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ABSTRACT

Mesoscale Eddy Dynamics and Scale in the Red Sea

Michael F. Campbell, Jr.

Recent efforts in understanding Weriability inherent ircoastal and offshore waters

have highlightedie need for higher resolution sampling at finer spatial and temporal
resolutions. Gliders are increasingly used in these transitional waters due to their ability
to provide these finer resolution data sets in areas where satellite coverage may be poor,
ship-based surveys may be impractical, and important processes may occur below the
surface. Since no single instrument platform provides coverage across all needed spatial
and temporal scales, Ocean Observation systems are using multiple types of instrument
platforms for data collection. However, this results in increasingly large volumes of data
that need to be processed and analyzed and
methodology for combining these instrument platforms. In this study, high resolutio
glider data, High Frequency Rad&iFR), and satellitederiveddataproducts

(MERRA_2 and ARMOR3D NRT Eddy Tracking)ere used to quantify: 1) dominant

scales of variability of theentral Red Se&) determine the minimum sampling

frequency required tadequately characterize thentral Red Se&) discriminate

whether the fine scale persistency of oceanographic variables determined from the glider
data are comparable to those identified using HFRsatellitederived data products,

and 4) determine aitional descriptive information regarding eddy occurrence and

strength in the Red Sea from 262819 Both Integral Time Scale and Characteristic

Length Scale analysis show that the persistence time frame from glider data for



temperature, salinity, chlophyll-U , and di s s o4weekgandtkaytlpegen 1 s 2
temporal scales match for HFR and MERRA _2 datatching a similar description of a
oweabaprdo | evel of. Addtionaly,the descvpson ofeddy | i t y
activity in the Red Sea alsupports this 22-week time frame, with the average duration

of cyclonic and anticyclonic eddies from 202819 being22 and27 days, respectively.

Adoption ofscalebasedmethod across multiple ocean observation areas can help define
Abest practiceo met hoddR, andysatellgaledveddatacoo mbi ni n

better understand the naturally occurring variability and improve resource allocation.
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Chapter 1: Introduction

1.1 The Red Sea

The Red Sea issemienclosed basin lying between the Asian and African continents.
The basin is about 2200 km long, has a maximum depth of a@@din2, and an average
width of 280 km(Raitsos et al., 2013; Triantafyllou et al., 2014he only major input of
water in the Red Sea is thugh the Bab el Mandab (160 m deep) at the southern end of
the Red SeéMurray and Johns, 1997 Surface water from the Gulf of Aden enters the
Red Sea at a tempéuee of 2530° C and salinity of 386.5 while intermediate water

from the Gulf of Aden enters the basin at temperature of 16.5° C and salinity at 37.5
(Sofianos and Johns, 2018y the time the waters+enter the Gulf oAden salinity
reaches above 4&ofianos and Johns, 2007; Yao et al., 2014a; Yao et al., 20TH#b)

Red Sea is very warm, with Red Sea Deep Water reachingg2524 C and salinity ~

40.6. The Red Sea is also shallow, with approximately 41 percent otdhsurface
covering depths less than 100 m with extensive reef systems on both sides of the basin
despite the warm temperatui€hurchill et al., 2014a; Gerges, 2002; Rasul and Stewart,

2015; Silverman et al., 2007; Triantafyllou et al., 2014)

The overall circulation in the Red Sea is based on a reverse estuarine system, with
salinity increasing steadily with distance from Bab el Man@syumen et al., 2019b;
Sofianos and Johns, 2003; Sofianos and Johns, 200v9 main modes of interchange
between the Red Sea and the Gulf of Adrist a twalayer system which occurs during
the winter months (Octob&pril) and dominates the overall annual circulation regime

for theregion, and a threlayer system that occurs during the summer months {June
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August)(Sofianos and Johns, 2015)ypically, the months of May and September are
transitional months that have lighter windsngodan et al., 2014; Smeed, 1998)e
timing is linked tothe interchange between the Red Sea and the Gulf of #u#the
change irdirection of the monsoon winds blowing through Bab el Mandab. The two
layer wintertime circulation occurs when the monsoon winds blow into the Red Sea
from the Gulfof Aden, which drive surface flow into the southern Red (Eaagodan et
al., 2014, Sofianos and Johns, 2003; Sofianos and Johns, 2007; Yao et al., 2014a; Yao et
al., 2014b) As the northeast monsoon winds weadied reverse to the southwest
monsoonthe interchange converts to a thtager system in which surface water from
the Red Sea flows into the Gulf of Aden, Gulf of Aden imediate Water flows
underneath the surface water into the basin, and Red Sea Outflow Water flows
underneath that into the Gulf of Adé®ofianos and Johns, 201%ftanos and Johns,
2003; Yao et al., 2014a)Red SeaOutflow Wateris an important component of the
seawater throughout tlmegion anccan be found as far southM®zambique and as far

east as thBay of BengalBeal et al., 2000; Jain et al., 2017)

Recent research into circulation within the Red Sea tends to focus on four types of energy
transfer: surfacbuoyancy loss due to evaporation, wahdlven circulation, boundary

currents, and friction caused by the bathymetry of the Re{T8i@atafyllou et al., 2014;

Wabhr et al., 2014; Yao et al., 2014a; Yao et al., 2014b; Zlai,&015; Zhan et al.,

2016) Each of thesprocessehave been evaluated in modelscastributors teenergy

transfer within the Red Seajth each method recreag the same type of eddies

observed in satellite imagery, including Sesvel Anomaly (SLA)datasets. These

papers identify surface buoyancy loss and winds as the primary methods of energy



15

transfer(Triantafyllou et al., 2014; \Ahr et al., 2014; Yao et al., 2014a; Yao et al.,

2014b; Zhan et al., 2016)

Eddies are considered an important factor to the gbort circulation patterns within the
RedSea, and each individual edtpically lasts from two to six week&arimova and
Gade, 2014; Zhan et al., 201AVhen active, eddies are a dominant mode of kinetic
energy transfer, with kinetic energy transfer being an order of magnitude higher than
other modes of kinetic energy transfghan et al., 2016)However, the recurrent eddies
have a small temporal extent, raising the questiomhait other mechanisms account for

energy transfer over longer time frames.

