nd closely follows the 26.00 kg/m3 isopycnal.  In 

general, the northern line is more dense than the southern line, as is expected as a part of 

the general latitudinal trends in the Red Sea, in which latitude has been shown to 

correlate positively with salinity and negatively with temperature (Chaidez et al., 2017; 

Yao et al., 2014a; Yao et al., 2014b).  Also as expected, the water column at or below 150 
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m tends to show little variation over the course of the month, indicative of relatively 

stable conditions at depth. 

3.3.2: Geostrophic Velocities from glider relative to 400 m 

As with many aspects of ocean observation systems, specific instrument platforms and 

data sets are best designed to handle specific questions.  While the instantaneous state of 

the ocean is important for many types of question, some questions are best understood 

over a longer time frame, including information about geostrophic velocities.  The CLS 

analysis performed indicates the length of an appropriate averaging filter, in this case the 

mean of the glider transects for the north and south line over the month of January.  The 

geostrophic velocities were calculated in spatial bins of 0.08° longitude.  Figure 3.11 

shows the calculated geostrophic velocities relative to an assumed depth of zero motion 

at 400 m perpendicular to the glider transects.   The north velocity field shows 2 flow 

regimes, with the first one mainly southward (negative v) west from 38.55° E, with a 

mainly northward flow (positive v) east of this location.  At the same time, the southern 

line shows a more complex pattern, with apparent banding throughout the entire transect.  

In comparing the two, the north line shows a slightly lower magnitude of velocity overall.  

Both transects show a southward flow from 38.17 – 38.27° E and a northward flow from 

38.55-38.67° E, indicating the potential for some features of the geostrophic velocity to 

transmit across the 40 km distance between the two transects.  The geostrophic velocities 

from individual transects were not considered due to each transect lasting from 3-4 days, 

which may include tidal and inertial motion that are not a part of this analysis. 
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Figure 3.11: Geostrophic velocities for averaged transects for January from the North 

and South glider lines.  The geostrophic velocities were calculated for a reference depth 

of 400 m using the TEOS-10 toolbox for Matlab.  Positive velocities are flow towards the 

north, and the upper 100 m of the water column shows a potential convergence in the 

offshore region of the two lines. 

 

From Figure 3.11, it appears that the overall geostrophic flows between the north and 

south transects are roughly balanced, however, Figure 3.12 shows a more detailed view 

of the mean values of the geostrophic velocity for each transect.  The overall means for 

the two transect lines extending across the entire transect line and down to 100 m in the 

water column shows a difference between the two mean geostrophic flows.  The north 

transect has a mean velocity of 0.0337 m/s flowing southward, while the south transect 

has a mean velocity of 0.0416 m/s flowing northward.  The two transect lines also have 
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different minimum and maximum ranges with the north transect between -0.32 and 0.33 

m/s and the south transect between -0.45 and 0.42 m/s.  Both glider transects show a 

gradual decrease in the velocity magnitude as depth increases across the entire transects.  

In contrast, when each latitudinal bin is examined the patterns follow along with the 

results seen in Figure 3.11, with the difference in magnitudes easier to visualize.  Overall, 

the picture presented from the mean structure of the geostrophic velocities indicates a 

northward flow on the southern transect and a southward flow on the northern transect, 

indicative of convergence of flows between the two glider lines.  This convergence 

should set up a corresponding offshore flow between the two glider transects, since the 

proximity of reefs on the inshore side of the transects would prevent flow in that 

direction.  However, the nature of geostrophic velocity calculations and the setup of these 

transects only provide velocity information perpendicular to the transects lines, which 

means that they are only able to provide the north-south component of the geostrophic 

velocities.  To further resolve the flow conditions, addition data are needed for the study 

area. 
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Figure 3.12: Average geostrophic velocities from the north and south glider line.  The 

top is the average velocity for each two-meter depth bin down to 100 m across each entire 

line.  The bottom is the average velocity from 0-100 m for each latitudinal bin.  For both 

parts of the figure the blue and red dashed lines is the overall mean across each of the 

glider lines. 
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3.3.3: Comparison between section glider GSV and ARMOR3D GSV at 

north and south line 

Since the data provided from the glider transects are only able to provide geostrophic 

velocities perpendicular to the transect, they are insufficient to fully resolve the 

geostrophic velocities within the study area.  Additional data are needed to confirm the 

presence and directionality of the potential convergent flow seen from the glider data and 

the geostrophic velocities provided from the ARMOR3D data set helps to offset some of 

the limitations from a single data source.  However, before any comparisons can be 

made, it is important to verify that the glider and ARMOR3D data sets do match up, and 

to what degree they correspond in both space and time.  The glider transects were 

summarized to a monthly value due to the CLS analysis.  To match this temporal scale 

from the glider data, a monthly average was obtained for the ARMOR3D data set for the 

entire Red Sea (Figure 3.1).  The spatial mismatch between the two datasets, since the 

data from ARMOR3D has a spatial separation of 25.75 km for the study area, was 

accounted for by creating four spatial bins of equal size for each glider transect.  The 

geostrophic velocities for each quarter transect were then averaged and compared to the 

corresponding v vector ARMOR3D data, as seen in Figures 3.13 and 3.14.  The 

differences between the geostrophic velocities from ARMOR3D and glider data can be 

seen in Table 3.3.  The greatest difference in velocity between the two data sets occurred 

at the surface on the North Line at Site C, with a difference of 0.1169 m/s.  The smallest 

difference occurred at 150 m on the North Line at Site C, with a difference of 0.0004 m/s.  

The results from the glider geostrophic velocities match reasonably well with the v vector 

values from ARMOR3D at the surface, 75 m, and 150 m depths.  Figures 3.15-3.17 show 
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a combination of the geostrophic velocities from the gliders and ARMOR3D, with both 

the v vectors and combined u, v vectors displayed.  With the addition of the ARMOR3D 

data set, we can conclude that the convergence seen in the glider data does contribute to 

an offshore flow between the two transect lines, likely resulting from the 

cyclonic/anticyclonic eddies seen in Figure 3.1. 

