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ABSTRACT

Efficient Ensemble Data Assimilation and Forecasting of

the Red Sea Circulation

Habib Toye Mahamadou Kele

This thesis presents our efforts to build an operational ensemble forecasting system

for the Red Sea, based on the Data Research Testbed (DART) package for ensemble

data assimilation and the Massachusetts Institute of Technology general circulation

ocean model (MITgcm) for forecasting. The Red Sea DART-MITgcm system effi-

ciently integrates all the ensemble members in parallel, while accommodating dif-

ferent ensemble assimilation schemes. The promising ensemble adjustment Kalman

filter (EAKF), designed to avoid manipulating the gigantic covariance matrices in-

volved in the ensemble assimilation process, possesses relevant features required for

an operational setting. The need for more efficient filtering schemes to implement a

high resolution assimilation system for the Red Sea and to handle large ensembles for

proper description of the assimilation statistics prompted the design and implementa-

tion of new filtering approaches. Making the most of our world-class supercomputer,

Shaheen, we first pushed the system limits by designing a fault-tolerant scheduler

extension that allowed us to test for the first time a fully realistic and high resolu-

tion 1000 ensemble members ocean ensemble assimilation system. In an operational

setting, however, timely forecasts are of essence, and running large ensembles, albeit

preferable and desirable, is not sustainable. New schemes aiming at lowering the

computational burden while preserving reliable assimilation results, were developed.

The ensemble Optimal Interpolation (EnOI) algorithm requires only a single model

integration in the forecast step, using a static ensemble of preselected members for
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assimilation, and is therefore computationally significantly cheaper than the EAKF.

To account for the strong seasonal variability of the Red Sea circulation, an EnOI

with seasonally-varying ensembles (SEnOI) was first implemented. To better han-

dle intra-seasonal variabilities and enhance the developed seasonal EnOI system, an

automatic procedure to adaptively select the ensemble members through the assim-

ilation cycles was then introduced. Finally, an efficient Hybrid scheme combining

the dynamical flow-dependent covariance of the EAKF and a static covariance of the

EnOI was proposed and successfully tested in the Red Sea. The developed Hybrid

ensemble data assimilation system will form the basis of the first operational Red

Sea forecasting system that is currently being implemented to support Saudi Aramco

operations in this basin.
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Chapter 1

Introduction

1.1 The Red Sea

The Red Sea is an extension of the Indian Ocean that resembles a channel running

between Africa and Asia. The Bab-al-Mandeb in the South makes the connexion

between the Red Sea and the Gulf of Aden which in turn connects it to the Indian

Ocean. Two other choke points characterize the Red Sea: the Gulf of Aqaba in the

North-East of the Red Sea and the Gulf of Suez in its North-West. The Red Sea

therefore joins the Indian Ocean to the Mediterranean Sea and plays a key role in the

Old World, serving central shipping trade routes between Africa, Asia and Europe.

The Red Sea water surface is around 17, 000 square miles. The basin length is

approximately 2, 000 km and its average width is 280 km. Dozens of islands are

scattered along its shores. The Red Sea has an average depth of 490 m and is quite

shallow since 40% of the water is under 100 m. The maximum depth is more than

2, 200 m. The water estimated volume is close to 60, 000 cubic miles. Despite the

narrowness of the Bab-al-Mandeb, there is a significant water exchange between the

Red Sea and the Gulf of Aden [43, 189, 190], while the water flow between the Red

Sea and the Mediterranean Sea remains very limited. The Red Sea is among the

warmest and saltiest seas in the world [144] with an average salinity of 40 compared

to the world seawaters average salinity of 35. Furthermore, its complex terrains and

landforms are home to a distinctive ecological system rich of biodiversity [27] and

accommodate magnificent coral reefs [43] that thrive despite high temperatures. The



30

Red Sea is also remarkable for its eddy activities [195]. Many research cruises explored

and studied the Red Sea [28, 144], however it remains relatively poorly covered by

observations compared to other seas, and many aspects of its physical circulation

remain not fully understood, even though the Red Sea considerably contributes to

the economic and social growths of the surrounding countries.

A rise in the population and the number of residential areas of the underdeveloped

Red Sea region, a surge in economical activities as well as the new initiated mega-

projects, NEOM, a futuristic city and the Red Sea Project, a tourist attraction,

along the Saudi shores of the Red Sea, underpin the significance and the dynamism

of the Red Sea. The environmental impact of these new developments need to be

mitigated, through monitoring and intervention systems, to provide a sustainable

economic growth. The prediction of the Red Sea circulation is a key component of

such systems and would help anticipate extreme events and prevent environmental

disasters. It would also assist day to day life, business and maritime operations.

Nowadays oceanographers make use of observations (in situ, satellites, ...) and nu-

merical ocean general circulation models (OGCMs). While observations are the most

straightforward way to study the ocean, they remain sparse both in space (because

ships follow some given paths in the ocean, satellites coverage is restricted to surface

tracks, fixed deployed instruments would be very costly for a dense coverage, ...) and

time (because ships and satellites are moving and cannot continuously sample at a

given fixed location) [167]. In contrast, numerical models can provide full spatial and

temporal coverage through increasing resolution, but may lack for accuracy due to

inevitable modeling errors. To benefit from both sources of information, observations

and model outputs are combined in various ways, and data assimilation is one of the

prominent approaches to do so.
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1.2 Ocean data assimilation and forecasting

Observations and model simulations, employed to improve our understanding of the

ocean, have their pros and cons (more reliable but sparse for the observations, arbi-

trary resolution, assuming resources availability, but modeling errors for the model).

Data assimilation is a process that extracts the relevant information from both data

sources and combine them into a better estimate of the system state [77].

Given measurements and model outputs of the system, there are several ap-

proaches to conduct an assimilation, historically categorized into variational (based on

calculus of variation [15]) and statistical estimation (filtering) methods. In variational

assimilation, grounded in optimal control, a cost function, generally defined as the

misfit between the measurements and the model outputs, is built and an optimization

procedure leads to the solution [103]. In the filtering methods, the measurements are

generally processed sequentially [85] and a statistical estimation is performed to re-

trieve the solution along with its probability density function (PDF), when expressed

in a Bayesian framework. The different assimilation methods might theoretically lead

to the same solutions under certain assumptions, but in practice they do not [77].

The Kalman filter (KF) [91] is a special case of Bayesian filtering and estimates

the first two moments of the PDF, which is equivalent to finding the PDF for a

multivariate Gaussian distribution since it is characterized by its mean and its co-

variance [151]. Moreover, the KF provides the best linear unbiased estimator (BLUE)

(minimum-variance) in the Gaussian (and linear) setup. The dynamical model is in-

tegrated and once observations become available, an update is performed, then a new

assimilation cycle (forecast - update) can start.

Data assimilation finds application in various fields [15]: meteorology [47, 63,

64], hydrology [3, 65, 66, 111], physical oceanography [170, 171], glaciology [20, 107,

108, 177], marine biology [42, 44], land surface modeling, agroecology [29, 41, 89,

90], natural hazards, medicine, biology, chemistry, physical sciences (fluid dynamics,
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imaging, acoustics, mechanics), motion tracking (of airplanes, satellites, fluids, ...),

human and social sciences (economics, finance, traffic control, urban planning), etc.

In oceanography, where the model outputs and the measurements dimensions are

very large, the KF cannot be direcly implemented, because of the prohibitive size

of the matrices required for the filter steps. Another issue is the nonlinearity of the

involved dynamics and observation systems. Those prompted the introduction of sim-

plifications and generalizations in the KF formulation [80, 142, 178]. The ensemble

Kalman filter (EnKF) is the most known example. It is based on Monte Carlo (MC)

estimates of the first two moments of the statistics of the Bayesian filtering solution

using an ensemble of ocean states [50, 84]. Those forecasted model outputs are up-

dated with incoming observations by applying the standard KF update procedure.

The updated (or analysis) ensemble is then advanced, each member separately and in

parallel, for computational efficiency. Large ensemble might be needed for better sta-

tistical representation [78, 82] required to estimate the covariance matrix and deliver

good filter updates, forecasts and predictions.

Non-Gaussian filtering, an active area of research, is theoretically a more sound

approach to deal with the nonlinearities from the models, the observation operator,

and more generally when the involved PDFs are not Gaussian [77]. Particle filters and

Gaussian-mixture filters are examples of non-Gaussian filters. These approximate the

prior PDF with weighted Dirac or Gaussian kernels, respectively [23, 77] and are still

in development stage.

1.3 Thesis Objectives

The advent of new governmental projects in the region and on the shores of the

Red Sea (like the Neom project) and the desire of the authorities to develop new

economic hubs is likely to turn things around by boosting the commissioning of a

Red Sea operational forecasting system. Such a system is relevant for Saudi Aramco
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offshore operations in particular, as well as for fisheries and other sea activities (civil

and military) in general. Examples of such activities are, but not limited to, under

water communications [135, 152] for which the knowledge of water properties (salinity

temperature, currents, ...) is needed, and water desalination [37, 38, 39]. The system

will also be useful for scientific studies to support the aforenamed activities. These

include exploration, examination and analysis of phytoplankton blooms [43, 146],

eddies properties and predictability [195, 196], water masses circulation [138, 189,

190], internal waves generation [70], and wind above the Red Sea [99]. Even though

the system is first intended for the Red Sea, it could be applied to other water masses

making its implementation very useful and of utmost importance.

Despite being among the busiest and most important shipping routes, an opera-

tional forecasting system is yet to be developed for the Red Sea. Most of the reported

studies of the basin rely on numerical simulations, due to a poor observational cover-

age of the Red Sea, and used either a simplified model [172, 191, 192], a climatology

of general circulation model (GCM) outputs [48, 158, 163, 164], or an OGCM forced

with real atmospheric conditions [29, 173, 189, 190, 196]. With more and more data

becoming available [191, 195], data assimilation may spring up new discoveries about

the Red Sea. Until recently, only one work [31] implemented a primitive assimila-

tion system of the Red Sea, based on an elementary nudging technique assimilating

SST and eXpendable BathyThermograph (XBT)/Conductivity Temperature Depth

(CTD) data, with a coarse model.

The goal of this thesis is therefore to develop the basis of an operational data

assimilation system for forecasting the Red Sea circulation with the established Saudi

Aramco Marine Environmental Research Center at KAUST (SAMERCK) (https:

//iop.kaust.edu.sa). In order to tackle the aforementioned challenges and advance

the science, I put my efforts into building, implementing and validating efficient data

assimilation schemes with a high-resolution OGCM of the Red Sea, by working on:

https://iop.kaust.edu.sa
https://iop.kaust.edu.sa
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• The implementation of a state-of-the-art assimilation system, configured here

for the Red Sea. A similar system developed for the Gulf of Mexico was available

and our contribution is an adaptation for the Red Sea capable of assimilating

various kind of Red Sea collected data, ranging from in situ observations to

satellite measurements, where forecasted model elements called members are

integrated in parallel, within a High Performance Computing (HPC) environ-

ment.

• Enhancing the robustness of the system and make it fault-tolerant, and propos-

ing new data assimilation validation metrics. In a HPC context featuring thou-

sands of cores and aiming at running an ever increasing number of members the

risk of failure is even larger. To mitigate these issues interrupting the whole as-

similation process, the system should be able to restart by discarding the faulty

cores and members. As for the new validation metrics, they should complement

the existing ones, and provide simpler implementation and robust verification

of the system behavior.

• Pushing the limits of the current ensemble assimilation systems by running the

largest ocean ensemble assimilation to date and exploring its impact. Current

operational ocean assimilation systems run 50 - 100 members, which may limit

those systems performance and often requires the introduction of auxiliary tech-

niques and simplifications. Here we run 1000-member experiments and study

their impacts in terms of improvements in the system estimate of the ocean

state and reliance on auxiliary techniques and simplifications.

• Reducing the computational load of the system by developing new assimilation

schemes tailored for the seasonal variability of the Red Sea. Ensemble assim-

ilation require all the members to be advanced by the model. By advancing

only one member, we save the cost incurred by the model integrations and to
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compensate for the loss of the covariance built from the members, seasonally

generated covariances expected to account for the seasonal variability features

of the Red Sea are employed.