When multiyear averages of surface circulation are examined, thetelnorieddies are
no longer seen, but instead a clear boundary current system is in effect (Figure
(Sofianos andohns, 2003; Yao et al., 2014b; Zhai et al., 20158)is longterm
boundary system @lsosupported byecentobservations from gliders and shdrased

HF-radar systemsh(tps://portus.kaust.edu.sa/por§Zarokanelbs et al., 2017a)This

interchange between an eddy dominated system and a boundary current system plays an
important role in determining the length of a study period needed to answer questions
related to energy dynamics in the Red Sea, with shomerftames more focused on
mesoscale eddy events. One of the important factors in research design is to understand

the relevant scale of dynamic processes.


https://portus.kaust.edu.sa/portus/
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Figure 1.1: Nine-year composite map of sea surface circulation resulting from thermo
haline fidds only in the Red Sea. This figure is copied from Sofianos and Johns (2003)
and is a result from thiami Isopycnic Coordinate Ocean Mod@ulation experiment
discussed in their paper.

1.2: Characteristic Length Scaleand variability

Scale is not aew concept within marine science. Initial discussions about the role of
scale within ecosystems were introduced with the Stommel sea level variability plot,
(Figure 1.2)and included discussion of other parameters, including temperature, tides,
and curent velocitieStommel, 1963) Many different types of plots have been based

on this initial discussion, covering ideas from effective sampling techniques to instrument
limitations and other topigdedley et al., 2016; Phinn et al., 2010; Turner et al., 2001,
Vance, 2007; Wu, 1999)The many variations of theplots show a general positive

trend with longer time scale events extending over greater spatial distdimees.

Stommel diagram also indicates how sampling needs to match the tepapioral



17

extents of the processes involved, as the variation cardsdsftically between different

spatiotemporal extents.

Ice Age
Variations

Meteorological

Effects
Tidal Terms

Figure 1.2: Stommel Diagram of sea level variability over time and space. Copied from
Stommel(1963.

This research utilizes a variety of measurement technjdoessng on the spatio
temporal costraints applicable to each method, and how these consa#ettthe
researcland analysi®f the Red SeaThese results aim to establigtat the data needed
for analysis matches up with the logistical limitations of the data collestethods

(Ellis and Schneider, 2008; Hewitt et al., 2007; Holland et al., 200/4)endata can

only be collectedtfixed intervals, for example on a weekly basis, then processes that

occur at a higher frequency cannot be accurately resolved. For time series data, this
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limitation is known as the Nyquist frequency, in which time serieg cit only be

analyzed accurately when the observations frequency is at least twice the desired analysis
frequencydue to the typical periodic nature of time series data($htsmson and Emery,
2014) In the case of data collected weekly, the Nyquist frequenabling correct
interpretationwould be every two weeks or greater. Sp#timporaldataof a periodic
naurehas a similar trendObservations must be made at a sufficiently high resolution to
fully resolve features, such as measuring both the crest and trough of.aieavever,

thedata hasmadditionalimitation due to the concept of autocorrelationwimich

observations that are made at closer distances tend to be similar to each other, which can
create a nostandard distributiofGetis and Ord, 1992; Mitchell, 2005; Quattrochi and
Goodchild, 1997) The most efficient data collection occurbemcollecied at resolutions
thateitheravoidor explainspato-temporalautocorrelation whiletill sufficiently

detailed tdfully descrile any feature of interest.

One of the goals of initial planning of asean observatiosystembased study is to
determine the scales at whittte variables in the systeaneeitherhomogenous or
heterogenoysvhere homogeneity indicates the sameness or persistency of the system
and heterogeneity describes the variability of the sygRahbek, 2005; Thompson and
McGarigal, 2002; Turner et al., 20D The degree of either homogeneity or
heterogeneity affects the variety of sditial analyses that can be performed to describe
and summarize the datdhe typical approach to improve efficient utilization of time and
money is to establish a spatemporal sampling methodology thatsures collected
samples will maximize heterogeity (Hedley et al., 2016; Hewitt et al., 2015; Hewveitt

al., 2007) Heterogeneity has two different defined components, the measured scale of
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heterogeneity and the functional scale of heterogeneity. The measured scale of
heterogeneitys the easier to define of the two components, as it is simpRgtae

sized of the ollected datgTurner et al., 2001)Grain is the resatkion of the data or the
spatictemporal regiomepresented by each data urdny data collected at a finer scale
than the grain is considered homogenatikin that unitandcan be consideresk a part
of the natural bounds of variability. The funct@iscale of heterogeneity is thpatic
temporalrange thatd important and affects changes across the entire sgstghas
beendescribedas theCharacteristic Length Scale (CL$yhich will be used throughout
this researcliKeeling et al., 1997; Pascual and Levin, 1999; Thompson and McGarigal,
2002; Turner et al., 2001; Ward et al., 2018).S can be calculated for individil
variables within a system with sufficient déd@rowder and Norse, 2008; Habeeb et al.,
2005; Holland et al., 2004; Hurlbert and White, 2006).S for an entire system rather
than for a few variables is typically determingddxamining the interactions and

importance of each of the variables as a part of the whole.