 

Figure 3.13: Geostrophic velocities for the north line at the representative depths used 

for CLS analysis with the v vector of the ARMOR3D data set.  As an aid to compare to 

the ARMOR3D data set, the glider line was split into four roughly equal sections that 

correspond to the geographic coordinates to find the mean value of the geostrophic 

velocity for that region. While the average values are close, there is a degree of spatial 

variability that is lost due to the averaging. 
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Figure 3.14: The same as Figure 3.13, but for the South Line. 

 

Figure 3.15: Geostrophic velocities for both the North and South Line at the surface 

(6m) and v vector velocities from ARMOR3D across the study area. 
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Figure 3.16: As in Figure 3.15, but at 75 m depth. 

 

Figure 3.17: As in Figures 3.15 and 3.16, but at 150 m. 
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Depth Line   Site D Site C Site B Site A 

Su
rf

ac
e

 

N
o

rt
h

 ARMOR3D -0.011 -0.016 -0.004 0.022 

Glider -0.1044 -0.1329 -0.0375 0.0654 

Difference 0.0934 0.1169 0.0335 0.0434 

So
u

th
 ARMOR3D 0.051 0.093 0.085 0.073 

Glider 0.024 0.1144 0.0558 -0.0041 

Difference -0.027 0.0214 -0.0292 -0.0771 

75
 m

 N
o

rt
h

 ARMOR3D -0.049 -0.041 -0.012 -0.022 

Glider -0.0651 -0.0669 -0.0502 0.0881 

Difference 0.0161 0.0259 0.0382 -0.1101 

So
u

th
 ARMOR3D 0.028 0.06 0.095 0.065 

Glider -0.0078 0.0646 0.0739 0.0008 

Difference 0.0358 0.0046 -0.0211 -0.0642 

15
0 

m
 N
o

rt
h

 ARMOR3D -0.072 -0.063 -0.03 -0.023 

Glider -0.0235 -0.0152 -0.0304 -0.0059 

Difference -0.0485 -0.0478 0.0004 0.0171 

So
u

th
 ARMOR3D -0.023 -0.004 0.075 0.1 

Glider -0.006 0.0009 -0.0011 0.0067 

Difference -0.017 -0.0049 0.0761 0.0933 

 

Table 3.3: V velocity results.  Difference in v velocities between the ARMOR3D values 

and the mean values calculated from the quartered glider transects.  Velocity units are in 

m/s. 

3.4: Discussion 

3.4.1: Meaning for the Red Sea 

The combination of the presented glider data and ARMOR3D results provides 

information regarding variability dynamics for the north central Red Sea.  First, we are 

able to provide a brief description of the variability along the central axis of the Red Sea.  

We were able to observe over the course of the month two distinct circulation patterns 

affecting the northern transect line and the southern transect line, primarily due to the 

influence of two counter-rotating eddies near the study area.  This indicates the 

importance of setting up an adaptive sampling system when trying to resolve local scale 
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events within the basin.  During the study period, the two glider transects showed little 

interaction from one transect to the next.  However, it is possible that this is due primarily 

to the counter-rotating eddies, and it is expected that conditions would be different if one 

or both eddies were not present.  With this knowledge, a more efficient sampling system 

could be established, where gliders are moved closer together during eddy events and 

further away during non-eddy events. 

Eddy dynamics are an important factor to understanding the overall processes governing 

the Red Sea.  Eddies are directly involved at many different scales across the Red Sea, 

from providing some of the structure of the overall circulation, to cross-basin transport, 

and down to providing contrast at a distance of a few tens of kilometers.  Due to the 

variety of scales important in the Red Sea, it is vital to have analytical techniques 

available that can compare across multiple levels of scale.  As seen from this research, a 

significant level of detail that can be lost in the transition from 2 km data to 25.75 km 

data, as seen from the transition from the geostrophic velocities calculated from the 

gliders and from ARMOR3D.  The geostrophic velocities present from the glider data 

demonstrate a much higher level of variability, including reversals in the overall mean 

flow for a given segment.  For certain fine-scale processes, this loss of variability may be 

acceptable, but for others it may not.  It is through the combination of multi-scale data 

that we can start to seriously answer questions about the scale that we need to sample at 

to collect the correct type of data.  However, once these disparate data sets can be 

accurately compared, we are able to better understand the interactions between the coarse 

and fine scale processes occurring. 
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As presented in this research, the integration of multiple data sets has led to a better 

understanding of current conditions in the north central Red Sea with just a brief time 

series data set.  Using the CLS analysis has provided an initial understanding of 

important temporal scales within the basin, matching temporal scales with previous 

research in the area.  As data collection expands in spatio-temporal extent across the Red 

Sea, this analysis can be used to help determine longer relevant temporal and spatial 

scales for the Red Sea, extending into characterization of seasonal and interannual 

patterns.   

3.4.2: Conclusions 

Outside of the Red Sea, this research can help address several important issues.  Spatio-

temporal patterns are highly influenced by local conditions, with characteristic length 

scales developed at one location rarely applicable outside of the context of the immediate 

study area, let alone to geographically distant areas.  Often conditions between adjacent 

coastal and open water areas are sufficiently distinct to complicate understanding the 

connections that exist between the two regions.  The need to determine these connections 

even at a local scale, let alone for the global system, has led to the development of new 

techniques.  This is actually a cyclical aspect of oceanographic research, where more 

complicated questions lead to the development of new instrument platforms and 

deployment strategies, and the increase in data quantity and quality then results in the 

development of new analytical techniques as well as the improvement of established 

methods.  Novel methods to incorporate numerical simulations, satellite data, ship-based 

observations and in situ instruments are increasingly used to develop a better 

understanding of complex marine systems.  Even with few direct connections between 
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geographically distant areas of the global marine system, the oceans are all 

interconnected, so increased understanding in any given area of the ocean provides at 

least in part to a better understanding of global patterns. 
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Chapter 4: Sea surface temperature and eddy center occurrence cluster 

analysis in the Red Sea 

The work presented in this chapter regarding the Permutation Distribution Clustering 

analysis was performed by Nabila Bounceur. 