• Adaptive schemes that adaptively select the desired ensemble members for the

seasonal covariances construction. We propose enhanced seasonal schemes that

automatically select the ensemble members from a dictionary of ensemble real-

izations based on some metrics, at each assimilation step.

• A Hybrid scheme that combines the benefits of several schemes while leveraging

the resources for cost efficiency. The Hybrid scheme uses a hybrid covariance, a

linear combination of a dynamic covariance obtained from the ensemble adjust-

ment Kalman filter (EAKF) and a static covariance. It propagates sufficient

ensemble members to incorporate the model dynamic, while thresholding the

computational resources and complement the dynamic covariance with a static

one.

All the developed schemes will be implemented and tested for data assimilation

and forecasting in the Red Sea, and their performance evaluated with the goal of

developing the first operational system for the Red Sea.

1.4 Thesis Outline

Chapter 2 presents the DART-MITgcm assimilation system. After introducing the

Bayesian filtering and describing the different components of the system, a specific

implementation for the Red Sea configuration is discussed. Chapter 3 examines the

sensitivity of DART-MITgcm to some assimilation schemes and atmospheric forcing.

Then Chapter 4 analyzes the results of the first 1000-member ocean ensemble data

assimilation run and demonstrates the robustness of the system. Chapter 5 explores

the results of the application of adaptive ensemble Optimal Interpolation schemes, as
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a consequence of the outcomes of Chapter 3. Finally, Chapter 6 studies the impact of

a Hybrid assimilation scheme, which is the combination of the new schemes, on the

performance of the assimilation system. Chapter 7 provides concluding remarks and

a proposal for a future research work.
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Chapter 2

DART-MITgcm Assimilation System

This Chapter presents the Bayesian filtering and the estimation problem (Section 2.1).

A description of the ocean general circulation model (MITgcm) is given in Section

2.2 and that of the ensemble assimilation package (DART) in Section 2.3. Section 2.4

focuses on a specific configuration of the DART-MITgcm assimilation system for the

Red Sea.

2.1 Estimation problem, Bayesian filtering and ensemble Kalman

filtering

Let xt be the true state of the system of interest (the ocean here) we would like to

estimate and predict. Usually, only limited (sparse in space and time) noisy measure-

ments yo related to xt, directly or indirectly through some conversions or transforma-

tions, are available. One way to complement the information from the observations

is the use of a numerical model that can provide an estimate x of the system state

at any time and any location, provided that the computational resources are enough

to handle high (1-2 km) resolution simulations. Like the observational data, models

are prone to uncertainties. So we end up with two (uncertain) sources of information

for the unknown true state xt. We will therefore model xt (and x, and yo as well)

as a stochastic process, i.e. a random variable indexed with a (time) parameter. For

more details about the relationship between xt, x, and yo, the reader is referred to

Appendix A.
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Now, let us define the state space model as

xtk+1 = Mk(x
t
k) + ηk , (2.1)

yok = hk(x
t
k) + εk , (2.2)

where xtk is the true state of the system at time k,Mk is a dynamical (forward) model

to evolve the system in time, yok is an observation or measurement of the system at

time k, hk is the observation operator at time k, ηk and εk are model and observation

errors, generally assumed Gaussian.

In a Bayesian framework we assign a probability distribution p(xt0) to the initial

state xt0. The goal will be to compute the probability distribution p(xtk|Yo
1:k), that is

the conditional probability distribution of the state vector xtk given all the available

observations up to time k, Yo
1:k := yo1,y

o
2, · · · ,yok, by applying Bayes’ rule [170, 82].

To recursively solve the problem, the transition from p(xtk−1|Yo
1:k−1) to p(xtk|Yo

1:k) is

made by first advancing the system state probability distribution with the dynamical

model (2.1), that is applying the Chapman-Kolmogorov equation

p(xtk|Yo
1:k−1) =

∫
p(xtk|xtk−1)p(xtk−1|Yo

1:k−1)dxtk−1. (2.3)

Next, equation (2.2) allows us to compute p(yok|xtk) and Bayes’ rule application re-

sults in

p(xtk|Yo
1:k) =

p(yok|xtk)p(xtk|Yo
1:k−1)

p(yok|Yo
1:k−1)

. (2.4)

Equations (2.3) and (2.4) are the assimilation forecast step and the assimilation

update step, respectively. A forecast followed by an update (or an update followed

by a forecast) represent one assimilation cycle. After an update, the model runs until

the availability of new observations. Then another update is performed and a new

assimilation cycle can start.
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In the Introduction (Section 1.2), the KF was presented as a specific Bayesian

filter and the EnKF as a simplification of the KF for implementation with OGCMs.

There are many variants of the EnKF among which the stochastic EnKF where the

observations are perturbed [26]. The stochastic EnKF help to reduce the underesti-

mation of the analysis error covariance [184]. The algorithm of the stochastic EnKF

is outlined below. First, since we do not have access to xt, we use x instead, for

practical applications. Also, we define xa as the state x after an assimilation update

and we call it the analysis state, and xf as the state x after it has been advanced

by the dynamical model
(
xfk =Mk−1(xak−1)

)
and we refer to it as the forecast state.

Let us consider a set of model initial conditions:

Xa
k−1 = [xa,1k−1,x

a,2
k−1, · · · ,x

a,N
k−1]. (2.5)

The superscript a stands for analysis, and the numbers are the members ranks. The

ensemble Xa
k−1 is then advanced with the dynamical model (which is an approximation

of equation (2.3) because a finite number of members are being integrated) to provide

an ensemble of forecasts:

Xf
k = [xf,1k ,xf,2k , · · · ,xf,Nk ]. (2.6)

Next, an ensemble of anomalies X
′

k is computed:

X
′

k = [xf,1k − xfk , xf,2k − xfk , · · · ,x
f,N
k − xfk ], (2.7)

where xfk =
1

N

N∑
i=1

xf,ik is the ensemble mean. The forecast error covariance matrix

Pf
k is approximated by:

Pf,e
k =

1

N − 1

(
X

′

kX
′

k

T
)
, (2.8)
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and the Kalman Gain is evaluated as:

Kk =
(
HkP

f,e
k

)T [
Hk

(
HkP

f,e
k

)T
+ Rk

]−1

, (2.9)

with Rk the observational covariance matrix associated with the observation yok, and

Hk the matrix associated with the observation operator hk. The filter update is

computed by applying the KF update to each of the forecast ensemble members with

a perturbed observation:

xa,ik = xf,ik + Kk

(
yok + εik − hk(x

f,i
k )
)
, i = 1, · · · , N, (2.10)

where εik ∼ N (0,Rk) is the perturbation of size pk added to the observation yok to

yield the perturbed observation yok + εik. Next, from the new ensemble Xa, a new

assimilation cycle is conducted by repeating the different steps from equation (2.5).

2.2 The MIT general circulation ocean model (MITgcm) and

its Red Sea configuration

The Massachusetts Institute of Technology general circulation model (MITgcm) is

a software implementing both atmospheric and ocean general circulation models [1,

121]. Based on the Navier Stokes equations, it employs finite volume for discretization

[122] while irregular geometries are dealt with orthogonal curvilinear grids and shaved

cells [2]. Its non-hydrostatic capability allows for studying small-scale as well as large-

scale processes [123]. Optimization and sensitivity studies are also possible through

its tangent linear and adjoint models [120]. The model runs efficiently on several

computational platforms and domain decomposition makes it convenient for parallel

processing on HPC machines by slicing the ocean domain into vertical columns [122].

In our configuration designed for the Red Sea, the model covers the Red Sea, the

Gulf of Suez in the North-West, the Gulf of Aqaba in the North-East and the Gulf of
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Aden in the South. The grid of the discretized domain is a 20°× 20° eddy-resolving

spherical polar grid, 30°-50°E and 10°-30°N, with a horizontal grid spacing of 0.04°

(approximately 4 km), and 50 vertical layers with increasing thickness, starting from

4 m at the surface and reaching 300 m near the bottom. The bathymetry is from the

General Bathymetric Chart of the Oceans (GEBCO) (https://www.gebco.net/data

and products/gridded bathymetry data/). The momentum, tracer and free surface

equations time steps are set to 200 seconds. The baroclinic multi-stage time stepping

is activated. The configuration uses implicit, variable, harmonic and biharmonic

horizontal viscosities, a K-Profile Parametrization (KPP) scheme [101] for the vertical

mixing, as well as implicit diffusion and implicit, non-linear free surface. The equation

of state is a modified UNESCO [55] formula by Jackett and McDougall [88]. The

model is run in hydrostatic mode, with exact volume conservation and flux-form

Coriolis scheme. A 3rd order advection scheme is applied for temperature and salinity.

2.3 The Data Assimilation Research Testbed (DART)

The Data Assimilation Research Testbed (DART) is a Fortran software implemented

at the National Center for Atmospheric Research (NCAR). To cope with large at-

mospheric and oceanographic models, DART assimilates the observations at a given

time one by one and in parallel using a two-steps assimilation strategy [9]. Some aux-

iliary techniques, such as localization [7, 11] and inflation [10, 12] are also available to

enhance assimilation results with small ensembles. Different filters are implemented

in DART, the main one being the EAKF [8].

After introducing the joint state space formalism, a clear description on how the

EAKF and the EnKF are derived in the two-steps assimilation framework based on

[8] is given.

https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
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2.3.1 The joint state-observation space nonlinear filter

The true joint state-observation space vector (or true joint state vector) at time k

is the vector ztk = [xtk, hk(x
t
k)] which length lk = n + pk is the sum of the state

vector length n and the observation vector size pk. Similarly we define the joint

state-observation space vector zk = [xk, hk(xk)]. It is useful for handling any kind of

observation operator, especially nonlinear ones. The Bayesian filter equations (2.3)

and (2.4) are then updated by replacing xtk by ztk:

p(ztk|Yo
1:k−1) =

∫
p(ztk|ztk−1)p(ztk−1|Yo

1:k−1)dztk−1, (2.11)

p(ztk|Yo
1:k) =

p(yok|ztk)p(ztk|Yo
1:k−1)

p(yok|Yo
1:k−1)

. (2.12)

2.3.2 Computation of the filtering solution using ensemble

Kalman filters (EnKF, EAKF)

When solving (2.12) using ensemble methods, we first sample an ensemble from the

prior distribution p(xtk|Yo
1:k−1) then by applying the observation operators hk we get

an ensemble for the joint prior distribution p(ztk|Yo
1:k−1). So let us sample an ensemble

of forecast states [zf,1k , zf,2k , · · · , zf,Nk ] with mean zfk and sample covariance Σf
k . When

assuming the prior to be Gaussian, then the updated or analysis covariance is

Σa
k =

[
(Σf

k)
−1 + HT

kR−1
k Hk

]−1

, (2.13)

and the analysis mean is

zak = Σa
k

[
(Σf

k)
−1zfk + HT

kR−1
k yok

]
. (2.14)
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Hk is here the matrix associated with the extended observation operator, that is the

observation operator that applies to zk, which is merely a projection from the joint

space of dimension lk onto the observation space Opk of dimension pk. The expected

observation value from the joint state vector is therefore ypk = Hzk.

The filters in DART yield a solution having the mean and covariance expressed

by (2.13) and (2.14) (and eventually an additional weight for the kernel filter not

discussed here). More details for the EnKF and EAKF filters are given below.

2.3.2.1 Ensemble Kalman filter

DART implements the traditional EnKF with perturbed observations [8, 84]. It

generates N perturbed observations {yo,ik }i=1,...,N
by sampling the errors (like the εik

of (2.10)) from the observational distribution p(yok | ztk) in (2.12) and adding them to

the observation yok. The observations {yo,ik }i=1,...,N
mean is adjusted to be yok. Σa

k is

theoretically computed once for all the members, using equation (2.13). To obtain

the analysis ensemble Za
k = [za,1k , za,2k , · · · , za,Nk ], zfk and yok are replaced by zf,ik and

yo,ik , respectively, in equation (2.14) leading to N evaluations of the equation.

2.3.2.2 Ensemble adjustment Kalman filter

The ensemble adjustment Kalman filter is part of the EnKF family. The adjustment

refers to the fact that the updated ensemble is adjusted to match the theoretical

updated mean (2.13) and covariance (2.14). For that purpose, a linear operator Ak

is applied to the prior ensemble to recover the updated ensemble

za,ik = Ak(z
f,i
k − zfk) + zak, i = 1, . . . , N (2.15)

where zf,ik and za,ik are respectively the i-th forecast and i-th analysis ensemble member

at time k, and the matrix Ak (of size lk×lk) is chosen such that the updated ensemble
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sample covariance matches the one in (2.13). The detailed computation for a suitable

operator Ak is provided in Appendix B.