The relationship between grain and CLS has three main asjpatts collected below
therangeof the grain can be considerathreshold (homogenous) within theagnined
system indicating a minimunaggregation of dataeededvithin the system An

example of this is seen in the working definition of the mixed layer in oceanography. In
the mixed layer, the density changes only slightly with depth until the pycaosl|
reachedndicating a high degree of similariZervakis et al., 2016)The mixed layer

depth is important because data recorded within the mixed kgensidered

homogenousand presents the threshold values of parameters necessary for
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phytoplankton production, which in turn is the basisskeveral other aspeat$ the

mixed layer habitaiBrainerd and Gregg, 1995)

The second case éxamining datat a scaldetween the grain and the Clviherethe

grain size has an adequate resolution to medisareariability of a natural system, the
grain needs tmatchthe same spatial and temporal scalemg studiedas is the case
when using Synthetic Aperture Radar to measure eddy size and rotatt@isrmine
variability in submesoscale eddiewherethe images had a spatial grain size of 150 m
(DreschlerFischer et al., 2014; Karimova and Gade, 20I4)ese submesoscale eddies
occur at spatial scales typically less tharki#Dand for time periods less than 2 weeks,
which limits detection in current global eddy tracking data produotthese studies, the
spatial and temporal scale of the collected datasets fall within the spatial and temporal

scale of the eddiesvhich albws for the characterization of the events of interest

The final case is whegrainis abovelie CLS In this final situation, thdescriptive
informationcollected from the grain establishes the available limits within the system, or
the carrying capatyi. Measurements to determine carrying capacity do not have to occur
as frequently as other types of measurements and are typically used as a part of the initial
descriptions of a new system. An example of this can be seen in the Red Sea through the
seres of numerical simulations that have been run and continued to be developed in the
Red Sea. Initial descriptions of Red Sea circulation have included various details of the
interactions of eddies within the basgoing from permanent eddies to reocawgrio
semipermanent as the grain of the numerical simulations has reached finer spatio
temporal resolutionfPatzert, 1974; Sofianos and Johns, 2003; Yao et al., 2014a; Yao et

al., 2014b; Zarokanellos et al., 2017b; Zhan et al., 20&d)h threshold and carrying
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capacity values do not havelde monitored as closely gariablesthat fall within the

functional heterogeneitffurner et al., 2001)

This study addressthe CLS examiningmesoscale activitin the Red Seawith a

primary focus on the north central part of the bagiar marine systems, the CLsS

defined as a volume of water in which measured variables are at a steady state, with less
variability within the defnedspatictemporal unit of watethan between adjacent,
equivalent sizednits The series of topics discussed within this dissertation bring a
better understanding of ti@&_S of the spatietemporal variablegcluding temperature,
salinity, chlorophyHU, dissolved oxygen, and eddy occurrence and strehgtlare

currently being measured as a paraonfoceaniobservation system in the Red Sea. This
project also establiglsa framework to determine the impact that new technology will
have on the abily to understand circulation within the Red Sea and develop methods to
re-asses€LS as new data sources become availaBle circulation is a major

component of marine habitat health, theagables play an important role in
understanding processes th#ect the entire Red Sea ecosystehrecent trend in
economic development within the Red Sea as a part of Saudi Arabian nation policy
associated with Vision 2030 also indicates the need for a deeper understanding of the
overall marine systerfAlmahasheer and Duarte, 202@s development and utilization

of the Red Sea increases due to projects related to Visionth@3@ed to understand in
greater detail the interactions that occumhbiatthe localized areas of the Red Sea and the

entire basin as a whol@ll increase
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1.3: Research Goals

The goal of this dissertation is to examine the effects of the introduction of data collected
at finer scal¢o an overall understanding of the Reela to provide an initial framework

for planning future studies in the Red Sea, with the goal of establishing an adaptive
methodology for oceanographic observations, where sampling locations and frequencies
can be adjustedhile maintaining continuity wit previously existing data collection
addition, effort must be made to ensure that analysis methods for the different types of
data are comparable, indicating the need for highly flexible and accurate statistical
analysis Recent efforts in the Red Sea have introduced two tools for examining spatio
temporal scale in the Red Sea. The first tool is buoypnayelled, autonomous

underwater vehicles (gliders), which collect oceanographic data across the entire water
column almg userdefined transect linesThe second tool is surface current mapping
throughHigh Frequency Radar (HFR), which provides hourly information on the speed
and direction of surface currents over an extended area on an hourly basis. The addition
of thes tools allows for the collection of data at sufficient detail to describe events
occurring on a spatial scale of several kilometers and a temporal soale tof five

hours. Onegoal of this dissertation is to examine the feasibility of using alinear,
nonruniform CLS calculationwith glider and HFR data sets in the Red Saaecond

goal is to examinsome of the potential processes involved with variability in sea surface
temperature, eddy occurrence, and physical structure in the Red Sea. gba@aico
information will be analyzed at both mesoscale-800 km) and basin wide levels of

scale Chapters 2 and 3 are focused on the application of CLS tetehordata sets

collected by gliders and HFR. Chapter 4 is focused on basin wide dynanaicsnig
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the link between sea surface temperature and ed@essuccessful application of the
methods can then be used for further analysis over longer time series and as a starting

point for developing an adaptive observation system in the Red Sea.
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Chapt €haRacterizingt éamepsaad ljamsidtayl es of

chlorophyabili-tgsabungohighi der data i

2.1: Introduction

The importance of scale across both time and space was introduced by Henry Stommel
for marineresearch in the early 1960s. His initial discussion focused on the logistical
processes that were relevant to sampling the spatiporal variation of sea level. Of

course, other physical variables such as temperature and current velocities are

additiondly associated with sea level fluctuatiof&ommel, 1963)The central concept

was to demonstrate how oceanic processes varied across scales and that sampling efforts
had to be planned with consideration of this variation. Issues of scale have become
increasingly imposdnt in both seascape ecology and ocean observation systems, two
areas of research that aim to characterize the marine enviro(Elenand Schneider,