4.1: Introduction 

The Red Sea is one of the major shipping passages in the world, providing a connection 

between the Mediterranean Sea and the Indian Ocean from a marine standpoint and a 

connection between Africa and Asia from a terrestrial standpoint (Figure 4.1).  In 

addition to socio-economics reasons to study the Red Sea, the basin provides a relatively 

simple study area when compared to other basins of similar size or ecological importance 

(Berumen et al., 2019b; Jones and Kattan, 2017; Langodan et al., 2014).  One aspect of 

the simplicity of the basin is the existence of only one major source of inflow across a 

relatively shallow sill (Sofianos and Johns, 2015; Sofianos and Johns, 2003).  This sill 

has allowed for detailed measurements of both the inflow and outflow of the basin, 

providing information on the overall energy budget of the Red Sea (Zhan et al., 2016).  

Another important aspect of the Red Sea is the existence of coral reefs at higher latitude, 

temperature, and salinity than elsewhere in the world (Berumen et al., 2019a).  These two 

aspects of the Red Sea have led to an interest in understanding circulation within the 

basin through remote sensing, in situ observations, and numerical simulations. 
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Figure 4.1: Bathymetric map of the Red Sea using the GEBCO worldwide digital 

elevation model.   
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4.1.1: Physical effects of Red Sea eddies 

Circulation in the Red Sea has been described at two major characteristic scales.  The 

first level that has been described is the basin-wide circulation pattern.  Overall, the Red 

Sea can be considered as a reverse estuary system, with salinity gradually increasing with 

increasing distance from Bab el Mandab (Sofianos and Johns, 2015; Yao et al., 2014a; 

Yao et al., 2014b).  This increase in salinity, along with the latitudinal temperature 

gradient, helps set up the thermohaline circulation in the basin.  In addition to 

thermohaline circulation, the overall wind regime also influences basin-wide circulation 

(Bower and Farrar, 2015).  The Red Sea has two major wind patterns that have been 

described.  The first is a continuous flow from the north across the entire basin, typically 

present from May to September, during the southwest monsoon over the Arabian Sea.  

The second major wind pattern is a reversal of the winds over the southern portion of the 

Red Sea due to the influence of the Indian Ocean northeast monsoon over the Gulf of 

Aden and Indian Ocean which occurs during the months of October to April (Bower et 

al., 2013; Sofianos and Johns, 2015; Yao et al., 2014a; Yao et al., 2014b).  These 

combined forces of thermohaline circulation and an alternating wind regime are the major 

contributors to the long-term boundary current in the Red Sea (Sofianos and Johns, 2007; 

Yao et al., 2014a; Yao et al., 2014b).  In this current, water flows into the Red Sea from 

Bab el Mandab, where modelling indicates it initially flows along the western coast of the 

basin.  At about 18-20 °N, this flow then crosses over to the eastern side of the basin 

(Wang et al., 2019; Zarokanellos et al., 2017a; Zhai et al., 2015).  The water then 

continues along the eastern side of the basin until reaching the northern Red Sea, where 
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the formation of Red Sea Intermediate Water occurs (Yao et al., 2014a; Yao et al., 

2014b).  This water, now subsurface, then flows back to the Gulf of Aden through Bab el 

Mandab.  In contrast to the this flow system described by modelling, in situ observations 

have indicated that at least some of the water from the Gulf of Aden is transported along 

the eastern side of the basin as well, causing cooling in inshore waters (Churchill et al., 

2014a; DeCarlo et al., 2020). 

While this first major characteristic scale has been well described, recent research has 

been focused on the importance of mesoscale eddies in Red Sea circulation.  One of the 

key descriptive features noted about the Red Sea is the occurrence of eddies, which have 

been described as either permanent, semi-permanent, recurrent, or semi-persistent (Jones 

and Kattan, 2017; Karimova and Gade, 2014; Yao et al., 2014a; Yao et al., 2014b; Zhan 

et al., 2014).  Regardless of the exact term used, research has highlighted that eddies 

occur very often and in specific locations in the Red Sea.  These eddies occur across the 

Red Sea at sufficiently high frequency to obscure the long-term mean boundary current 

pattern previously described (Sofianos and Johns, 2003; Sofianos and Johns, 2007; 

Zarokanellos et al., 2017b; Zhan et al., 2014).  A recent study of eddies in the Red Sea, 

derived from AVISO+ Sea Level Anomaly (SLA) data from 1992-2012, described the 

characteristics of close to 1,000 separate mesoscale eddy tracks for the basin over the 

course of the 20 years (Zhan et al., 2014).  These eddies, including both cyclonic and 

anticyclonic eddies, have an average diameter range of 70-200 km and typically lasted for 

6 weeks.  This study showed that the rotation of the eddy is highly dependent on the 

location of the eddy within the basin.  Additional research has also shown that when 

active, these mesoscale eddies can account for kinetic energy transfer up to ten times 



100 

 

greater than that of mean flow (Zhan et al., 2014).  These eddies have a direct effect on 

the localized variability of salinity, temperature, and biogeochemical particles in the Red 

Sea, indicating a strong link between SST conditions and eddy location (Yao et al., 

2014a; Yao et al., 2014b; Zarokanellos et al., 2017a; Zhan et al., 2014).  Additionally, 

recently described scales of temporal variability are linked closely to the typical duration 

of Red Sea eddies, lasting on the order of 2-4 weeks as described in the previous chapters 

(Churchill et al., 2018).  Recent in situ observations of Red Sea eddies from both ship-

based observations and autonomous underwater vehicles have provided a high level of 

detail at depth describing the interactions between mesoscale eddies and salinity, 

temperature, and chlorophyll-α and these interactions can extend to a depth of 150 m 

(Asfahani et al., 2020; Gittings et al., 2019; Kürten et al., 2019; Zarokanellos et al., 

2017a). 