2.3.3 Filtering with the two-steps assimilation framework of

DART

In practice, equations (2.13) and (2.14) cannot be used to compute the filters update

due to the huge sizes of the matrices involved. For the same reason, the adjust-

ment operator Ak is not appropriate to compute the EAKF filter update, hence

the motivation for introducing the two-steps assimilation and make the assimilation

implementation possible in DART [9].

2.3.3.1 Two-steps assimilation

Recall that our goal is to compute the distribution of the state conditioned on the

observations up to time k (2.4). The joint state-observation space enables us to

establish a relation between the distribution of the state vector and the distribution

of the predicted observation, through the distribution of the joint state-observation

distribution (2.12). The idea of the two-steps assimilation is to first compute the

marginal distribution of the predicted observation and then take advantage of the

relation provided by the full distribution to derived the distribution of the state [9].

So the predicted observation is first updated then the correction is propagated to the

remaining state variables. Here a Gaussian relationship is assumed between the joint

state variables to allow for the connection.

We will now present the details of the method. For the sake of simplification, let’s

drop the time index and assume we have a scalar observation, yok = [yo]. That is

pk = p = 1 and lk = l = n + 1. Indeed, this assumption results from the fact that

uncorrelated observations can be processed and assimilated in a sequential fashion

[9]. And if there are more than one observation (i.e. l > 1), the observations are
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assimilated either serially or in parallel [14].

Let the distribution of the joint forecast state-observation be Gaussian with mean

zf and covariance Σf , and the observation distribution be Gaussian with mean yo and

covariance R = [r]. Because we assumed a single observation, H =

[
0 0 · · · · · · 0 1

]
is a 1× l matrix.

Σf =


Pf,e

σf1,l

σf2,l
...

...

σfl−1,l

σf1,l σf2,l · · · · · · σfl−1,l σfl,l


.

σfj,l, j = 1, . . . , l is defined as σfj,l = cov(z̃(j), ỹ
p), j = 1, . . . , l, and

z̃(j), for j = 1, . . . , l − 1, as the jth row of the ensemble (or matrix) Xf , which

contains the jth component of each of the ensemble members, i.e. for j = 1, . . . , l−1,

z̃(j) = x̃(j) =

[
xf,1(j) , xf,2(j) , · · · · · · , xf,N(j)

]
,

and for j = l,

z̃(l) = ỹp =

[
yp,1, yp,2, · · · , yp,N

]
=

[
h
(
xf,1
)
, h

(
xf,2
)
, · · · , h

(
xf,N

)]
(2.16)

is an ensemble of predicted observations.

2.3.3.2 First step: Observation update

At this stage Σa (Σf respectively) is replaced by the analysis variance σal,l (forecast

variance σfl,l respectively) of the ensemble of predicted observations ỹp in equation

(2.13). And equation (2.14) is used to update the mean of the predicted ensem-
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ble of observations ( yp =
1

N

N∑
i=1

yp,i ), before adjusting the predicted ensemble of

observations, for the EAKF, and updating each member of the predicted ensemble

of observations, for the EnKF. Therefore zf is replaced by yp (for the EAKF) and

yp,i, i = 1, . . . , N (for the EnKF) to yield the analysis ensemble of observations

ỹa =

[
ya,1, ya,2, · · · , ya,N

]
. Additionally, for the EnKF, yo is replaced by a per-

turbed ensemble of observations, {yo,i, i = 1, . . . , N}.

That is:

σal,l =

[
(σfl,l)

−1 + r−1

]−1

(2.17)

and for the EAKF, first update the predicted observation ensemble mean:

ya = σal,l

[
(σfl,l)

−1yp + r−1yo
]

= σal,l

[
1

σfl,l
yp +

1

r
yo
]

(2.18)

then, for i = 1, . . . , N :

ya,i = θ (yp,i − yp) + ya, (2.19)

where θ =

(
σal,l

σfl,l

)1/2

=

(
r

r + σfl,l

)1/2

,

or for the EnKF, for i = 1, . . . , N :

ya,i = σal,l

[
1

σfl,l
yp,i +

1

r
yo,i
]
. (2.20)

Afterwards, the observation increments are computed as:

∆yi = ya,i − yp,i, i = 1, . . . , N. (2.21)
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2.3.3.3 Second step: Remaining state variables update

Σa from (2.13) can be written (by factoring out (Σf )−1 on the left and using the fact

that (AB)−1 = B−1A−1):

Σa =

[
I− 1

r + σfl,l
Σf

0l

]
Σf , (2.22)

with Σf
0l being the matrix Σf in which all the elements have been set to 0, except

the last column, that is

Σf
0l =



0

σf1,l

σf2,l
...

...

σfl−1,l

0 0 · · · · · · 0 σfl,l


Replacing Σa by (2.22) in (2.14) yields:

za =

[
I− 1

r + σfl,l
Σf

0l

]
Σf
[
(Σf )−1zf + HTR−1yo

]
. (2.23)

Because ΣfHTR−1yo = Σf
0lH

TR−1yo and Σf
0lΣ

f
0l = σfl,lΣ

f
0l,

za =

[
I− 1

r + σfl,l
Σf

0l

]
zf +

1

r + σfl,l
Σf

0lH
Tyo. (2.24)
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Therefore the increment produced by the assimilation of one observation is:

∆z = za − zf

=
1

r + σfl,l
Σf

0l

(
HTyo − zf

)

=
1

r + σfl,l

(
yo − zf(l)

)


σf1,l

σf2,l
...

...

σfl,l


(2.25)

with zf(l) = yp, the lth component of the vector zf .

In order to perform the update of the remaining state variables from the ob-

servation increment derived in section 2.3.3.2, let us consider the jth component of

the vector ∆z. From (2.25), ∆z(j) =
1

r + σfl,l

(
yo − zf(l)

)
σfj,l, j = 1, . . . , l − 1 and

∆z(l) =
1

r + σfl,l

(
yo − zf(l)

)
σfl,l = ∆y.

For j = 1, . . . , l − 1,
∆z(j)

∆z(l)

=
σfj,l

σfl,l
so

∆z(j) =
σfj,l

σfl,l
∆z(l)

=
σfj,l

σfl,l
∆y (2.26)

and to each entry j of the ensemble member zf,i, i = 1, . . . , N , the increment

∆zi(j) =
σfj,l

σfl,l
∆yi, j = 1, . . . , l − 1 (2.27)

is added to obtain the analysis ensemble {za,i, i = 1, . . . , N}.
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2.4 DART-MITgcm Implementation for the Red Sea

2.4.1 Workflow

DART-MITgcm assimilation system has first been implemented for the Gulf of Mexico

[76]. It combines the MITgcm and the DART filter in successive update-forecast

cycles. The forecast step of the assimilation is performed by the MITgcm model

configured for the Red Sea and the analysis step by the DART filter. Within our

DART-MITgcm configuration for the Red Sea, because a parallel MPI job cannot

run another parallel MPI job for most MPI libraries, we run the DART filter and

MITgcm as separate executables which exchange data through files (see Figure 2.1).

Figure 2.1 shows DART flow from the DAReS Perspective (see Section Schematic of

Ensemble Data Assimilation - from the DAReS Perspective at http://www.

image.ucar.edu/DAReS/DART classic/) and provides an overview of the interaction

between the filter and the model.

DART-MITgcm workflow for the Red Sea is as follows (Figure 2.2): first, there

is the initialization with the preprocessing of the observations (obs_seq.out), the

generation of the initial ensemble (filter_ics), the specification of the filter namelist

(input.nml), the MITgcm data namelist (data), the MITgcm date and calendar

information (data.cal), and eventually additional files listed in input.nml. Next is

the analysis (assimilation) step followed by the forecast step (advancing the model).

After that, either a new assimilation cycle starts or the process ends, depending on

the number of cycles stated in the filter namelist.

2.4.1.1 System configuration and initialization

Before running the assimilation system, we prepare the input files for each assimi-

lation window. The preparation includes the files for the observations that will be

assimilated, the initial conditions for the model states and the different run parame-

http://www.image.ucar.edu/DAReS/DART_classic/
http://www.image.ucar.edu/DAReS/DART_classic/
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Figure 2.1: Coupling between DART and MITgcm.
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Figure 2.2: Workflow implementation
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ters stored in the namelist files.

SSH and SST satellite data, temperature and salinity profiles are currently assim-

ilated into the system, but it is designed to accommodate most available in situ and

satellite ocean datasets. The data is put in a predefined American Standard Code for

Information Interchange (ASCII) format before being converted to a distinct DART

format. Once the observation data file for the full assimilation process is ready, a

DART program splits the file into multiple files specific to each assimilation win-

dow. For an operational usage of the system, the assimilation window observation

file should be generated on the fly.

The state vector is composed of the prognostic variables (SSH, salinity, tempera-

ture, zonal and meridional velocities) needed to run the model. The initial ensemble

of state vectors is generated from a long free run model outputs by keeping the out-

puts corresponding to the assimilation starting date, then by retaining the elements

two weeks (or sometimes one month) before and after, with 3-day spacing (i.e. if the

assimilation start on January 1st, we keep the members on December 29, 26, ... and

January 4, 7, ...), for all the available years. Once the selection is accomplished, the

initial ensemble date is set to the assimilation starting date. This selection method

is used to provide more realistic spread and more meaningful physical representation

than simply adding random perturbation to a single realization. Other perturbation

methods, such as singular/bred vectors or Empirical Orthogonal Functions (EOFs),

that may more efficiently account for the current uncertainties (or error-of-the-day),

could also be considered to generate the initial ensemble. The ensemble mean is even-

tually replaced by the free run estimate of the given assimilation starting date. The

initial ensemble is generated the same way for all the assimilation schemes and only

the subsequent cycles ensembles differ.

Namelist files are also required to setup and run the assimilation system. The

model namelists containing time information (data.cal and data) are updated at
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each assimilation step by the program that performs the conversion of the filter out-

puts from the filter data format to the model data format. The initial assimilation

date is read from the filter namelist (input.nml) that drives the assimilation process.

input.nml contains information about the assimilation window period, the ensemble

size, the kind of filter to be applied (EAKF, EnKF, Kernel filter, Observation Space

Particle filter, Random draw from posterior, Deterministic draw from posterior with

fixed kurtosis, Boxcar kernel filter, Rank Histogram filter, or Particle filter) and many

other flavors.

2.4.1.2 Analysis (assimilation) step: filter

The DART filter uses the files set at the initialization step, assimi-

late the observations, and produces .nc files containing the analysis

ensemble mean and spread (and ensemble members if specified in the

filter namelist) prior and posterior to the assimilation. Additionally,

the ensemble members are outputted in a specific DART format and will be used at

the forecast stage as new initial conditions for the model integrations.

2.4.1.3 Forecast step (advancing the model): MITgcm

During the forecast step, N MITgcm runs are independently inte-

grated by N instances of the forecasting script. The independence

naturally allows for parallelization. The number of members that

could be run in parallel will however depend on the available resources. For each

member, a temporary run directory is created and the required inputs are copied or

symbolically linked. Each member is assigned its initial condition (output from the

DART filter) from a control file that contains the identification information. Then

the initial conditions are converted to the model format, before running MITgcm,

whereupon only the model outputs that are part of the state vector are converted
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back to DART format. The assimilation time is also updated here.

2.4.2 Initialization and submission scripts

The assimilation code runs on HPC platforms (previously Shaheen I (IBM) and cur-

rently Shaheen II (Cray)) where the jobs submissions and management is steered by

a job scheduler (LoadLeveler for Shaheen I and slurm for Shaheen II).

At the first cycle of the initialization process (initial ensemble, observations and

filter namelist generation) in Section 2.4.1.1, the initial ensemble generation is carried

out offline with some scripts specific to the selected assimilation method. Since the

assimilation needs the files to be in DART format, whereas the model long run outputs

are in MITgcm format, there is a first category of scripts that select the model

outputs then run some conversion programs that put the model outputs in the format

required by the DART filter. To expedite the process, all the model outputs have

been converted in DART format and the second category of scripts just need to select

the members. There is also an index table that keeps the members identifiers (for

each format) and their dates.