2008; Kavanaugh et al., 2016; Nickols et al., 20IH)e Stommel diagram has been

adapted many times since ftihé@ial discussion, providing the key paradigms for
understanding the interaction between length and time within marine systems.
Derivatives of Stommel 6s initial (Odickeggr am h
2003) predictive capabiligs of marine observational platforms at various s¢iledley

et al., 2016)and have even extended to topics outside of marine s¢iRose et al.,

2017; Turner et al., 2001)0ne general pattern apparent in the derivatives of the original
Stommel diagram is a positive trend of increasing time scale associated widsingre

spatial scales. As new technologies for observation in the marine environment emerge, a

range of processes can be measured and analyzed at increasingly findesyairal
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resolutions. However, an increasing volume of data does pioori resultin a better
understanding of the underlying marine systeitile et al., 2018) Marine systems are a
complex interplay between physical processes and biological response, which can vary
dramatically across multiple levels of sc@tidalgo et al., 2016; Kavanaugh et al., 2016;
Mazloff et al., 2018) With this increase in available data, it is important to define the
appropriate spatitemporal scales required to resolve the key physical and biological
processes. Identifying and defining thegsekte units allows for direct analysis of
processes measured by different instruments at a uniform-spatmral scaléDavis et

al., 2019; Hedley et al., 2016; Hewitt et al., 2015)

As the density of spatitemporal data for an area increases, conclusions can be drawn
about the important, naturally occurring scales that affect the study area, as camibe se
the CalCOFI projeatMcClatchie, 2016; Rudnick et al., 201Me global Argo program
(Holte et al., 2017)and BGC Argo prograrfiTerzic et al., 2019) The CalCOFI project

has been ongoing with regular obseiwas since 1951, and is the longest running,
geographically extensive ocean observation project. The data collected has been
important for identifying and refining regionality and variability in the California Current
system(McClatchie, 2016) The addition of autonomous vehicles to the project through
the California Underwater Glider Network has increased the availability e@ake

data andevealechew oceanographic features in the project @vieClatchie, 2016;
Rudnick et al., 2017) The Argo program has been influential in understanding the
features of the global ocean. As of 2017, over 1,250,000 Argo profiles were used to
characterize the temperature, salinity, and mixed layer depthtioé aceans, providing

a global climatology as well as monthly détkolte et al., 2017) This data has provided
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insight into circulation ad largescale oceanographic structures. The Argo
Biogeochemical program has similar aims to the Argo program, but with instrumentation
specifically designed for biogeochemical measurements. Until recently, optical
properties have largely been excludedionplified in biogeochemical models due to a

lack ofin situsampling(Terzic et al., 2019) Additional data from biogeochemical floats

in the Mediterranean Sea describe the vertical, spatial, and temporal variability of zonal
gradients in the basin. These studigghlight the need for highesolution sampling at

fine spatial (mesato submesoscale) and temporal scales (ksigasonal) to understand

longerterm variability of oceanographic processes.

One of the important aspects of each of these projects hatheemmount of information
collected to differentiate between different regions of the study areas. While many
different methods of classification can be used to determine regionality, most forms of
classification tend to rely on defining both the absoitdlue and variance associated

with each measurement location over time compared to spatially close sample locations.
Typically, a difference metric is used to organize the data, with locations that are
statistical dependent typically classified into zene region. Several different terms are
used to characterize this naturally occurring organization of variables, including Integral
Time Scale (ITS), Characteristic Length Scale (CLS), correlation length, scale of
variability and otherseach with a sgjhtly different associated calculatiGHabeeb et al.,
2005; Keeling et al., 1997; Thomson and Em&014; Ward et al., 2018)Each of these
termsseek to determine the distance at which consecutively collected data points remain
statistically dependent to @aother, which for the purposes of this research will be

defined asipersistencyg and considered in the context of persistent monitoring of areas
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of interestwhile maintaining as much of the variability in the system as pog$ilalyis

et al., 2002; Dauvis et al., 2019; Habeeb et al., 2008nRk, 2016; Rudnick et al., 2017)
Defining persistency for a studyea is an important step in understanding the logistics
necessary to provide continuous monitoring. By better understanding the natural,
dynamic processes in an area, monitoring efforts can be adjusted to provide comparable
data quality optimizing the ak@ation of observing resourc@2udnick et al., 2017)

Uniform time series data tend to be sinusoidal and to propealacterize events

sampling must occur at a frequency at least twice as often as the event. This sampling
frequency is known the Nyquist frequency. As long as the Nyquist frequency for each
defined station in the study area is maintained, monitoring res®gan be adjusted
without losing data qualitfThomson and Emery, 2014)n the past, accurate analysis

into pesistency has only occurred over laigmale studies, either covering a large spatial
extent or an extensive time frame, but seldom both at the sam@Hahbeeb et al., 2005;

Keeling et al., 1997; Pascual and Levin, 1999; Ward et al., 2018)

In recent years, autonomous platforms hawaty increased in capability and

deployment duration and are able to provide continuous data sets for extended periods of
time (Davis et al., 2019; Testor et al., 201%epending on the mission parameters, the
onboard instrumentation, and the frequency of data collechiesetplatforms sustain
observations for extended durations with minimal or infrequent human interaction
necessaryRudnick et al., 2004) These persistent monitoring missions have enabled
resolution of much larger spatial and temporal scales than previously available, which in
turn permits understandinglometerlengthscales of variability within the study area

(Rudnick et al., 2017)While many types of autonomous platforousrently existfor
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oceanic research, this discussion only focuses on observations from passively powered,
buoyancypropelled autonomous underwater vehicle Seaglider (gliders). Gliders use
changes in buoyancy and hydrodynamic lift to produce forward motdrile in

motion, gliders collect subsurface oceanographic data along a sawtooth path, providing
information that cannot be collected by other autonomous platforms that measure surface
values. Gliders are particularly useful for letggm studies becausiee battery life can
extendfrom 6 weekgo 3 months, with some missions exceeding over a year for a single
deploymen{Pelland et al., 2013; Rudnick, 2016)hese passively powered platforms

are particularly effetive for oceanic research in the Red Sea due to their effective

duration and their ability to access areas or conditions that would limit ship based

scientific surveys.