The physical structure of the Red Sea has also been suggested as an important factor for 

the recurrent positioning of eddies (Karimova and Gade, 2014; Zhan et al., 2014).  In 

part, this is due to the nature of the land around the basin, which has been discussed as an 

influencing factor for the consistent wind across the northern part of the basin (Bower 

and Farrar, 2015; Zhai and Bower, 2013).  Also, given that a significant portion of the 

described mesoscale eddies are considered cross-basin due to their diameter, recognition 

exists of topographical constraints to the formation and propagation of eddies in the Red 

Sea (Yao et al., 2014a; Yao et al., 2014b).  This research seeks to understand the spatial 

interconnectedness of bathymetry, SST, and eddy formation within the Red Sea, and to 

compare the results to previous research in the basin. 
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4.2: Methods: 

4.2.1: AVISO+ NRT 3.0 

The AVISO+ eddy tracking product has long been used as a primary source of 

information about eddy occurrence for many years (Faghmous et al., 2015).  The recent 

addition of new sea surface altimetry data due to new satellites in orbit has allowed for 

the addition of a new eddy tracking product with data starting from 1 January 2018, the 

Near Real Time (NRT) 3.0 eddy tracking product.  This new version of the AVISO+ 

eddy tracking experimental product includes several processing steps to produce a global 

record of daily eddy occurrence.  The NRT 3.0 eddy tracking product starts by 

incorporating all available satellite altimetry to produce a gridded global absolute 

dynamic topography (ADT) (Duacs/AVISO+, 2017).  This global data set then uses the 

algorithms described in Mason et al. (Mason et al., 2014) to identify eddies and track 

their progression through time.  In the eddy detection stage, a low-pass filter is first 

applied to the full dataset to remove any large-scale variability for processes greater than 

300 km, outside of the mesoscale range (Duacs/AVISO+, 2017; Mason et al., 2014).  

This filter is then subtracted from the original gridded data to highlight only the 

mesoscale variability.  The individual eddies are then identified by finding closed 

contours of -100 - +100 cm according to criteria established (Mason et al., 2014).  A best-

fit circle of this closed contour is then created, and the center of the circle is identified as 

the eddy center.  These eddies are then tracked by comparing gridded data from 

subsequent days in an increasing search radius derived from latitude over the course of 4 

following days (Duacs/AVISO+, 2017).  If the eddy is lost between the initial 
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identification and day four, then an interpolation is applied to account for any missing 

days.  In the case that a portion of the projections may cross over a land boundary, the 

two affected eddies are separated into different tracks.  The final step is to filter out any 

eddies that have a duration less than 14 days (Duacs/AVISO+, 2017).  This new product 

does have some limitations.  The data set analyzed for this research includes 684 days of 

eddy activity, from 1 January 2018 to 12 November 2019.  An additional limitation is the 

NRT product is not directly comparable to the delayed time product, due primarily to 

differences between eddy tracking from ADT and SLA The eddy center occurrences can 

be seen in Figure 4.2. 

 

Figure 4.2: Anticyclonic (A) and cyclonic (B) daily eddy center occurrences from 1 

January 2018 to 12 November 2019.  Eddy centers are from the AVISO+ NRT 3.0 data 

set.  1623 cyclonic and 1724 anticyclonic eddy occurrence days were recorded, for a total 

of 3347 eddy occurrence days 
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4.2.2: Spatial processing and statistics 

Several types of spatial analysis were performed on the NRT eddy tracking data, which 

included multiple steps.  The first step was the creation of incremental contours for the 

entire basin of the Red Sea using bathymetry downloaded from the GEBCO global data 

set (Weatherall et al., 2015).  These contours were created at 50 m increments from 0-500 

m using ArcGIS Pro 2.6, as seen in Figure 4.3.  A central axis for the Red Sea was 

created running from the Sinai Peninsula to Bab el Mandab.  The midpoints for these two 

lines were then calculated and connected to create the central axis.  Next, the central axis 

was separated into 100 equal length segments of approximately 21 km each.  A set of 100 

equidistance bins were created perpendicular to the central axis of the Red Sea to provide 

a regular distance from Bab el Mandab.  Cross-basin distances for each bin were 

calculated.  A count was collected for every day an eddy center (cyclonic and 

anticyclonic) occurred in the bin and the mean diameter calculated.  The count of 

cyclonic and anticyclonic eddy occurrence day per bin can be seen in Figure 4.4.  This 

created a data set of six variables, distance from Bab el Mandab, cross-basin distance, 

cyclonic eddy count, cyclonic eddy mean radius, anticyclonic eddy count, and 

anticyclonic eddy mean radius for each of the 50 m depth contours.  As depth decreased 

for the Red Sea, the area covered by each cross-basin bin shrank, with some of the bins in 

the southern portion of the Red Sea either greatly shortened or not existing.  The data 

extracted from each depth interval was then analyzed using a normalized Principle 

Component Analysis (PCA) within the software R. 
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Figure 4.3: 50 m contour lines derived from the GEBCO elevation data for the entire 

Red Sea, starting from the surface and terminating at 500 m. 



105 

 

  

 

Figure 4.4: Number of daily eddy center occurrences for each of the 100 cross-basin bins 

for anticyclonic (A) and cyclonic (B) eddies. 