For the remaining cycles of the initialization process, the initial ensemble is built

up from the model outputs resulting from the forecast step (Section 2.4.1.3), depend-

ing on the chosen ensemble selection scheme.

Regarding the observations, as discussed in Section 2.4.1.1, a file containing all the

observation is generated. Then offline, before the assimilation starts, after specifying

the full assimilation duration and the time lengths of the different assimilations win-

dows, a script launches a program to split the big observations file into small files to fit

each assimilation window. The initial version of the script was extracting the obser-

vations serially and was taking very long to complete. Consequently, I implemented

a parallelized version and obtained a speed up factor of 63. The idea was to make

a multiple stage extraction instead of extracting all the needed observations at once.
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Indeed, the computation time depends on the length of the observation sequence and

not on the length of the extracted sequences, this, because the program traverses the

sequence linearly and extracts the observations belonging to the specified time win-

dow. To obtain q extracted sequences, the time will be equivalent to q times the time

to read the initial sequence. For the multiple stage extraction, let us say s stages,

the program extracts q1 sequences at the first stage, q2 sequences at the second stage,

..., and qs sequences at the last stage. At each stage m, the qm extractions can be

performed in parallel. The number of extractions should be small at the beginning

for better performance, and once we reach a stage at which the extractions are fast

enough, we end by achieving all the q extractions corresponding to the q sequential

extractions. For example, a two stage extraction makes two extractions of two in-

termediate files at the first stage. Next the needed observations files are extracted

from the two intermediate files. This two stage extraction was enough to reach the

63 speed up factor, basically turning the hours into minutes.

When it comes to the filter namelists, as for the observations, a file for each

assimilation window is generated and parametrized by the starting and ending dates

of the assimilation window.

At the analysis (Section 2.4.1.2) and the forecast (Section 2.4.1.3) steps, one filter

and N forecast jobs have to be submitted for each cycle. In each job file, the machine

resource allocations are specified along with the required input files and the command

to run job. Now the questions that arise are: How to write the submission jobs,

because it would be painful to write hundreds or thousands of submission jobs by

hand? How to manage the dependencies, since each forecast step should follow a

filter step? How to launch the workflow, taking into account the machine constraints,

and how to monitor it?

To answer the first two questions, a generation script was written in Python for

Shaheen I and in Bash shell for Shaheen II to produce a sequence of submission scripts
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with the desired dependencies. The submission scripts are normally written in one

file. But, due to the machine stress caused by the large number of handled jobs, a

maximum number of jobs per files has been set. The LoadLeveler version file can

be very long since each forecast member is written separately while for the slurm

version, the array construct allows for a concise expression by only setting the array

size to the number of needed forecast and parametrizing the scripts with the forecast

member identifier. In the LoadLeveler version, the dependencies are defined using

the job names. Unlike LoadLeveler, slurm cannot use the job names to assign the

dependencies, but rather uses the job IDs. Given that the job IDs become available

only when the job is submitted, in the slurm version, there is a first job to launch

the sequence and collect the IDs in order to set the dependencies. The generation

scripts build the launching scripts that will be submitted though they cannot steer

and monitor the scripts executions. The machine scheduler manage the dependencies

among the jobs but in case of failure, one needs to manually restart the workflow.

However, the generation scripts can generate the submission scripts from the desired

restarting point. As for the monitoring issue, it is addressed in the next Section.

2.4.3 Consistency checks and monitoring

There are many identical parameters in the DART-MITgcm system that are scattered

across the files. To avoid any confusion and surprises, it is very important to set those

parameters centrally. Therefore, most of the parameters, as well as the preferred en-

semble selection scheme, have been gathered in a template filter namelist. A script

first checks for the needed files for the system to run, then it parses the namelist to

get the values of the parameters, before setting them in all of the other files, accord-

ing to constraints related to some parameters combinations. After those checks, the

script launches the generation scripts (Section 2.4.2), and eventually submits the jobs.

The described consistency check script undertakes the required actions for the jobs
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submissions but does not monitor the workflow execution. In case of failure or abor-

tion of the workflow, the end user has to identify the issue and relaunch the system.

To avoid that demanding process, in partnership with the KAUST Supercomputing

Laboratory (KSL) team, I made a further improvement of the assimilation system

answering the monitoring question raised in Section 2.4.2. The improvement consists

in an extension to the slurm scheduler, Decimate, that is able to steer the workflow

and automatically relaunch it in case of abortion. When the interruption is due to

a numerical failure, Decitmate replaces the faulty members by picking up new ones

from a precomputed dictionary. Decimate is further discussed in Chapter 4.

2.4.4 System and assimilation results validation

To assess a data assimilation system, we first need a rigorous definition (and under-

standing) of the system and what is meant by a solution of that system. Knowing

the properties of the system and the properties of its solution(s) and being able to

characterize them is very important. That would allow to derive theoretical solu-

tion(s) against which numerical results could be compared in order to validate the

assimilation system.

2.4.4.1 Distance between estimates and comparing solutions

First, we need to be able to compare different estimates or solutions to a reference.

A commonly used measure is the forecast root-mean-square error (RMSE), at time

k, defined as

rmsefk =

√√√√ 1

pk

pk∑
i=1

({
hk(x

f
k)
}

(i)

− yok(i)

)2

. (2.28)

The subscript (i) refers to the ith component of the corresponding vector. Similarly,

the analysis root-mean-square error (RMSE) is defined by replacing the superscript

f by a. Since the truth is generally unknown, except for validation experiments, the
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observations are used as reference. But which observations? Usually, the assimi-

lated observations are utilized, and sometimes, the results are benchmarked against

independent data or observations that have not been assimilated. Comparing to

independent data provides a more reliable assessment.

Figure 2.3 shows the RMSEs for three trials of the same experiment. Keeping

in mind that xfk is a random variable, an average over a set of trials or outcomes of

the same experiment might be required for a better evaluation. This leads to the

definition of the forecast mean-squared error (MSE) at time k:

msefk = tr

(
E

[(
hk(x

f
k)− yok

)(
hk(x

f
k)− yok

)T])
= E

[(
hk(x

f
k)− yok

)T (
hk(x

f
k)− yok

)]
(2.29)

= E

[
pk∑
i=1

(
hk(x

f
k)(i)
− yok(i)

)2
]
.

Notice that the RMSE expression is closely related to the MSE one, but with a

normalization factor 1
pk

, a square root and without the expectation. The MSE can be

seen as an “average of (squared-)RMSEs” over multiple experiments. The expectation

can be approximated by the sample mean:

msefk = E

[
pk∑
i=1

(
hk(x

f
k)(i)
− yok(i)

)2
]

=
1

m

m∑
j=1

{
pk∑
i=1

(
hk(x

f
k)(i)
− yok(i)

)2
}
j

, (2.30)

where m is the number of trials. Given the cost for conducting an assimilation

experiment with large OGCMs, replications of the experiments are not always viable

such that the RMSE is preferred over the MSE.
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Figure 2.3: RMSEs for three different trials of the same experiment.
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2.4.4.2 Twin experiments

The basic idea is to first run an experiment and tag it as the truth. Observations are

then sampled from the truth before being assimilated in a second experiment. The

assimilation solution is then compared against the true reference solution to confirm

that the system is properly working without the effect of model errors.

When looking at the following update equation xa = xf + PfHT (HPfHT +

R)−1(yo−h(xf )), when yo = h(xf ), it follows that xa = xf . So by setting the obser-

vation process identical to the forecast process, we also expect the analysis process

to match them. This twin experiment is simple to implement, and does not require a

deep understanding of the underlying system. It is very usefull to check and validate

the implementation of an assimilation system. Figure 2.4 provides an example in

which the method helped spot an implementation issue, due to some non zero values

encountered, meaning that the forecast and the analysis are not equal when they

should.

2.5 Summary

This Chapter presented the Bayesian filtering and the estimation problem before

detailing the components of the DART-MITgcm assimilation system, namely the

MIT general circulation ocean model (MITgcm) and the Data Assimilation Research

Testbed (DART). The system configuration for the Red Sea was described. In par-

ticular, the worklow and its management, as well as the system and the assimilation

results validation tools were discussed.
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Figure 2.4: Difference between a reference run and a second run in which the obser-
vation process is set identical to the reference run. The green color represents (near)
zero values. Some non zero salinity values appear in the middle.
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Chapter 3

Ensemble data assimilation in the Red Sea: Sensitivity to

ensemble selection and atmospheric forcing

This Chapter corresponds to the paper “Ensemble data assimilation in the Red Sea:

Sensitivity to ensemble selection and atmospheric forcing” published in Ocean Dy-

namics.

3.1 Introduction

In this Chapter, we examine the overall performance of a deterministic EnKF, the

EAKF [8], for assimilating satellite SSH and SST data into a 4 km MITgcm that

has been configured and validated to study the circulation of the whole Red Sea

[189, 190, 196]. We evaluate the sensitivity of this assimilation system to various pa-

rameters and inputs, including filtering scheme and parameters (ensemble size, infla-

tion) and atmospheric fields (NCEP and ECMWF). We are in particular interested in

investigating the benefit of using a flow-dependent ensemble against keeping it invari-

ant in time, using an ensemble Optimal Interpolation (EnOI)-like scheme in which the

model is used to forecast only the state, and not the ensemble [57, 80, 134, 155]. The

latter assumes that the forecast error covariance is well represented by a stationary

ensemble, and may lead to drastic reduction (up to 80- 90% less) in the computational

burden compared to a flow-dependent ensemble. It may further help maintaining the

ensemble spread, which is one of the issues often encountered in EAKF applications,

especially when model errors are not directly accounted for in the system [9, 80]. We
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further assess the possibility of exploiting the dominant seasonal variability of the Red

Sea and test the performance of the EnOI scheme with seasonally varying ensemble

of model states that are not integrated with OGCM but are readily available from a

historical model run [17, 186]. This allows the EnOI scheme to adjust to the seasonal

variation of the system without extra computational cost, but may not well-represent

the error-of-the day in the most recent estimate compared to an ensemble Kalman

filter. We compare the performances of the EAKF, EnOI, and EnOI with seasonal

varying ensemble (Seasonal ensemble Optimal Interpolation (SEnOI)) in the Red Sea

and study their sensitivities to various settings and atmospheric forcing.

The rest of this Chapter is organized as follows. Section 3.2 gives a brief description

of the model and observational data used for model validation and in the assimila-

tion experiments. Details of the assimilation schemes and their implementation are

provided in Section 3.3. In Section 3.4, we present the results of several assimilation

experiments that have been conducted to evaluate the performances and robustness

of the compared ensemble assimilation schemes. A discussion and summary conclude

the work in Section 3.5.

3.2 Model and Data

3.2.1 Ocean model and configuration

The model is configured as described in Section 2.2. Moreover, the lateral boundaries

are treated with no-slip conditions and a quadratic bottom friction is imposed. On

the eastern lateral boundary, SSH, salinity, temperature, zonal and meridional veloc-

ities open boundary conditions (OBCS) from the Estimation of the Circulation and

Climate of the Ocean (ECCO) [94] are assigned through a 20-km buffer zone.

In the different experiments, the model is forced with 6-hourly atmospheric re-

analysis from the National Centers for Environmental Prediction (NCEP) or the

European Centre for Medium-Range Weather Forecasts (ECMWF). These include
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zonal and meridional wind speed, air temperature, specific humidity, precipitation

and downward short and long wave heat fluxes. A free model run was integrated

over a 32-year period from January 1979 to December 2011 using a time step of 200s

(without assimilation), and outputs from 1992 to 2011 were stored for validation and

for constructing an (initial or static) ensemble of state realizations.