Gliders have been effective in examining the water coluimtine Red Sea, a semi

enclcsed basin lying between the Asian and African continents. The basin is about 2200
km long, has a maximum depth of abo80@ m, and an average width of 280 km

(Raitsos et al., 2013; Triantafyllou et al., 2014he basin is considered very saline and
warm, and like most tpcal waters is oligotrophiBrewin et al., 2015; Gittings et al.,

2019) The overall circulation in the Red Sea is based on a reverse estuarine system, with
salinity increasing stadily with distance from Bab el Mandé®ofianos and Johns, 2015;
Sofianos and Johns, 2003; Sofianos and Johns, 2B0iharyenergy transfer in the Red
Sea is due to surface buoyancy loss and wihdantafyllou et al., 2014; Wahr et al.,

2014; Yao et al., 2014¥:a0 et al., 2014b; Zhan et al., 20168)he energy transfer is

often expressed through sepgrmanent eddies that occur throughout the basin

(Karimova and Gade, 2014; @h et al., 2019; Zhan et al., 2014; Zhan et al., 2016)
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Additional research has also described three characteristics of both wind forcing and sea
level variability in the Red Sea and the associated temporal scales with each process
(Churchill et al., 2018; Churchill et al., 2014b; Sultan et al., 1999 first process is
seasonal variability linked to the shift in the monsoonal winds over the Gulf of Aden
flowing into the Red Sea. The second described component of sea level waigthikt
semidiurnal tide. The third source of sea level variability, and the highest in magnitude
of variability, is described as a weather system, with a duratitwodo four weeks

(Churchill et al., 2018)

As glidess are continually used as a tool within marine resednehprimary roles and
capabilities of the platform are expanding across seadditionalresearch fields.

Several different practices in deployment patterns, data analysis, and intended targets are
under development for operating glidelise to thecontextdependent nature of sampling
(Davis et al., 2019; Rudnick, 2016; Testor et @12. One method for glider

deployments is in conjunction with a marine observations system, which often includes a
variety of shorebased data collection methods, modelling, and periodieclsspd
researci{Chao et al., 2017; Rudnick et al., 2017; Zarokanellos et al., 2017a; Zarokanellos
et al., 2017h) Additionally, gliders are often used in conjunction with satellite derived
data, typically to extend patterns observed on the surface deeper into the water column
(FrajkaWilliams et al., 2009; Little et al., 2018; Testor et al., 201Bhese different
oceanographic platforms collect data at different sgatigporal resoludn, which can

confuse a clear analysis with mismatched sg@tioporal binning. Given the increasing

use of gliders to compliment other forms of marine observation systems this study aims

to identify the frameworks that are able to quantify the finespteal range of data to
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resolve oceanographic features while maintaining data independence across multiple
spatiotemporal resolutionsWe present a method to integrate gliders, High Frequency
Radar (HFR Chapter 2.2.14 andan atmospheric reanalysis prodMiERRA_2

(ModernEra Retrospective Analysis for Research and Applicatiyi@@hapter 2.2.1)3

data to define shoterm persistencywithin the north central Red Sehlotably this

study used high resolution glider data,R’Ri&nd MERRA _2 data ttest methods to

guantify: 1) dominant scales of variability of the glider time series, 2) determine the
minimum sampling frequency required to adequately characterize the glider time series
and 3) discriminate whether the temporaliagons measured from the glider are similar

to variations determined from the HFR and MERRA_2 data.

2.1.1Study Area

The chosen study area for this analysis is a portion of the north central Red Sea offshore
from King Abdullah University of Science an&dhnology (KAUST, Figur2.1). This

study area was chosen for several reasons, including the frequency of eddies near the
area, a senpersistent boundary current, the sustained mapping of surface currents using
HFR, coverage of recently validated datanfrthe MERRA_2 data séAl Senafi et al.,

2019) and proximity to the university for access. The glider was deployed through the
month of Ocbber 2017 with the intent to resolve the fine scale persistency of
oceanographic variables in the region. October is an important time as it is part of the
transitional period between the southwest monsoonal forcing in summer and the winter
northeast mormnal conditions for the Red S@ower and Farrar, 2015; Sofiesand

Johns, 2015; Yao et al., 2014a; Yao et al., 20188cause both the glider and the water

it is sampling are moving both in time and space, this data set will be compared to two
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data sets at fixed locations from the region. The first is the hourly recorded surface
current velocities from HFR and the second is the hourly reported valuesiom t
MERRA_2 datasefRienecker et al., 2011) Since these data sets are at fixed locations,

they provide resources to cross validate the results from the gliderted|tata.
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Figure 2.1: Location of the study area within the Red Sea. The glider transect (KAUST
Line) is the solid line, the sites used from the HFR data are the diamonds (Bijes A

and the locations for the MERRA_2 East and West sites are the hexalygintly south

of the glider line. All three data sets run from Octobe31l, 2017.