A separate cluster analysis was performed on the eddy center occurrences using the 

Optimized Hot Spot Analysis (Getis-Ord Gi*) tool within ArcGIS Pro 2.6 (Getis and 

Ord, 1992).  Hot spot analysis is a way to extract information in addition to localized 

clustering within a data set, while at the same time testing for global clustering.  The 

analysis proportionally compares the sum of a feature and its neighbors to the sum of all 

the features within the data set, and then compares the difference to a random chance 

distribution.  This analysis provides not only on where a given data set is clustered, but if 

high or low values are clustered together (Getis and Ord, 1992).  In the case of 

occurrence data, high values indicate areas where the data is significantly clustered, while 
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low values will indicate areas where data does exist, but that it is significantly dispersed.  

The optimized version of hot spot analysis examines multiple resolution sizes to find a 

best fit for the existing data. 

4.2.3: Permutation Distribution Clustering of SST 

SST data are observations from the National Oceanic and Atmospheric Administration 

(NOAA) Optimum Interpolation (OI) SST data set (Noted OI.v2 NOAA OI SST V2) 

(Banzon et al., 2016; Reynolds et al., 2007) for 38 years over the period 1981-2019.  This 

data set is high resolution using optimum interpolation (OI), in situ (i.e. ships and buoys), 

and satellite observations combined on a daily and 1/4° (0.25° latitude by 0.25° 

longitude) spatial grid to form a spatially complete SST field of a global 1440 by 720 

grid.  Permutation Distribution Clustering (PDC) is a complexity-based approach to 

clustering time series (Brandmaier, 2011).  The SST subregions are identified by 

applying a PDC to weekly SST anomalies where the mean climatology has been removed 

through.   

This approach combines a hierarchical clustering based on the complete agglomerative 

scheme to merge the time series into distinct clusters (Wilks, 2011), a permutation test as 

a proxy of the difference in time series complexity, and an alpha-divergence criteria as a 

dissimilarity measure.  Using the divergence between the permutation distribution (Amari 

and Nagaoka, 2007) leads to a measure of dissimilarity based on the relative complexity 

of the time series.  Alpha divergence is chosen as it is a generalization of a set of 

common dissimilarity measure, therefore theoretically motivated by the kullback leibler 

divergence (Kullback and Leibler, 1951).  It has many advantages including invariance to 
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monotonic transformations and linear time complexity to the time-series length.  The 

permutation distribution is obtained by counting the frequency of distinct order patterns 

in an embedded dimension of the original time series.  The number of embedding 

dimensions is determined automatically by generalized information criteria based on a 

minimum entropy heuristic which is parameter free. 

4.3: Results 

Within the Red Sea during this almost two-year study period a total of 1623 cyclonic and 

1724 anticyclonic eddy occurrence days, for a total of 3347 eddy occurrence days (with 

684 days) were detected.  Figure 4.2 indicates the center of each of the individual eddy 

occurrence days, separated by rotation.  This includes a total of 76 individual cyclonic 

eddies and 65 anticyclonic eddies.  The cyclonic eddies reported had a minimum duration 

of 10 days, with a maximum duration of 90 days, and a mean duration of 21.6 days and a 

maximum of 5 distinct eddies occurring in the basin on a single day.  The minimum 

recorded diameter for cyclonic eddies was 59.5 km, with a maximum of 308.6 km and a 

mean diameter of 133.9 km.   Anticyclonic eddies show slightly different information, 

with a minimum duration of 10 days, a maximum duration of 118 days, and a mean 

duration of 26.8 days, with a maximum of 6 concurrent eddies on a single day.  The 

minimum and maximum diameters were slightly smaller than with the cyclonic eddies, at 

55.6 and 291.5 km respectively; however, the mean diameter was slightly larger at 138.6 

km.  These numbers vary from those previously reported with a 180 km mean, but this 

may be due to the previous omission of eddies with a diameter smaller than 70 km due to 

potential misidentification and the removal of eddies lasting less than 14 days (Zhan et 



108 

 

al., 2014).  Smaller diameter eddies tend to have a shorter life span, so the difference in 

diameters and duration may be due to these spatio-temporal filters. 

4.3.1: Description of Principal Components 

A PCA was performed for the six variables at each depth separately due to the variations 

in the total number of cross-basin bins available, ranging from 100 bins at the surface 

down to 85 bins by the 500 m contour.  The variance explained by the first two principle 

components is visually shown in Figure 4.5 with the full results shown in Table 4.1.  The 

strongest first component occurred at the surface (40.20% variance) with the two 

strongest response variables being cross-basin distance and the diameter if anticyclonic 

eddies.  The combined variance explained for the first two components at the surface is 

65.62%, an additional 25.42% explained by the second component.  The two strongest 

response variables for the second component had the occurrence of anticyclonic eddies 

with a positive relationship and mean cyclonic eddy diameter as the strongest negative 

relationship.  The 150 m depth peak in the PCA matches with previously described 

vertical structuring of eddies in the Red Sea as well as from currently unpublished eddies 

in the Red Sea, where 150 m is a typical effective depth (Asfahani et al., 2020; Bower 

and Farrar, 2015; Quadfasel and Baudner, 1993; Zarokanellos, 2018). 
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Figure 4.5: Total variance described by the first two principle components for each of 

the 50 m depth bins.  The highest explained variance for the first principle component 

occurred at the surface, with 40.20% of variance explained.  The highest explained 

variance for the first two components occurs at 150 m depth, with 66.58% of the variance 

explained.   
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The strongest combined score for the first two principle components occurred at the 150 

m depth contour, explaining a combined variance of 66.58%.  The strongest responses 

from first component (38.42%) showed a positive association with cross-basin distance 

and distance from Bab el Mandab, while the second component (28.35%) had a positive 

association with occurrence of cyclonic eddies and mean radius of cyclonic eddies.  

Across all depths excluding the surface, the first principle component ranges from 33.89 

– 38.23%, and consists of the variables cross-basin distance and distance from Bab el 

Mandab. 

4.3.2: Getis-Ord Gi* clustering 

The hot spot analysis shows not only that clustering occurs for both the cyclonic and 

anticyclonic eddies, but also defines some of the spatial characteristics of the clustering.  