3.2.2 Observational data

For the assimilation, along-track SSH data is obtained by combining sea level anomaly

(SLA) acquired from Radar Altimeter Database System (RADS), available through

the web portal http://rads.tudelft.nl, and the mean dynamic topography (MDT)

from the Archiving Validation and Interpretation of Satellite Oceanographic Data

(AVISO), available at ftp.aviso.altimetry.fr/auxiliary/. RADS is developed by Delft

University of Technology and the National Oceanic and Atmospheric Administration

(NOAA). It provides merged SLA observations from nine altimeter missions, and is

one of the most accurate and complete data bases of satellite radar altimeter data

[157]. MDT is a key reference surface for altimeter data, and can be used to calcu-

late the corresponding absolute dynamic topography (ADT) from the altimeter SLA

through ADT = MDT + SLA. The ADT is equivalent to the model SSH, which

will be assimilated into the ocean model. All the SSH data within the assimilation

window, 3 days in this study, were gathered and assimilated once at the middle of

the window. Observational errors of these along-track SSH data are specified with

different values ranging between 0.05 to 0.1 m for different satellite missions.

It is important to point out that the accuracy of altimetry data in coastal waters

could be limited by several factors, including the weaknesses of the altimeters in the

range tracking procedure close to the shorelines, intrinsic difficulties in the corrections

of the wet tropospheric correction, tides, etc., and issues of land contamination in the

altimeter return waveforms [30, 180]. Important efforts are still being carried out to

http://rads.tudelft.nl
ftp.aviso.altimetry.fr/auxiliary/


65

overcome such problems and to extend the capabilities of current and future altimetry

data in coastal waters [104, 118, 175, 180, 187]. As a safe and practical approach, the

SSH observations over shallow waters (less than 60 m in depth) were excluded. We

have also removed the outliers during the assimilation process, which were flagged

when the distance between the forecast ensemble mean and the observation value

exceeded three times the square root of the sum of the observation variance and the

forecast ensemble variance for that observation.

The assimilated SST data is extracted from the Group for High Resolution Sea

Surface Temperature (GHRSST) global Level 4 SST analysis produced daily on a 1/4°

grid at the NOAA National Climatic Data Center [149] (available at http://podaac.

jpl.nasa.gov/dataset/NCDC-L4LRblend-GLOB-AVHRR OI). These are mapped data

from the 4 km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder

Version 5 time series (when available, otherwise operational NOAA AVHRR data are

used) and in-situ observations. In the assimilation experiments, three-day averaged

data is provided at midnight with a 0.25° grid. Observational errors are uniform and

set at 1.2°C. These are larger than what is commonly used, but are expected to also

account for the spatially correlated nature of this mapped dataset.

3.2.3 Model validation with SSH/SST

A free model run (without assimilation) was integrated over a 32-year period from

1979 to 2011, and its outputs from 1992 to 2011 were stored for validation and for

constructing an (initial or static) ensemble of state realizations. As shown in Fig-

ure 3.1, the model mean SST (Figure 3.1.e) is in good agreement with the AVHRR

data (Figure 3.1.a), exhibiting a clear gradient throughout the basin where highest

temperature is found on both coasts of the southern Red Sea. Strong variability of

SST near the west coast around 16°N and 23°N, and weaker variability along the east

coast between 16°N and 19°N (Figure 3.1.b), are accurately depicted by the model

http://podaac.jpl.nasa.gov/dataset/NCDC-L4LRblend-GLOB-AVHRR_OI
http://podaac.jpl.nasa.gov/dataset/NCDC-L4LRblend-GLOB-AVHRR_OI
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(Figure 3.1.f). However, the modeled exhibits a weaker SST variability than the

AVHRR in the northern basin with a smaller standard deviation. The mean and

standard deviation of model SSH are comparable to those of the daily AVISO grid-

ded SSH product (available at http://www.aviso.altimetry.fr/en/data/data-access/

aviso-opendap/opendap-adt-products.html). The model well reproduced the south-

to-north SSH gradient in the basin (Figure 3.1.g) compared with the AVISO data

(Figure 3.1.c). The model SSH variability is slightly weaker than what is observed by

AVISO, especially towards the Saudi coast in the central and northern Red Sea. The

larger variability of modeled SSH in the central and northern basins is likely the sig-

nature of a strong eddy variability (Figure 3.1.h), which is not always represented by

AVISO data (Figure 3.1.d). The discrepancy may result from sub-mesoscale features

in the model outputs that are not represented by the 0.25° AVISO data. In addition,

the merged gridded AVISO product is generally produced from low-coverage of daily

along-track data [196], which may underestimate the eddy intensities [191].

Figure 3.1: Mean and standard deviation of remote sensing observations (upper
panel) and model outputs (lower panel) calculated using data from 1996 to 2010.

http://www.aviso.altimetry.fr/en/data/data-access/aviso-opendap/opendap-adt-products.html
http://www.aviso.altimetry.fr/en/data/data-access/aviso-opendap/opendap-adt-products.html
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3.3 Ensemble Assimilation Schemes and Implementation

3.3.1 Ensemble Kalman filtering and Seasonal Optimal In-

terpolation

Data Assimilation serves to incorporate observational data with numerical models to

best estimate the state of the ocean [46]. It is mainly used for forecasting purposes,

but also for developing ocean reanalysis products, parameter estimation, uncertainty

quantification, etc. State-of-the-art ocean data assimilation schemes are now well es-

tablished following two directions depending on how the data are assimilated into the

model. The variational approach seeks for the deterministic model trajectory that

best fits all available observations by tuning some uncertain model parameters. The

model-data fit is measured by a well-chosen objective function that is optimized based

on its gradients calculated using the adjoint of the ocean model [103]. The filtering

approach sequentially updates the model forecasts every time new observations are

available based on prior errors estimates on the model forecast and assimilated data

[81]. The most widely used sequential assimilation schemes are the ensemble Kalman

filter (EnKF) and its variants [46, 53, 80, 169]. These are Monte Carlo-based vari-

ants of the famous Kalman filter (KF) designed for nonlinear and computationally

demanding models [50]. In contrast with the variational methods, the Kalman meth-

ods are non-intrusive (do not require the development of an adjoint model), and are

therefore easier to implement.

A crucial aspect of any data assimilation scheme is a good description of the fore-

cast error covariance, often referred to as the background covariance, which describes

how the model-observation misfits are projected into the state space to correct the

forecast. When the system is linear and errors statistics are Gaussian, the KF pro-

vides an optimal way to sequentially estimate the time evolution of the forecast state

and its background covariance according to the system dynamics [81]. To enable the



68

implementation of the KF for data assimilation into realistic high-dimensional and

nonlinear ocean GCMs, [50] proposed to represent the forecast statistics (first two mo-

ments) by an ensemble of state vectors, called ensemble members. Given an ensemble

of model forecasts Xf = [xf,1,xf,2, · · · ,xf,N ], estimates of the forecast state and its

background covariance are then taken as the sample ensemble mean and covariance,

xf =
1

N

N∑
i=1

xf,i and Pf =
1

N − 1
X

′
(X

′
)
T
,

where X
′

= [xf,1 − xf , xf,2 − xf , · · · ,xf,N − xf ] is the ensemble of anomalies. This

provided a particularly efficient framework to estimate the forecast error covariance

for adequate weighting of the forecast in the assimilation, to account for various

sources of model errors, and to quantify the uncertainties in the estimated solution

[76]. This study focuses on the ensemble Kalman methods, which we implement here

based on the Data Assimilation Research Testbed (DART) package. Our goal is to

develop an efficient, in term of computational cost and performances, assimilation

system for reconstructing and forecasting the space-time circulation of the Red Sea

and to quantify the uncertainties in the estimated fields.

As the KF, EnKFs operate as a succession of forecast and analysis steps. In the

forecast step, the ensemble members are integrated with the dynamical model to the

time of the next available observations. In the analysis step, the forecasted members

are adjusted by the incoming observations using the KF update step:

xa = xf + PfHT
(
HPfHT + R

)−1 [
yo − h(xf )

]
,

where Pf is the forecast error covariance, R is the observational error covariance, yo

is the observational vector, and H is the linearized form of the observational operator

h (in our setting, the assimilated SST and SSH data are model variables, so that h is

linear).
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EnKF methods were classified into stochastic or deterministic techniques, depend-

ing on whether the observations were perturbed, or not, before assimilation [169]. De-

terministic filters, such as the EAKF, became more popular for data assimilation in

oceanography [46] and meteorology [87], to avoid introducing noise from the under-

sampling of the observational error covariance with a small ensemble [6, 81, 129].

The performance of an EnKF greatly depends on the representativeness of its ensem-

ble members, which should adequately describes the statistics of the state estimates

errors.

The EAKF update step is based on the following equations [8]:

xa = Pa
[(

Pf
)−1

xf + HTR−1yo
]
, (3.1)

Pa =
[(

Pf
)−1

+ HTR−1H
]−1

, (3.2)

xa,i = A(xf,i − xf ) + xa, i = 1, · · · , N, (3.3)

where xf,i and xa,i are individual members of the forecast and analysis ensemble

and xf and xa their respective means, and N is the ensemble size. Equations (3.1)

and (3.2) compute the analysis state xa and its error covariance matrix Pa from the

forecast ensemble mean xf and covariance Pf , exactly as in the Kalman filter. The

analysis members are then generated using Equation (3.3) in such a way to exactly

match xa and Pa, which are the constraints for selecting the matrix A.

The EAKF formulation enables updating the ensemble with the model to track

changes in the ocean dynamics, which should be particularly useful in regions subject

to important spatial and temporal variability.

EAKFs may suffer from the collapse of their ensembles members (towards the en-

semble mean) [58], especially when the forecast model is not integrated with stochastic
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perturbations to account, for instance, for uncertainties in the forcing and/or param-

eters. One simple approach that was proven efficient to mitigate this is to amplify the

ensemble spread by multiplying by an inflation factor that is larger than 1 [8, 73, 80].

Another challenge in ensemble Kalman methods is the spurious correlations in the

forecast error covariance that is inherited from the use of small ensembles in practice

[84]. The low-rank nature of the covariances of such ensembles may further extend

the impact of an observation to faraway points from its location, which may severely

limit the filter ability to fit the data [74]. This problem can be generally efficiently

addressed through the localization technique [57, 74, 85, 134]. The basic idea is to

restrict the impact of an observation to nearby points only, or equivalently, trim long-

range correlations from the ensemble covariance [153]. In practice, large inflation and

strong localization may, however, respectively weaken the stability of the assimila-

tion system, and introduce undesirable small-scale features into the analysis when the

observations are sparse [72].

Integrating large ensembles with an ocean GCM is computationally demanding.

Following the optimal interpolation (OI) approach in data assimilation, which uses

a static pre-selected background covariance in the update step, ensemble OI (EnOI)

methods were proposed [52, 80, 131]. EnOI is a very cost effective alternative to an

EnKF in which the static background covariance is estimated as the sample covariance

matrix of an adequately pre-selected ensemble, generally representing the error grow-

ing modes, or describing the variability of the studied system. This formulation does

not suffer from the ensemble collapse problem, but its performance may be limited

during periods of strongly changing dynamics that are generally not well described

by a static background [79, 80]. EnOI has a very similar algorithm as an EnKF, ex-

cept that only the analysis state, and not the entire ensemble, is integrated with the

model during the forecast step. The method was found to provide good performances
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compared to an EAKF at fraction of the computing cost1 [80, 134, 155].

A completely static background error covariance may not ideally describe the

variable patterns of the ocean flow in different seasons, and periods in between. To

represent the flow-dependence in term of seasonality, [186] proposed to use EnOI

to assimilate Argo profiles in a hybrid coordinate ocean model (HYCOM) with an

ensemble selected at every assimilation cycle from monthly climatology fields with

a three-month moving window around the assimilation time. The same scheme was

latter adopted by [117] and [185] for assimilating SLA data in the South China Sea.

In this study, we implemented a similar EnOI scheme but selecting the ensemble

on a monthly basis from a climatological dataset of the Red Sea circulation that

is assumed to describe the variability of the system. The Red Sea climatology was

simulated from a long-term historical model simulation as described in more details

in the next section. We refer to the EnOI with seasonally varying ensemble as the

seasonal-EnOI (or SEnOI).

3.3.2 Implementation within DART

EAKF, EnOI and SEnOI were implemented in fully parallel mode (at the forecast and

the analysis steps) using the Data Assimilation Research Testbed (DART). DART is

a portable software for ensemble data assimilation developed at the National Center

for Atmospheric Research (NCAR) [12]. It builds on a series of interface routines

that incorporate a forecast model and different types of observations, and can be

used with a variety of algorithms to update the ensemble, including for instance

the (stochastic) EnKF and the EAKF. DART is configured to integrate and update

the ensemble members in parallel, exploiting the serial formulation of the Kalman

filter update step [10]. It is further equipped with advanced inflation/localization

techniques that are important to enhance the performance of an ensemble-based data

1 in CPU time and not necessarily in real time as the ensemble members can be integrated in
parallel.
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assimilation system. It has been successfully implemented in various atmospheric and

oceanic applications [4, 76, 145].