Previous work utilizingn situobservations, satellite remote sensing, and modelling has
shown that eddies are an important characteristic of the circulation Reth8ea
(Zarokanellos et al., 2017a; Zhan et al., 2018; Zhan et al., 2014; Zhan et al., ZH&&¢
works have provided a basic description of the size, location, frequency, and duration of
eddies in the Red Sea, and are indicative of the maigndfieddies resulting primarily

from thermohaline circulation and wind forcing. Eddies in the Red Sea typically last
from two to six weeks, with smaller diameter eddies tending to occur more frequently,

yet dissipate more quickly than larger eddies. Ewav, when multyear averages of
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surface circulation are examined, the slterin eddies are no longer seen, but instead a
clear boundary current system is in effgbfianos and Johns, 2003)his eastern

boundary current has beehserved in numerical models and wiitsitu observations

and is under continuing investigation using both glider and HFR observations. These
observations indicate that the eastern boundary curretymiaally defined by a sharp
decreasén values forsalinity (<39.5), indicating water that recently entered the Red Sea
from Bab el MandebTlhe water in the boundary curreiso hasncreased values for
temperature and chloropryl when compared t gastambessenr r oun ¢
in Figures 2.2 ah 2.3 along the western part of the transect.liide exact location that

the eastern boundary current crosses the KAUST transect (Rigdiean shift between

the nearshore and offshore region depending on the influence of local eddies. Over time,
persistency measurements can show when a major shift in the underlying dynamics of a
systemoccurs Within the context of the north central Red Sea, it is expected that the
transition between the eastern boundary current and its interruption by localwddie

have an impact on the persistence in the study area, providing an ideal system to develop

methodologies to measure the dominant scales of variability.
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ues

the glder mission. The data shows two diverging water masses for the middle range of
the water column based on longitude in the early part of the month. Over time, these two

water masses start to intermix.
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Chlorophyll a Concentrations for KAUST Glider Line
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Figure 2.3: ChlorophyllU concentr ations for the KAUST g
October. The isopycnal location of the peak in chloropiylli s di f ferent for
nearshore region (higher longitude) than the offshore region. Towards the end of the

month, the tvw maxima appear to be merging.

2.2: Methods

2.2.1:Measurements used in this study
2.2.1.1:Glider data

The primary data source for this research is from a glider (Seaglider®) deployment that
occurred from September 2017 into November 2017. The glideegquipped with a

CTD, a dissolved oxygen sensor,-av8velength fluorometer, and axgavelength
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backscatter sensor (Talfld). The glider traversed an 80 km easist transect between

a starting waypoint approximately 20 km offshore to an offshore watygpproximately

100 km from the coast. The glider was set to dive to 500 m depth which represents a safe
dive depth along the transect where the bottom depth varied from less than 600 m to more
than 1000 m, and a dive depth which optimized horizontaluten at about 2 km per

dive with a dive interval of about 2.33 hours along the majority of the tranSata.

from the glider were collected from the entire dive cycle. However, the sampling
frequency varied as a function of depth. The sampling freyueas once every 10

seconds in the upper 100 meters, then once every 50 seconds between 100 and 250 m,
and was reduced to once every 100 seconds between 250 m andT¥@sampling

frequency corresponds to data collected once every 1.3 m for the @@per, bnce

every 6.5 m from 100 to 250 m, and one every 13 m from 250 to 5@nthis analysis

three representative depths (6 m, 75m, and 150 m) and isopycnals (25.752kg7%

kg/m?, and 27.75 kg/®&) were chosen for analysis. Since the goal of tbsearch is to
compare spativemporal patterns from glider collected data to existing data sets at the
surface, the selected depth and isopycnal layers were selected to be in the upper portion
of the water column extending into the upper portion oftigycnocline layer. The

depth of 6 m represents the upper limit of consistent measurements from the glider since
the vehicle can take several meterseach steady flight, where the different response of

the sensors (temperature, salinity, chloropblytlissolved oxygencan be accurately
accounted and corrected fofhe depth layer of 75 m represents the typical depth of the
chlorophylU maxi mum from the collected data and

deepest recorded mixed layer depth fromdé set. The isopycnals were selected for a
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different reason, the 25.75 kgiisopycnal is the shallowest isopycnal that extends
through the entire collection period, and the other two isopycnals were selected as an
even incremental increase until thender waters located below 28.00 k§j/nthese

depths and isopycnals bracket the upper and lower extents of the water column

experiencing greatest variability

: Excitation Emission
Equipment Parameters
[nm] [nm]
CTD Temperature
(SeabirdCTFsall, Conductivity
unpumped)
WET Labs ChlorophyHh 470 695
ECO Puck CDOM 370 460
(FL3) Phycocyanin 630 680
WET Labs Optical 532 532
ECO Puck backscatter at 3 650 650
(BBE3) wavelengths 880 880
Oxygen sensor | Dissolved Oxygen
(Aanderaa
optode,
model 4331)

Table 2.1: Summary of thelider equipment used in this study.

2.2.1.2:Processing and quality control of gliderdata

Raw instrument measurements (counts) for each parameter were transformed into
geophysical quantities by applying the manufactprervided scaling factor and dark
count. Then, each profile was quality controlled by applying methods that have been

specifially developed for each parame@rganelli et al., 2017; Thierry et al., 2018)



37

foll owi ng-tAmpepdd xgu@arleadaly control (@Wongetedur e a

al., 2020)

Following Schmechtig et al. (2014), vertical profiles of chlorophyll wer e adj ust ed
nonzero deep values and corrected for4pbiwtochemical quenching accordimgXing

et al. (2012)YSchmechtig et al., 2014;ikg et al., 2012; Xing et al., 2017)urthermore,

the chlorophyHU v a | uthen divided bg a factor divo to correct the

overestimation observed by standard Wet Lab fluorometers as described in Roesler et al.
(2017)(Roesler et al., 2017)Spikes were removed from the chlorophyll

measurements using a lggass median filter. Correction ok @easurements were
performed by applying a factor deduced fromabmparison between the: @alues

obtained via Winkler titration and analy$Sarpenter, 1965; Winkler, 1888hd those

from the glider. During the glider deployment, water samples were t=alet nominal

depths (5, 10, 30, 50, 100, 150, 200, 300, 400, and 600 m) and stored in 125 mL iodine
titration flasks following standard operating procedytesigdon, 2010) The samples