Since hotspot analysis compares local or neighborhood clustering with global values, one 

of the first terms that the analysis provides is an optimized neighborhood size for the data 

set.  For the two eddy categories the size of the local neighborhood is similar at 15.93 by 

15.93 km for cyclonic eddies and 14.93 by 14.93 km for anticyclonic eddies.  Figure 4.6 

shows the location of each of these eddy occurrence neighborhood cells and the level of 

clustering or dispersion of eddy centers in that neighborhood in any clustering or 

dispersion is occurring.  Empty boxes on Figure 4.6 represent areas where eddies have 

occurred, but there is no significant clustering or dispersion, and eddy center placement 

can be explained by random factors.  Gray scale colors for both eddy rotations indicate an 

increasing amount for dispersion with darker gray.  Neighborhood cells with either a 

more intense blue (cyclonic) or red (anticyclonic) represent areas with an increasingly 

significant degree of clustering.  For the cyclonic eddies, Figure 4.6 shows four cluster 
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areas within the Red Sea, located within the northern and central sections of the basin.  

Anticyclonic eddies also show four cluster areas, mostly located in the northern and 

central regions, but one cluster area is located at the northern extreme of the southern Red 

Sea.  Figure 4.6 also demonstrates the highly alternating nature of the eddy center 

clustering.  This confirms the alternating eddy pattern for the Red Sea over the course of 

the nearly two-year data set.  With first a cyclonic eddy cluster in the northern Red Sea, 

followed by an anticyclonic cluster.  The rotation of the eddy center clusters continues to 

alternate through the northern and central Red Sea.  In the southern portion of the basin 

there is almost no clustering or dispersion, with most of the cluster neighborhoods falling 

into the random placement category.   

 

Figure 4.6: Optimized Getis-Ord Gi* Hot Spot Analysis for anticyclonic (A) and 

cyclonic (B) eddies in the Red Sea.  Of note is the alternating rotation of daily eddy 

occurrence clusters in the northern Red Sea. 



113 

 

4.3.3: Machine Learning clustering 

Patterns relative to the dynamic of sea surface temperature variability uncovered in 

Bounceur and Knio (in preparation) by using a statistical clustering approach on the long-

term weekly SST time series, match with a high degree of correspondence the spatial 

distribution of the eddy centers ergo demonstrating a correspondence between mesoscale 

eddy dynamics and SST variability over the Red Sea. 

According to the minimum entropy heuristic, we identified six interconnected subregions 

in SST which displayed distinct climate variability over the Red Sea (Figure 4.7and Table 

4.2).  Each of the six subregions show a different eddy characteristic, videlicet the 

northern bin shows no clustering, the next south shows an eddy pair cluster, the next 

south shows alternating two cyclonic and one anticyclonic, the south west one shows a 

cluster of cyclonic eddies, the south east shows a cluster of anticyclonic eddies, and the 

southern-most shows no clustering again, with some significant dispersion to the eddies 

(Figure 4.8).  This suggests that eddy center location has an impact on the clustering of 

SST data with a high degree of spatial correlation as eddies affect the SST values and 

their spatial distributions. 
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Figure 4.7: Spatial extents of the 6 clustered regions of weekly sea surface temperature 

anomaly over the Red Sea using a Permutation Distribution Hierarchical Clustering 

approach. 
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Figure 4.8: The results of the Permutation Distribution Hierarchical Clustering and the 

Optimized Getis-Ord Gi* Hot Spot Analysis.  Each PDC group has a unique 

characteristic eddy pattern, indicating the link between SST and eddy distribution. 
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4.4: Discussion 

The linkage between the eddy locations in the Red Sea and the Sea Surface Temperature 

clustering as presented here provides a unique description of the eddy dynamics 

occurring within each identified SSTA cluster.  Starting from the southern Red Sea, the 

first cluster no significant clustering of either cyclonic or anticyclonic eddies.  The 

second SSTA cluster shows a significant occurrence of anticyclonic eddies, indicating 

this portion of the Red Sea is more influenced by anticyclonic dynamics.  The third 

cluster is defined by a cyclonic eddy cluster, again located near the boundary, and 

contrasting with the second cluster.  The fourth SSTA cluster has two cyclonic eddy 

clusters and one anticyclonic cluster, indicating the potential for significant transport 

between both sides of the basin, especially at times when counter-rotating eddies are 

present.  The fifth SSTA cluster has an anticyclonic cluster and a cyclonic cluster, still 

creating the potential for transfer between the two sides of the basin, but at a potentially 

lower frequency than is the fourth SSTA cluster.  The final SSTA cluster in the northern-

most part of the basin doesn’t have any eddy rotational preferences like the southern-

most part of the Red Sea, however it can be differentiated due to the lack of a major 

inflow from outside of the Red Sea. 

The increase in temporal resolution seen through the NRT 3.0 eddy tracking product has 

introduced smaller detectable eddies over the course of the nearly two years presented 

here, providing additional information on eddy characteristics in the Red Sea.  While a 

direct comparison to previous mesoscale eddy data sets may not be appropriate given the 

differences in satellite availability, the time length of the two studies, and changes in 
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eddy detection processing, some general comparisons can be made,  First, the general 

pattern of alternating eddies is replicated even with the smaller temporal time frame 

covered for this study, and matches with the pattern described in the 20 year data set.  

This indicates that eddy dynamics are important both at short and long-term temporal 

scales.  While the cluster analysis examined all the eddy occurrences together, it should 

be noted that within the eddy tracking data set there are instances of simultaneous 

alternating eddies occurring, again demonstrating the importance of eddy dynamics at 

multiple time scales.  Second, the southern Red Sea is shown to operate under different 

eddy mechanics than the rest of the basin, likely due to a combination of factors including 

seasonal wind patterns, extended shelfs and islands, and reduced cross-basin distances at 

depth.  This difference has been demonstrated through previously mentioned research and 

will continue to be an important area for further study.  The different eddy mechanisms 

described in the southern Red Sea have been linked to species regionality for a variety of 

organisms.  Third, the mesoscale eddy characteristics described in this research do 

deviate from previously reported values, decreased in both magnitude and duration, while 

the general spatial patterns described do match well.  Additional research is warranted to 

further examine whether this decrease is due to the reduced sample size in this data set or 

if it is due to the finer resolution available with the new eddy tracking product.  Fourth, 

the temporal variability described in this research matches with other temporal scales 

reported for temperature and salinity both at the surface and at depth. 