DART has been already implemented with the MITgcm for data assimilation

and forecasting the loop current in the Gulf of Mexico [76]. A similar system is

implemented in this study with some specific adjustments to the Red Sea. The

model state vector is composed of the prognostic ocean variables that are needed to

initialize the MITgcm, i.e. salinity, temperature, horizontal velocity, and sea surface

height fields. We used the EAKF as described by [8, 9], and modified some of its

routines to enable for EnOI and SEnOI assimilation. The EAKF steps in DART-

MITgcm are summarized in the schematic map Figure 3.2. Starting from an analysis

step, a given initial ensemble Xf is delivered to DART, the mean and covariance

of Xf are updated with the filter, based on which the analysis ensemble Xa is then

deterministically generated. This is followed by the forecast step, in which each

member of the analysis ensemble Xa is integrated with the MITgcm to obtain the

new forecast ensemble, which enables to start a new assimilation cycle.

Figure 3.2: DART-MITgcm EAKF scheme flow chart. The forecast ensemble Xf is
first updated with DART using the observation to compute the new analysis ensemble
Xa. The latter is then integrated with the MITgcm to obtain the forecast ensemble
Xf from which a new assimilation cycle could be initiated.

In this study, the initial ensemble was selected from the outputs of the long-term

model simulation between 1992 and 2004. Three-day outputs were saved and assigned
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into 12 datasets according to the time-period between their dates and the beginning

of each month. For each month, a total of 252 model outputs were retained. As

the experiments start from January-1-2006, the 252 sampled outputs were collected

from early December and late January in different years, and the first 50, 100 or 250

records were assembled as the initial, or static, ensemble when running an experiment

with those number of members.

The EnOI steps in DART-MITgcm are schematized in Figure 3.3. The filter starts

from a given state estimate and an ensemble of model outputs from which we remove

the mean to obtain an ensemble of anomalies X
′
. When the new observations become

available, one would read X
′

and compute the “new” forecast ensemble using Xf =

xf +X
′
, which is then sent to DART to compute the analysis state xa (no resampling

of a new ensemble is needed here). The MITgcm is then integrated only once to

compute the forecast state xf . A new assimilation cycle could then be initiated.

In our implementation, X
′

is the same as the EAKF initial ensemble and is kept

invariant in time. SEnOI is implemented based in EnOI, except that, its ensemble of

anomalies is updated monthly by selecting its members from a climatological dataset

consisting of long-term model outputs centered at the beginning of each month.

3.4 Experiments Setup and Assimilation Results

The assimilation experiments were performed over a one year period starting from

January-1-2006. Along-track SSH and gridded AVHRR SST were assimilated every

3 days at midnight. The model data misfits were calculated as if all the data were

observed at the assimilation time. Since we are using sequential data assimilation

schemes, the SSH/SST data were binned at the middle of the assimilation window.

The experiments were conducted with different ensemble sizes, inflation factors, and

atmospheric forcing conditions. The ensemble localization technique is applied to

remove eventual spurious long-range correlations that may appear from the use of
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Figure 3.3: DART-MITgcm EnOI scheme flow chart. The forecast ensemble Xf

is first updated with DART based on the observation to compute the new analysis
ensemble mean xa, which is then integrated with the MITgcm to obtain the forecast
xf . The single forecast is added to a pre-selected ensemble of anomalies to build
the forecast ensemble Xf = X

′
+ xf , from which a new assimilation cycle could be

initiated.

small ensembles and to increase the rank of the forecast error covariance. A covariance

localization cutoff radius of 0.05 rad (about 300 km depending on the latitude) is

chosen from a series of assimilation runs with different localization scales (not shown),

providing good and robust assimilation results. To maintain enough ensemble spread

and avoid the ensemble collapse, the spread of the anomaly forecast ensemble X
′
, i.e.

ensemble covariance, was amplified by an inflation factor, before each analysis step.

This is simply implemented by using the following inflated members in the analysis

step

xf,i,inf = α(xf,i − xf ) + xf , i = 1, · · · , N,

where α is an inflation factor generally chosen to be slightly greater than 1. The choice

of the ensemble from which the forecast error covariance Pf is estimated is key for

designing an efficient sequential ensemble assimilation system. In all the experiments

presented in this Chapter, the initial ensemble of the EAKF is selected from a set of

January climatological fields, i.e., the members are selected from the January outputs

of the long-term model run. In the EnOI, this ensemble is kept invariant in time while
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in SEnOI the ensemble is reselected from the model outputs for the corresponding

month.

3.4.1 Assimilation Results

3.4.1.1 Sensitivity to ensemble size

The objective of an EAKF scheme is to minimize the variance of the analysis error,

which is expected to decrease as the ensemble size increases. The choice of the

ensemble size is critical to the success of an EAKF assimilation system, and one should

balance between ensemble size and computational cost. The ensemble should be large

enough to describe well the statistics (mean and spread) of the prior distribution, and

to provide a smooth enough covariance between the model state and the observations

and avoid severe localization [127]. At the same time, the ensemble size should be

reasonable to avoid excessive computing cost. Many studies suggested that, with

appropriate localization and inflation, the decrease in the analysis error may stagnate

with very large ensembles, suggesting that good performances may be obtained with

relatively reasonable size ensembles [148].

To investigate the sensitivity of the EAKF-assimilation system in the Red Sea to

the ensemble size, three experiments with 50, 100, 250 ensemble members were per-

formed. An inflation factor of 1.1 and localization radius of about 300 km were con-

sidered in all three experiments. The time-evolution of the RMSEs between SSH/SST

observations and filter forecast/analysis states are plotted in Figure 3.4. It is clear

that for both SSH and SST, the RMSE decreases with larger ensembles. The experi-

ment using 250 members leads to the smallest RMSE for both forecast and analysis,

although the RMSE resulting from 50 members is quite reasonable, with an average

forecast and analysis RMSEs of 0.71°C/0.08 m and 0.64°C/0.07 m for SST and SSH,

respectively. Nevertheless, the improvements resulting from increasing the ensemble

size from 100 to 250 are generally not very significant (especially for SST), and this is



76

also reflected in their ensemble spreads. The SST and SSH ensemble spreads stabilize

after the first 30 assimilation cycles, (about three months) reaching minimal values of

about 0.1°C and 0.01 m in the winter season, before they slightly increase during the

summer season. The SST and SSH analysis RMSEs are about 0.1°C and 0.01 m lower

than the corresponding forecast RMSEs, respectively, suggesting that the data are

properly assimilated into the model. The RMSE of SSH analysis is lower than that

of the AVISO gridded data, which has been generated by merging different satellite

missions’ measurements [45].

Figure 3.4: Time evolution of the SST/SSH RMSE and ensemble spread for EAKF
with different ensemble sizes.

Increasing the ensemble size may increase the risk of collapse of the ensemble as-

similation system; this is exactly what happened after 61 assimilation cycles (or six

months) for the run with 250 members, when the MITgcm was not able to complete

the integration of one of the ensemble members and diverged. In each assimilation cy-
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cle, the analysis ensemble increment, which is introduced by the Kalman gain matrix,

may introduce some dynamically unstable realizations that are not compatible with

the model physics [69]. This imbalance can be further more severe with localization

and inflation [134]. Improving the dynamical consistency of the ensemble members

and developing efficient online schemes to replace unstable members are two of the

directions we are planning to explore in order to enhance the robustness of the sys-

tem. Hereafter, we will limit the ensemble size to 100 as this seems to provide enough

representative ensembles in order to obtain good and robust ensemble assimilation

performances.

3.4.1.2 Sensitivity to inflation

The value of the inflation factor may depend on the dynamics of the model and the

studied region, and on the configuration of the assimilation system, including the

ensemble size and the filter [74]. Here we conduct trial and errors experiments to

set the value of the inflation factor. Sophisticated adaptive inflation schemes were

suggested for online space-time tuning of the value of the inflation [6, 12, 80], but

these also require to be configured to the studied region and were not considered in

this study.

To investigate the sensitivity of the MITgcm-EAKF Red Sea assimilation system

to the inflation factor, four ensemble assimilation experiments with different values

of inflation factors, 1.0 (no inflation), 1.05, 1.1 and 1.2, were conducted using the

same ensemble size of 100 members. The time-evolution of SST and SSH RMSEs

for the forecast and analysis fields, and the corresponding forecast ensemble spreads

are plotted in Figure 3.5. The results suggest that the overall performance of the

MITgcm-EAKF assimilation system in the Red Sea is quite dependent on the choice

of the inflation factor. A remarkable improvement in the filter performance in term

of RMSE is achieved using inflation, as compared to the filter results without infla-
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tion (inflation = 1.0). The accuracy of the filter estimates particularly improves with

inflation, in summer, for both SST and SSH. However, increasing the inflation factor

from 1.1 to 1.2 is not very beneficial, or even occasionally contributing negatively, to

the system behavior. The ensemble spread of SSH and SST (Figure 3.5.e and Figure

3.5.f) decreases over time, with the largest decreases during the first few assimilation

cycles, before stabilizing in later cycles. The ensemble spreads are then maintained

at levels of about 0.15°C and 0.01 m for SST and SSH, respectively. With infla-

tion, the ensemble spread decreases at a slower pace, but tends to diverge after some

cycles, depending on the value of the used inflation factor. It is necessary to note

that a larger inflation factor noticeably reduced the analysis RMSEs, but not always

the forecast RMSEs, particularly for SSH. This probably implies that an EAKF sys-

tem with larger inflation factor may overfit the observational data, providing analysis

fields featuring some dynamically unbalanced features.

Although inflation generally helps maintaining the ensemble spread, large inflation

factors may deteriorate the system behavior and even cause divergence. The experi-

ment using an inflation factor of 1.2 stops after 55 assimilation cycles only. The large

anomaly imposed by a large inflation factor may cause runaway increase in some

states trajectories compared to those purely integrated with the model. This may

force the analysis state to overfit the observations in regions where data are available,

leading to strong contrast with regions that are not covered by observations [116]. The

unphysical and imbalanced inflated variances may lead to large signal-to-noise ratios

in the fits, which could impose spurious adjustments to the ensemble and further lead

to poor forecasts [76].
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Figure 3.5: Time evolution of the SST/SSH RMSE and ensemble spread for EAKF
with different inflation factors.
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3.4.2 Sensitivity to the atmospheric forcing: NCEP vs. ECMWF

To test the sensitivity of the assimilation system to the atmospheric forcing product,

we compared the results of two assimilation experiments that have been conducted

with the EAKF under identical conditions and forced with ECMWF and NCEP fields.

The experiments are initialized with an ensemble size of 100 members selected from

January climatological fields. The performances of the two experiments are quite com-

parable in terms of SST and SSH RMSEs (Figure 3.6.a-d). To investigate whether

the model without assimilation is sensitive to the atmospheric forcing, we carried out

two free model runs respectively forced with ECMWF and NCEP. The free-run re-

sults shown in Figure 3.6.e and Figure 3.6.f suggest that the model is sensitive to the

atmospheric conditions, and that NCEP and ECMWF do force different circulations

in the Red Sea. The disagreement is most pronounced in the SST, probably implying

considerable differences in the ECMWF and NCEP heat flux fields in this region.

Clearly, data assimilation reduces the SST forecast RMSE (Figure 3.6.a and Figure

3.6.e) in both experiments, with the 1.1°C and 1.2°C RMSE of the free run forced

with ECMWF and NCEP respectively reduced to 0.7°C and 0.6°C in the assimilation

experiments. Even though the different atmospheric conditions may force different

circulation patterns in the Red Sea, the assimilation of remotely sensed SSH and SST

data is capable to control the system, at least in the upper layer, and to adjust its

circulation according to the available observations.