within the surface (5 and 10 m) were collected in triplicate. The amourttinfeach
sample vol ume wa s !usiogrthe measued density ofsseawaket. k g
Finally, temperature, salinity, chlorophydland Q quality-controlled vertical profiles

were binned in 2 m depth intervals and interpolated onto a grid with @n@83emporal
spacing in this studya regular data set needed for statistical analysis as described in
2.2.2 Additionally, these samguality-controlled files were binned in 0.125 kg/m

density intervals at the same 2-B8ur temporal spacing. The time series for the upper
250m from the glider deploymeistshown in Figure€.4 andthe densitybased profiles

from 24.5 to 28.5 kg/fare presented in Figur@s.
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Figure 2.4: Kaust glider line time series plat$ temperaturesalinity, chlorophyltU ,
dissolved oxygen, and signrtlaeta from 6250 m. The white line indicates the mixed

layer depth based on the de Boyer inftix Boyer Montégut e.a2004) The red

vertical lines indicate when the glider is inshore, the blue lines indicate when the glider is
offshore. All color ramps used for the figures in this research are using color ramps from
cmocear(Thyng et al., 2016)
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2.2.1.3:MERRA_2 data

Since the i ntr odu eEraiRetnospartive AdalySiAfdr Resddiwhd e r n

Applications version ZMERRA_2)(Gelaro et al., 201, Rienecker et al., 201pveral
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publications have examined the application of this new reanalysis data set to provide
additional understanding of the seasonality ocogrin the Red Sea. The reanalysis data
from MERRA _2 is especially useful for the region due to the lack ofteng

meteorological measurements within the region. Three recent publications have
described in detail the degree of correlation betweeretgalysis data from MERRA_2

and data from a meteorological buoy that was deployed for two years near the study area.
Al Senafi et al. (2019) demonstrated that MERRA 2 data shows a high degree of
correlation (r = 0.940.98) for heat flux when compared withoy datgAl Senafi et al.,

2019) Menezes et al. (2019) describes the correlation (r =i00892) for wind speed,

zonal velocity, meridinal velocity, and evaporation rat@denezes et al., 2019%un et

al. (2019) has used MERRA_2 as an independent data set for the verification of a new
predictive nodel called SKRIP$Sun et al., 2019) Based on the validation of the

MERRA-2 data by other investigators, the data set is used here as a complementary data

set that will facilitate interpretation of our results

MERRA_2 data (MERRAZ2_400.tavgl_2d_ocn_Nx files) from two locations nearest to
the KAUST glider line (38.75 E, 22.000 N and 38.125 E, 22.00Bi¢ure 2.) areused

to compare persistency calculations frofithe gliderand HFRdata set from October

2017. The parameters selected for analysis are air temperature and wind velocity at 10
m, wind curl, and the water skin temperatur@éy average). This data set provides a
resource to understand additional forcing components that contribute to eddy driven

dynamics.
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2.2.1.4:CODAR data

The HFR system is located on the central western coast of Saudi Arabian and consists of
two CODAR Seasondsites in operation since July 2017 (Solabarrieta et al., in

review). The HFR system transmits at the 16.12 MHz freguaiith hourly data

provided over a 120 km range with a spatial resolution of 3 km. The received backscatter
signal was converted into radial velocities using the MUItiple Signal Classification
algorithm(Schmidt, 1986) The MATLAB package HF Progs
(https:cencalarchive.org/~cocpmb/COCMPwiki) was then used to combine radial

currents and generate ghlted total, two dimensional currents using Open Modal
Analysis(Kaplan and Lekien, 2007pr the entire month of October 201Both before

and after October 2017, errors in the HFR limited the amount of data available to create
g filled currents using Open Modal AnalysiSour evenly spaced locations across the
KAUST glider line were selected for time series analysis, as seen in Rigyfites A

D).

2.2.2:Time series analysis used in this study

One of the difficulties of working with data collected during glider missions is that the
glider is likely not sampling the system synopticgdRudnick and Cole, 2011; Thomson

and Emery, 2014) The lack of synopticity increases the amount of inherent dependency
that occurs within the study area, which then increases the minimurh Erighe data

Is needed to understand the system. While an increase in available information in an area
can greatly improve the understanding of the physical processes, many areas across the

world have limited time series data due to a lack of previbgsmation opportunities
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(Davis et al., 2002; Davis et al., 2019; Rudnick et al., 2004gny of the new

observation platforms wer@acifically designed to be deployed in areas that lack-long
term time series data, and the presented analysis methods were designed to operate in
systems that may not be data r{tke et al., 2012; Lermusiaux et al., 2017; Webster et
al., 2014) Becausgliders travel at approximately 0.25 m/s (20km/déygan be

difficult to separate out which portion of the observed variation is due to a change in
time, longitude, latitude, density, or depth. In the case of this study, latitudinal variation
was limted by maintaining the same latitude within a data set as closely as possible.
While mission planning is potentially able to minimize the observed variation of some of
these dimensions, minimizing these featagsiori risks an incorrect characterizatiof

the natural variability in the system, especially when the sampling locations are located
too close to each other in time or spédelis and Schneler, 2008; Hewitt et al., 2007;
Holland et al., 2004) This study presents two statistical methods that can be used to
determine the natural framework of time analysis within the stusly. afhis study seeks

to define the optimal sampling frequency to provide both an effective characterization of

the system and ensure that the full range of natural variation is also described.