The addition of multiple data sources and analysis methods has a cooperative effect on 

increasing our understanding of mesoscale processes in the Red Sea.  Each conclusion 

drawn in this research supports the explanation of the overall physical processes 
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described, with each of the three methods building and describing the spatial patterns in 

the basin.  The eddy center occurrences have a high degree of spatial correlation with the 

SST clustering, providing a potential physical process differentiating the SST clusters.  

This additional information on the mesoscale processes in the Red Sea provide a 

background for understanding the conditions that affect submesoscale processes, 

providing a future avenue to associate multiple levels of scale within the basin from a few 

kilometers up to basin wide processes.  Developing a multiscale observation 

methodology within a relatively simple portion of the global marine system will help 

future research to better understand the complex interactions that occur across different 

levels of scale. 
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Chapter 5: Summary 

As new methods for data collection emerge within marine science, there is a greater 

opportunity to understand the inter-connected global marine system.  Two main 

approaches to the development of new data collection techniques exist, one is a focus on 

examining the inherent variability and patterns of global concerns, often accomplished 

through new advances in satellite technology, in situ sampling like the ARGO and 

biogeochemical ARGO programs, or improved numerical simulations.  The second 

approach is to improve detailed research in local systems, simultaneously trying to better 

understand the fine scale patterns and how those patterns interact beyond local scale 

conditions into regional and global issues.  An initial disconnect exists between these two 

approaches, in part due to the grain size of measurements playing a non-trivial role in 

system variability.  Whether a temporal or spatial variation in grain size, there typically 

does not exist a simple, linear relationship between an increase in variability and an 

increase in grain size.  The relationship typically has to be developed by examining both 

new and existing data sets and methods at multiple levels of scale.  As an example of this 

disconnect within the Red Sea can be seen with the difference in circulation patterns for 

the basin when looking at a finer time step, where eddies dominate the system compared 

to a coarser time step, where the main flow is dominated by a boundary current system. 

Ideally, these system interactions can be determined with a sufficiently long time series 

data set taken at a sufficiently fine spatio-temporal scale.  In areas where these detailed 

data sets exist, we have been able to draw an increased understanding of marine 

variability across multiple ranges of scale.  However, the recent global interest in marine 
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economies has led to a push to responsibly develop marine systems that do not have an 

extensive historic record of data collection.  This lack of long-term data can potentially 

lead to a lack of adequate information the ensure the sustainable utilization of marine 

resources.  Each new location that deploys an observation system will help develop the 

overall understanding of global marine dynamics, making it important to ensure that data 

is collected at sufficient quality to draw comparisons to the global systems. 

This research has examined several types of conclusions that can be drawn from the 

addition of finer spatio-temporal resolution data as well as highlighting a way to aid in 

the incorporation of this fine scale data to basin-wide considerations in the Red Sea.  In 

many ways the basin is an ideal laboratory for analysis at multiple levels of scale due to 

the reduction of many global or local sources of natural variability.  Both fresh water and 

tidal systems can greatly affect measured variability, just to name two, and both are 

greatly reduced in the Red Sea.  This is one of the aspects of the Red Sea that makes it 

ideal for the development of new processes for analyzing marine data, as was capitalized 

on with this research.  Another aspect of the Red Sea that makes it ideal as a natural 

laboratory is the reduced physical scale of the basin, making it very tractable as a 

experimental system. 

Chapter Two examined the effectiveness of a recently discussed method to determine the 

Characteristic Length Scale using one-dimensional transect data.  The Error X method 

was compared both to previous research within the basin and an analysis of temporal 

autocorrelation to determine the minimum grain size to apply to future data collected in 

the north-central Red Sea.  Previous work has indicated the importance of eddy dynamics 

at a temporal scale of two to six weeks and the existence of a “weather band” variability 
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at two to four weeks.  The results from the analysis of a single glider transect deployed in 

the north-central Red Sea and its comparison to High Frequency Radar and MERRA_2 

data all confirm that the Error X method was able to identify a similar CLS in the three to 

four week range, matching with expected values.  This shows that at least over this initial 

data set, the Error X method can provide useful information on the naturally occurring 

temporal grain. 

Chapter Three starts to address the addition of spatial variability into the discussion of the 

minimum spatio-temporal grain for the Red Sea.  With the addition of a second glider 

running a parallel transect, we examined the differences across a relatively short spatial 

separation of 40 km.  At the time of the study, the north-central Red Sea was under the 

influence of two counter-rotating eddies, an anticyclonic eddy centered north of the study 

area and a cyclonic eddy centered to the southwest.  CLS analysis determined that four 

weeks was again an appropriate temporal grain for both glider transects, while the same 

method showed no asymptote for the HFR data over the course of the month, implying 

that the HFR locations had a longer temporal grain than the length of the study period.  