As atmospheric conditions have a major impact on SST, we further investigate the

spatial distribution of the temperature field under different forcing conditions, in the

assimilation and free-run experiments. As depicted in Figure 3.7 for two examples in

August and in December 2006, the EAKF estimates clearly features stronger vertical

variability than the free-run outputs. This is most likely related to the eddies that

have been introduced by the filter. In particular, the EAKF forced with both ECMWF
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Figure 3.6: Time evolution of the SST/SSH RMSE for EAKF ((a) to (d)) and a
free-run simulation ((e) and (f)), both forced with ECMWF and NCEP.
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and NCEP exhibit some doming of isothermal in the central Red Sea in August

(Figure 3.7.e,f) and in the northern basin in December (Figure12.m,n), which are

much weaker in the free run forced with ECMWF (Figure 3.7.g,o) and hardly seen

in the free run forced with NCEP (Figure 3.7.h,p). In addition, in the two EAKF

assimilation experiments forced with different atmospheric conditions, although little

difference is found in their SST RMSEs, and their dominant vertical structures are

quite comparable, some of their vertical features are still different. For instance, the

slightly depressing isothermal of the southern Red Sea in the ECMWF run (Figure

3.7.e) differs from the doming isothermal in the NCEP run (Figure 3.7.f) in August,

suggesting that atmospheric conditions may still influence deep-water structures in

an EAKF system as each observation impacts the full water column (no localization

was applied in the vertical direction), even when the upper layer is well conditioned

by the assimilated data.

3.4.3 Sensitivity to the choice of the background ensemble

3.4.3.1 EAKF vs. EnOI vs. SEnOI

To investigate the behavior of the Red Sea ensemble assimilation system with differ-

ent choices of ensemble schemes, assimilation experiments were conducted using the

EAKF, EnOI and SEnOI. Following the results of Section 3.4.1, the results of the

EAKF with 100 ensemble members are used as a reference to evaluate the perfor-

mances of the two other ensemble schemes.

In contrast with the EAKF, which requires integrating all ensemble members with

the MITgcm in the forecast step, EnOI and SEnOI only run the model once, to com-

pute the forecast state starting from the filter analysis, regardless of the ensemble

size. One can therefore implement the EnOI schemes with large ensemble members

without significant increase in the computational cost. Here we compared the perfor-

mances of EnOI and SEnOI with 250 ensemble members with those of EAKF with
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Figure 3.7: Horizontal and vertical distribution of forecast temperature averaged in
August (a)-(h) and in December (i)-(p). The left/right two panels plot the forecast
fields from an EAKF/free run experiment, forced with ECMWF and NCEP atmo-
spheric conditions, respectively.
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100 members.

The results are shown in Figure 3.8. In term of spread, both EnOI schemes ex-

hibit much larger ensemble spreads, whether calculated from a static or a seasonally

varying ensemble, as compared to that of EAKF (Figure 3.8.e and Figure 3.8.f). The

larger spreads of the forecast ensembles of the EnOI schemes suggest, in some sense,

larger forecast errors, which pushes the filter’s analysis more towards the observa-

tions. This is reflected in the analysis RMSE for both SST (Figure 3.8.c), and SSH

(Figure 3.8.d), where the EAKF clearly exhibits a larger RMSE than those of the

EnOIs. The differences between the EnOI and SEnOI in terms of their SST and SSH

analysis RMSEs are surprisingly not significant, with the latter being comparable to

that of the gridded AVISO product.

Figure 3.8: Time evolution of the SST/SSH RMSE and ensemble spread for EAKF
(ensemble size = 100), EnOI (ensemble size = 250) and SEnOI (ensemble size of 250).
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In term of forecast, the performances of the three ensemble schemes are compa-

rable for SST. This is not surprising because the Red Sea SST is dominated by the

atmospheric forcing and boundary conditions, which are identical in all three exper-

iments. In forecasting SSH, however, EAKF significantly outperforms both EnOI

and SEnOI, which further exhibit an erratic behavior despite using a smaller ensem-

ble. SEnOI generally provides better forecasts than EnOI, except during the winter

season, where the static ensemble seems to be well representative of this period.

Remotely-sensed SSH is one of the most used data to describe mesoscale eddies

activities in the ocean, and, in practice, provides the most compelling measurements

to constrain modeled eddies. The repeat-cycle of satellite altimeters over the Red

Sea ranges between 10 to 35 days, which is much longer than the 3-day assimilation

window considered in this study. Therefore, unlike the SST observations that are al-

ways mapped on the same regular grids, the number and locations of along-track SSH

observations vary with the satellites tracks at each analysis step. This means that

the forecast SSH RMSE is often evaluated against observations that are not located

in the regions where the previous observations were assimilated to produce the most

recent analysis (based on which the forecast was computed). One could then consider

the SSH altimeter data as independent data to evaluate the filters forecasts. The

much better EAKF forecasts suggest better ability to reproduce the hydrodynamics

of the Red Sea with a flow-dependent ensemble. In the EnOI and SEnOI experi-

ments, the forecast SSH RMSE (Figure 3.8.b) is quite larger than that of the analysis

SSH (Figure 3.8.d), indicating that the ocean model did not adjust fast enough to

the (usually large) increments imposed by the no-flow-dependent backgrounds of the

EnOI schemes, which probably caused some dynamical imbalances with the ambient

water.

We also analyze the forecasts SSH as they result from EnOI and SEnOI. Eddies ac-

tivity is the most dominant and energetic component of the Red Sea variability, which
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is usually distinguished from the mean flow as perturbations and can be character-

ized from the fields of anomalies [196]. This happens to be similar to the generation

process of the forecast error covariance Pf using an ensemble of anomalies, whose

members are selected from climatological fields composed of 15-year model outputs.

Therefore, the 250 selected ensemble members should be able, to some extent, to

represent the eddy variability in the Red Sea. In this case, the constructed Pf would

possibly describe eddy features that happen to be not observed by the sparse altimeter

data, or not captured by the forecast state. This could possibly explain why the EnOI

with a static ensemble selected in January climatology was able to provide reasonable

results. Furthermore, as the Red Sea eddies exhibit a seasonal variability [195, 196],

the SEnOI generally out-performs EnOI, particularly in summer, leading to a smaller

SSH forecast RMSE. However, the overturning circulation and subsurface intrusion

water from the Gulf of Aden also vary seasonally [189, 190], and these features cannot

be much improved after assimilating SST and SSH data only. A more robust evalua-

tion would be to also assess the results of the different ensemble assimilation schemes

against in-situ profiles in different seasons, but this requires much longer assimilation

runs over several years.

As an example, the spatial distributions of the forecast and analysis states on

June-6- 2006 as estimated by the three ensemble assimilation schemes are compared

with remote sensing observations of SSH (Figure 3.9) and SST/temperature profile

(Figure 3.10). The SSH and SST observations are extracted from gridded AVISO and

the AVHRR products, respectively. Forecasts from all three schemes agreed well with

the remote sensing data, and additionally provided more detailed mesoscale and sub-

mesoscale features in the basin than the gridded products. In particular, compared

with EAKF, the EnOI schemes introduced stronger eddy activities in the northern

Red Sea. This can be clearly seen from the dark blue patches of SSH (Figure 3.9.a-c),

the filament features in SST (Figure 3.10.a-c) and the corresponding doming of tem-
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perature profile (Figure 3.10.h-j). EnOI and SEnOI also introduced stronger eddies

around the altimetry data tracks than EAKF with more pronounced SSH increments

(Figure 3.8.h-j). This resulted from the larger ensemble spread, which assigned more

weight to the observations in the EnOI schemes (Figure 3.8.e-f). Therefore, EnOIs

were more likely to fit the observations and to introduce new features in the analysis

fields. These used static ensembles of anomalies that maintain the variability of the

Red Sea state (mainly featured with eddy signal) throughout the simulation, while

in EAKF, the ensemble tends to converge towards the mean despite the use of in-

flation, leading to updates that are less impacted by the observations, on basin scales.

Figure 3.9: (a)-(g): SSH forecast/analysis from EAKF, EnOI and SEnOI compared
with gridded AVISO product on June-6-2006, superimposed with the along-track
altimeter data. (h)-(j) SSH increment from EAKF, EnOI and SEnOI.

Figure 3.11 shows the spatial distribution of the ensemble spread on June-6-2006
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Figure 3.10: (a)-(g): SST forecast/analysis from EAKF, EnOI and SEnOI compared
with AVHRR product on June-6-2006. (h)-(m): Vertical structure along a cross
section of the Red Sea axis plotted as the black line in (a).
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as resulting from the three schemes, showing a significantly weaker spread in EAKF.

The EnOI ensemble is selected from January climatology, while the SEnOI ensemble

in this example is updated from June climatological fields. We noticed that the en-

semble spread of SSH in SEnOI exhibits stronger eddy variability than that in EnOI,

but the ensemble spread of temperature in EnOI (Figure 3.11.e and Figure 3.11.h) is

larger than that of SEnOI (Figure 3.11.f and Figure 3.11.i), both on the surface and

in the upper layers, the latter of which is probably related to a deeper mix layers in

winter. The larger SST spread is explained by the stronger interannual atmospheric

variability in the winter and the sensitivity of SST to the atmospheric conditions.

Figure 3.11: Horizontal and vertical distributions of ensemble spread (a)-(c) of SSH,
(d)-(f) SST, and (g)-(i) temperature on June-6-2006 as they result from the EAKF,
EnOI and SEnOI.
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3.4.4 Assessing the dynamical balance of the assimilation so-

lution

It is important to investigate the dynamical balance of the state estimates of the en-

semble assimilation schemes. In the analysis fields, the flow is expected to satisfy the

geostrophic balance for large-scale and mesoscale phenomenon. In other words, the

zonal and meridional residue terms αx and αy (Reynolds stress divergences, advection

and acceleration terms) defined in the following momentum equations are expected

to be small:

αx = ∂ø
∂x

+ u · ∇u− fv, αy = ∂ø
∂y

+ u · ∇v + fu,

where ø, u, u, v, f represent the dynamic pressure, the 3-D velocity, the zonal and

meridional velocity and the Coriolis parameter, respectively. The residue terms are

calculated from the analysis fields, which were updated based on available observa-

tions during the assimilation. The zonal and meridional residue terms at a 50 m depth

and the relative comparison between the Coriolis term and the horizontal pressure

gradient term are plotted in Figure 3.12.

In all these assimilation runs, the geostrophic balance of the analysis fields is well

satisfied and the imbalance accounts only for a small portion of the total term. In par-

ticular, the new introduced eddies in the EnOI and SEnOI at 20−22°N (Figure 3.9.h-j)

are dynamically balanced. The increments derived in these ensemble-based data as-

similation systems can be expressed as xa−xf = PfHT
(
HPfHT + R

)−1 [
yo − h(xf )

]
=

X
′
c, given an N -dimensional column vector c. The increment at any analysis step

is therefore essentially a linear combination of X
′
. The long-term simulation out-

puts, from which the ensemble members are sampled, are geotropically equilibrated

and adjusted with the model dynamics. The same also should hold for the mem-

bers of the ensemble of anomalies X
′
. Therefore, the increment naturally satisfies

the geostrophic balance, which can be seen in Figure 3.9.h-j, where the velocity incre-

ments correspond to the SSH increments. Although the large- and meso-scale balances
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Figure 3.12: (a)-(f) Zonal and meridional residue terms calculated from the analysis
fields of EAKF, EnOI and SEnOI on June-6-2006. (g)-(l) Comparison of zonal and
meridional Coriolis term and horizontal pressure gradient term for EAKF, EnOI and
SEnOI along the Red Sea axis (plotted as the black line in (a)) on June-6-2006.



92

are warranted, the filter estimates may exhibit some imbalance in small-scale dynam-

ics due to, for instance, stress divergences, acceleration. Localization and inflation

may also distort the balance. This inevitable imbalance seems to be generally quite

weak and the model is generally able to dynamically adjust it. However, the weak

imbalance may be amplified by the magnitude of the increment c, which eventually

imposes pronounced changes to the analysis fields. If the imbalance is large to top

the robustness of the model, the model may sometimes blow up when integrating the

members during the forecast step and the assimilation system would break down. In

addition, the time-evolution of the basin averaged total residue (α =
√
α2
x + α2

y, not

shown) suggests that the EAKF estimates are more dynamically balanced than the

OI solutions, often imposing less increments on the forecast because of its smaller

ensemble spread.