2.2.2.1:Autocorrelation analysis

Autocorrelation is definedsathe normalized cross covariance t¢ihge series data set at
increasing distartime lags and can be calculated from ntimear but uniform data sets
(Habeeb et al., 2005; Thomson and Emery, 20Pdjtocorrelabn analysis identifies the
time lags at which the time series data set has significant dependencaselations
Stochastic processes are time dependent and show a decreasing correlation with time

(Thomson and Emery, 2014Dne method of eliminating stochastic processes in time
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series data sets is to average the data set over regular intervals. If the petreiEds
short enough to be highly correlated, then the assumption of data independence is
violated. Thdime that this data dependency occurs over can be determined by
comparing the correlation at increasingly distant data points within the time datée
(Thomson and Emery, 2014At a lag of zero, data is perfectly correlated with itself. In
a typical systemthemagnitude oftutocorrelation tends to decrease adithe lag
increasesandthe correlatiomemains close to zero and no longer crosses the threshold
into significant dependencyData collected atuchlagsareconsidered independent for
statisti@l analysigThomson and Emery, 2014)n situations in which data follows a
cyclical pattern, like a diurnal cyglthen the autocorrelation analysis will typically
oscillate between regions of positive and negative correlation until the correlation values
fall below significant levelswith each peak in the correlation indicating the duration of
the cycle Thetimelag at which the last significant autocorrelation psatalled the
Integral Time Scale (ITS)ITS defines thescalewhere lag transitions from dependency
to independency, and indicates lag at which the time series data no longer has a

significant levelof either positive or negative correlatiofhomson and Emery, 2014)

2.2.2.2:Characteristic Length Scale (Error X) analysis

The Characteristic Length Scale (Cla®)alysisfor this research is an adaptation of the
method published in Ward et al. (20,1@hich described Error ¥s a wayo calculate
CLS from existing transects afulthersuggested that the method ttbbe applied to
glider and tow vehicle data sg€tdabeeb et al., 2005; Keeling et al., 1997; Ward et al.,
2018) The layers selected are from the upper portion of the water column which are

most influenced by surface conditions, and thus relevant for comparisons with
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MERRA_2 andHFRdata. This focus allows for a better analysis of the relevant time
space scales for the upper portion of the water column by incorporating the surface

forcing (MERRA_2) and the surface current meggsorded at finer spatial resolution

Two circumstancewere described in which Error X can be used to calculate CLS
(Habeeb et al., 2005; Ward et al., 2QMhere both methods are using changes in the
spatial dimension as a replacement for timiée first circumstance is a shtirhe series
approach, and the second is adapting measurements over space as a replacement for
measurements over time. Even thotlghtransect line developed for this research was
set up to examine bothansitions through time and spat®s paper will only focus on

the short time series approaethich includes a combination of relatively few time steps
coupled withthe spatial dsplacement across a single time Stdpbeeb et al., 2005)

This is limited due to the relatively small spatial extent of the glidelogieent mission,
which prevented determiniranly the spatial CLS. CLS calculation is an iterative
process comparing the difference between the recorded value and the predicted value for
increasing larger separation distancBsedictive values are calating byusing a k

Nearest Neighbor (KNN) approacbxamining the difference between a single point in
the data set and the average of values located both before and after the data point at
increasing distances. This difference is calculated at adiraties up to half of the overall
length of the data seflhe error curve is then calculated by usingante Carlochain
simulation (100 runs) averaging twenty randomly selected error measurements at each
distance bin. These 100 Error X results are thvenaged together to produce a final

mean CLS calculation with an associated 95% confidence in{¢tabkeb et al., 2005;

Keeling et al. 1997; Ward et al., 2018 As measurements are further removed in either
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space or time (or both) from a point of interest, the error between the prediction method
and he actual values is expected to steadily increase until the error becomes asymptotic.
CLS is typically defined as the distance at which the error curve becomes asymptotic.
While other prediction methods instead of KNN moving mean have been descrilged sinc
Keeling et al1997, this method was selected as a proof of concept in extending the CLS

approach into glider related studies.

2.3: Results

The KAUST glider line shows evidence of a transitional period within the rlonth

data set presented. As seerrigure2.2, in early October the KAUST line shows a
sharpdifferencebetween the nearshore and offshore regions in botiethgerature

salinity diagrams and dissolved oxygen. These figures have the longitudinal location of

each sample shaded to highlight the difference between the two regions. The two

sections of the line show different characteristics through the water column, with the
nearshee region exhibiting less saline water with lower dissolved oxygen. Over the

course of the month, the ends of the line become less distinctive. Eigu@steows the

time series data for chloropryl and density across t.he full
This figure is also shaded by longitudinal location, using the same range as2zgure

This figure also shows a similegsult when comparinigetween the density location of

the peak chloroph concentration in the iomahbvesma col un
shallower peak, located between 26.05.25 kg/ni, while the offshore region shows a

deeper peak at the 28.00 kd/isopycnal. Both Figure®.2 and2.3 show that these

differences become less distinct towards the end of the month.
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Both the 6250 m and the 24.5629.00 kg/m time series figures (Figuré&s4-2.5) for the
KAUST transect line show a difference between the nearshore region and the offshore
region during the start of the month of October. These differences indicate that the two
regons of the transect line are experiencing different conditions. The time series figures
also show a transitional region between the ends of the transect, indicating the potential
of interchange between the nearshore and offshore region. This ideheas supported

by the decrease in the difference of the nearshore and offshore regions towards the end of
the month of October. The variance seen in temperature, salinity, chlorbphyll a n d
dissolved oxygen over the course of this single month suppertdea presented by
Churchill et al. of the weather band42veeks) playing an important role in

understanding the natural variance occurring within the RedCeachill et al., 2018)

The time series data set for each variable at each of the three depths (6, 76, and 150 m)
and the three density layers (25.75, 26.25, 28.003%gire presnted in Figure2.6 and

2.7.



a7

Figure 2.6: KAUST glider line time series profiles for temperature, salinity, dissolved
oxygen, chlorophy#lJ, and density anomaly at 6, 76, a

Figure 2.7: Kaust glider line time series profiles for temperature, salinity, dissolved
oxygen, and chlorophyllat the 25.75, 26.25, and 28.00 k§isopycnals.



































































































































































































































































