Geostrophic velocities relative to an assumed level of zero motion at 400 m were 

calculated for each transect at a monthly average based on the temporal grain calculated 

by CLS.  The geostrophic velocities showed that the two glider lines were influenced 

separately by the northern and south-western eddies.  While not immediately apparent 

from the finer resolution time series data, the averaged transect lines showed a clear 

convergence zone between the two glider transects, inferring an offshore flow due to 

constraints from the near-shore reefs.  This offshore flow was confirmed with a monthly 

average of geostrophic velocities from the ARMOR3D data set. 
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Chapter Four examines the typical characteristics of Red Sea eddies occurring from 

January 2018 to November 2019, using the recently developed AVISO+ NRT 3.0 Eddy 

Tracking data product.  While this new product is not directly comparable with longer-

term eddy tracking products, it does provide two important improvements for the Red 

Sea.  First, the NRT 3.0 data product has a finer temporal resolution, increasing the 

detection of eddies of shorter duration.  Eddy size tends to correlate with duration, so an 

increase in detection of shorter eddies can also mean an increase in detection of smaller 

eddies as well.  Second, the product uses Absolute Dynamic Topography as opposed to 

Sea Level Anomaly, increasing eddy detection in areas that have consistent boundary 

currents or other long-term flows.  In addition to describing the eddy characteristics, two 

separate cluster analyses were performed, one on eddy center location and the other on 

Sea Surface Temperature from 1981-2019.  These two clustering methods showed a close 

spatial relationship between each other, with each of the SST clusters showing a different 

eddy characteristic. 

As seen from the chapters presented, collecting data at increasingly finer scales has the 

potential to affect the conclusions drawn when compared to coarser scale data.  One 

example of this can be seen in the comparison of the geostrophic velocities calculated 

from the glider data compared to the ARMOR3D data as seen in Chapter 3.  While in 

general the patterns observed at the 2-kilometer scale and the 25-kilometer scale are the 

same, there is a quantifiable amount of variability lost at the coarse scale measurements.  

This information loss can be important for understanding modelling of events like larval 

dispersion, especially given the non-uniform nature of the geostrophic velocities from the 

glider line both across the horizontal and vertical extent described.  This increase in 
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variability is important for larval dispersion because it shows that even a change in the 

position of the larva in the water column can have a drastic effect on the ultimate 

destination of the larva, with surface velocities flowing opposite to velocities at 76 m.  

This can introduce a new variable for modelling larval dispersion, where the daily 

behavior of the larvae in the water column need to be taken into consideration.     

The results from this presented work indicates the importance of developing an adaptable 

ocean observation system as a part of the initial framework.  The focus on an adaptable 

system is important for any new ocean observation systems initially due to a lack of 

available information.  An adaptable system will be able to maintain data quality and 

understanding as conditions within the study area change or new instrumentation 

becomes available.  As shown from these presented chapters, the addition of either new 

equipment or new data processing methods can affect the level of detail that is recorded, 

which in turn affects the type of questions that can be answered.  Maintaining an 

adaptable ocean observation system requires flexibility in monitoring procedures as well 

as robust statistical methods that are able to account for time series data sets that may not 

be strictly uniform due to reallocation of research efforts and equipment.  In 

consideration for the various projects currently in development across the Red Sea 

associated with Vision 2030, especially with the level of focus on marine research 

announced for both NEOM and the Red Sea Project, it is important to design these new 

ocean observation systems in an adaptable manner from the beginning of observations. 
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5.1: Future Work 

The results presented have helped build a better understanding of fine scale dynamics 

within the Red Sea.  Additionally, the results have also shown connections to basin-wide 

phenomena and indicate a potential path to better integration of local-scale dynamics with 

basin and potentially global dynamics.  This work has also shown that in these specific 

cases, CLS seen at finer resolutions even over a short time frame match with values 

calculated from longer time series data.  My interest going forward has two main 

directions.  First, I would like to examine the effect of longer time series data sets on CLS 

calculation through the Error X method.  I would like to achieve this through a longer 

multiple glider data set within the north-central Red Sea, as well as extending the analysis 

to other areas of the Red Sea.  Another aspect of this line of research would be linking a 

more expansive glider data set with either new or existing numerical simulations.  The 

second main direction I would like to take with this research is to move the analysis to 

similar ocean observation systems outside of the Red Sea.  This comparison between 

regions will be useful in determining the applicability of the Error X CLS to potentially 

more complicated marine systems outside of the Red Sea. 
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Appendix A: Autocorrelation and Error X figures, Chapter 2 

 

Figure A.1: Autocorrelation and Error X Monte Carlo simulation results from 6 m. 
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Figure A.2: Autocorrelation and Error X Monte Carlo simulation results from 76 m. 
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Figure A.3: Autocorrelation and Error X Monte Carlo simulation results from 150 m. 
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Figure A.4: Autocorrelation and Error X Monte Carlo simulation results from 25.75 

kg/m3. 

 



137 

 

 

Figure A.5: Autocorrelation and Error X Monte Carlo simulation results from 26.25 

kg/m3. 
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Figure A.6: Autocorrelation and Error X Monte Carlo simulation results from 28.00 

kg/m3. 
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Figure A.7: Autocorrelation and Error X Monte Carlo simulation results from HFR v 

velocities. 
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Figure A.8: Autocorrelation and Error X Monte Carlo simulation results from HFR u 

velocities. 
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Figure A.9: Autocorrelation and Error X Monte Carlo simulation results from MERRA 

East Site. 
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Figure A.10: Autocorrelation and Error X Monte Carlo simulation results from MERRA 

West Site. 
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Appendix B: Error X figures, Chapter 3 

Figure B.1: North Transect Error X Monte Carlo simulation from 6 m and 27.00 kg/m3. 



144 

 

 

Figure B.2: North Transect Error X Monte Carlo simulation results from 76 m and 27.50 

kg/m3. 
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Figure B.3: North Transect Error X Monte Carlo simulation results from 150 m and 28.00 

kg/m3. 
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Figure B.4: South Transect Error X Monte Carlo simulation results from 6 m and 27.00 

kg/m3. 
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Figure B.5: South Transect Error X Monte Carlo simulation results from 76 m and 27.50 

kg/m3. 
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Figure B.6: South Transect Error X Monte Carlo simulation results from 150 m and 28.00 

kg/m3. 
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Figure B.7: North Transect Error X Monte Carlo simulation results from HFR. 
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Figure B.8: South Transect Error X Monte Carlo simulation results from HFR. 
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