3.5 Summary and Discussion

This Chapter investigated the sensitivity of the DART-MITgcm system to the choice

of the ensemble, and to filtering parameters and atmospheric forcing. Along-track

RADS SSH data and gridded AVHRR SST product were assimilated using a three-

day window. We investigated the performances of an ensemble Kalman filter, the

EAKF as implemented in DART in fully parallel mode, and based on which we have

implemented a variant with static covariance, EnOI scheme. The latter does not

integrate the ensemble with the MITgcm, offering drastic reduction in computational

cost. To deal with the dominant seasonal variability of the Red Sea circulation,

the EnOI ensemble was monthly updated by selecting new members from a given

climatology of long-term model outputs. This scheme was referred to as seasonal-

EnOI, or SEnOI.

An ensemble of 100 members was found enough to obtain good forecasting skills

with the EAKF at reasonable computational cost. Increasing the ensemble size to
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250 did not improve much the EAKF performances. Inflation is used to artificially

increase the ensemble spread and to account for various sources of uncertainties that

are either not accounted for or not optimally prescribed in an assimilation system,

such as modeling uncertainties, inputs and forcing, filtering approximations, etc. [80].

As such, the value of the inflation factor is system dependent and may vary from one

application to another. In our case, we found that an inflation of 1.1 provides the

best results, which may give some indications about a suitable value of inflation

factor to try in a similar setting. Note that, when the error cross-correlations are well

described by the ensemble, the RMSE generally decreases with increased inflation,

but of course up to a certain threshold after which one may encounter observations

over-fitting issues with more inflation (i.e. larger ensemble spread). A too large

inflation might in this case trigger dynamical inconsistency issues, often causing the

ensemble to collapse, as we also see in our experiments. The assimilation system

was also found not very sensitive, at least for the assimilated surface layer and the

dominant vertical structures, to the atmospheric forcing, NCEP or ECMWF fields.

Conditioned on the available remote sensing observations, the system is able to adjust

the initial state to provide equivalent forecasting products regardless of the forcing

product.

Assimilation results from experiments focusing on the relevance of updating the

ensemble with the ocean model (EAKF) suggest that, with adequate choice of the

static ensemble, (seasonal) EnOI can provide comparable, and even sometimes supe-

rior (especially for SST), analysis results. It is important to point out that despite the

larger analysis SST RMSE in EAKF (Figure 3.8 (c)), its forecast SST RMSE (Figure

3.8 (a)) is generally better than both EnOI schemes, suggesting proper assimilation

of the SST by the EAKF. After all, the best measure of an assimilation system per-

formance is the forecast error, and not the analysis error. The performance of the

EAKF with SST could be expected as our analysis suggests that the EAKF ensem-
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ble was shown not to carry enough spread for SST, as compared to the other two

EnOI schemes (Figure 3.8 (e)). In our experiments, increasing inflation improved the

EAKF results, but also often caused the collapse of some of the ensemble members,

and thus the filter. A better treatment of the system uncertainties, e.g. through the

use of forcing perturbations, is likely to enhance the EAKF performance for SST.

In addition, EAKF clearly provide better forecasts for SSH. A noticeable feature

of EnOI and SEnOI, that was seen from the difference between the SSH forecast

and analysis RMSEs, is their capability of imposing strong eddies signatures on their

analysis fields, but these dynamics seem not quite in line with the ambient water

and were often quickly dissipated. Although the geostrophic balance is generally

expected in the filters analyses, this may hurt the model forecasting skill when the

filter adjustment causes fast-propagating inertial and internal gravity waves. In such

an ensemble data assimilation system, the selection of the ensemble subspace is key.

It defines the space onto which the model updates are projected. In the Red Sea,

the spatial scales of the most energetic and variable components of ocean dynamics

(e.g. eddies) are mostly composed of mesoscales or sub-mesoscales (10 km or less)

features, which can be described by the anomaly of the mean flow. Such informa-

tion is reflected from the definition of the forecast error covariance in an ensemble

assimilation system. This is a convincing theoretical basis for applying the (seasonal)

EnOI method with a static ensemble of state anomalies to enforce eddy variability in

the analysis. In contrast, the data-conditioned and flow-dependent ensemble in the

EAKF may sometimes lack information about eddies, which may limit its ability to

reintroduce them in the analysis.

In the ocean, eddies are often greatly under-sampled due to the sparse available

observations, and are therefore likely to be missed given their relatively short spatial

scales. In an assimilation system, when eddies happen to be poorly represented in

the forecast ensemble, the analysis step is expected to somehow reintroduce these
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features, provided enough observations coverage. Since the increment between the

analysis and the forecast is essentially represented by a linear combination of ensemble

members, one should select an ensemble that well represent the eddies, incorporating

flow-dependent information to track changes in the system dynamics, and that does

not collapse over time. A mixture of dynamically evolving and static ensemble, based

on the so-called Hybrid ensemble schemes (Chapter 6), may entertain both features

and was one of our targets for the development of the system.

Another limitation of the EAKF is that the assimilation run often terminates

when one, or more, members crash during the integration with the dynamical model,

probably caused by some imbalances introduced in the analysis step. To enhance

the robustness of the EAKF against divergence, we developed the system to enable

for automatic replacement of diverged members by new members (Chapter 4) to

be selected from a given “dictionary” of system state realizations. This required

introducing an optimal selection strategy that is suitable to the unique nature of the

circulation and eddy activities in the Red Sea (Chapter 5). Such a strategy would

definitely benefit from the availability of independent adequate set of observations

(e.g. drifters, HF radar, glider data, etc.), which is presently being deployed in the

Red Sea.
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Chapter 4

A fault-tolerant HPC scheduler extension for large and

operational ensemble data assimilation: Application to the

Red Sea

This Chapter corresponds to the paper “A fault-tolerant HPC scheduler extension

for large and operational ensemble data assimilation: Application to the Red Sea”

published in the Journal of Computational Science.

4.1 Introduction

Capabilities in ocean modeling and simulation have witnessed tremendous progress in

recent years following the advances in HPC resources [51], the better understanding

of the ocean physics, and the availability of ever increasing amount of in situ and

remotely sensed data [46, 71].

The celebrated KF computes the best (minimum-variance) estimate of a linear

dynamical system given available observations [91], and as such provides a readily ef-

ficient algorithm for data assimilation and forecasting [80]. Because of its prohibitive

computational requirements when implemented with large scale systems and the non-

linear nature of the ocean dynamics, simplified Kalman filters have been introduced

for ocean data assimilation ([80, 142, 178]). One of the most promising Kalman

filtering schemes is the EnKF, a MC approach in which the forecast statistics are

estimated from an ensemble of model forecasts [84]. An EnKF assimilation system

with a high resolution model and large number of observations is expected to require
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a large ensemble to provide accurate ocean state estimates [78, 82]. Large ensembles

should provide more reliable forecast statistics and a smooth forecast covariances for

efficient implementation of the filter update steps with the observations.

Increasing the ensemble size would however not only significantly increase the

computational load, but would also weaken the robustness of the system and increase

the chances of system failure, and thus the workload of the user. Indeed, in case the

system crashes, the user will have to manually identify the issue behind its collapse,

reconfigure the system and check for consistency before relaunching the jobs. The

system failures may be related to a machine problem or may be the result of a

dynamical inconsistency between the statistically updated ensemble members and

the forecasting model, both of which are unpredictable. The users need therefore to

continuously monitor the system execution progress.

In an operational ocean forecasting system, not only huge amount of data need to

be processed in a timely manner [124], but the system should also be fault-tolerant

in order to recover from failure and deliver real-time responses. In this Chapter,

we address these ensemble data assimilation forecasting challenges with our DART-

MITgcm assimilation system that we configured for the Red Sea. The system is

complex and brings together different components (program executables, data, com-

putational resources). An ensemble of MITgcm runs are integrated in parallel to

provide the forecast statistics for the DART filter to perform the assimilation up-

date with the observations. To overcome the aforementioned problems, and build

an efficient fault-tolerant ensemble system we coupled the existing DART-MITgcm

assimilation system [171] to a scheduler extension named Decimate [97]. The system

in [171] was neither fault-tolerant nor scalable to ensembles of thousands of members,

hence the use of Decimate to remediate those limitations. Decimate automatically

generates the submission scripts along with the dependencies between the jobs and

runs them in an environment where checking and restarting functions just need to be
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defined by the user. It allows an implementation easier to launch and to monitor that

can be automatically reconfigured in case of system failure. This work describes the

requirements for an operational assimilation system, the coupling of its components

and the parametrization of Decimate. First results from a high resolution ensemble

assimilation system for the Red Sea are presented and discussed.

The Chapter is organized as follows. We first give an overview of the specification

and the challenges pertaining to the implementation of an operational DART-MITgcm

assimilation system in Section 4.2. Section 4.3, briefly describes Decimate on top of

which the DART-MITgcm assimilation system was implemented. Section 4.4 presents

the results of the assimilation experiments that has been conducted in the Red Sea.

Finally, a brief summary and discussion is given in Section 4.5.

4.2 Towards an operational DART-MITgcm system

4.2.1 Specification and challenges for an operational imple-

mentation

To run the assimilation workflow in an operational setting, some practical constraints

should be taken into account. Figure 4.1 gives a graphical picture of those constraints.

Once the initialization is done, the filter starts. In case of failure, the filter is restarted

up to mr times (mr is a shortcut for maximum number of retries). And if after the

mr + 1 trials the filter still fails, the workflow is aborted and goes in the garbage

failure state (not shown in the figure). After a successful filter completion, the N

MITgcm instances can begin. The N MITgcm programs run independently and each

of them restart up to mr times in case of failure. Any successful MITgcm waits

in the barrier state for the remaining MITgcms to complete. If any MITgcm still

fails to succeed after the mr retries, the workflow stops and enters the failure state.

Upon successful completion of all the MITgcms, the system is in the barrier state.
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Then another assimilation cycle is launched if the required number of cycles is not

reached, if not, the system goes to the end state and the workflow finishes successfully.

The required time to compute the solution is of course an important factor for an

operational system in order to provide needed information for real-time decisions.

Initialization

start

filter

mit· · · gcmitgcm2mitgcm1 mitgcmN

barrier

end

mr

ok

ok ok

ok

mr

ok

mr

ok

mr

ok

mr

ok

cycle

finish

Figure 4.1: Jobs sequence state machine of DART-MITgcm assimilation workflow.
mr stands for maximum number of retries.

4.2.2 Implementation, issues and limitations

The workflow is designed to run on supercomputers and therefore launching scripts

should be written and submitted through a scheduler. Due to the time wall clock
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policy of many supercomputer centers limiting the execution time of a single job,

the full workflow cannot be submitted within one script and needs to be split among

many scripts. For that purpose we generate a submission script for each filter state

and MITgcm integration. Generating bash scripts helps in writing the submission

scripts since a typical run requires ten thousands of jobs and some submission pa-

rameters (e.g. the required number of nodes, the time wall clock, the number of

cycles, ...) might vary. Indeed, a manual generation of those scripts is not feasi-

ble. SLURM (the current scheduler for submitting jobs on KAUST supercomputer

Shaheen) allows dependencies handling by means of the command --dependency.

Moreover the --array command is used to submit the MITgcm jobs in parallel with

the same scripts lines for all the jobs of a given cycle, making the code more compact.

As many other supercomputer centers, our center imposes a limit on the maximum

number of jobs per user. Therefore, even though the workflow has been split, it

still cannot be submitted if the number of jobs breaks the maximum number of jobs

per user limit. Even worse, no assimilation cycle can complete if the ensemble size

is greater than the number of jobs limit. Another concern is that the assimilation

workflow brings into play huge amount of data so that we need to review and adapt

classic data management procedures. The reason is that the stress on the filesystem

increases along with the memory usage, which may lead to machine instability and

may result in workflow interruption. In other instances the failure could be related

to dynamical imbalances in the ocean model as the ensemble assimilation solution

is not constrained by the model physics. This is because the linear Kalman update,

although statistically optimal (among linear estimators), is not constrained to be dy-

namically consistent with the physics of the MITgcm (or another ocean circulation

model). One may have therefore to often deal with situations during which the MIT-

gcm is not capable of forecasting some of the ensemble members, and the workflow

will end. Whatever the failure cause, the workflow needs to restart. The failures are
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unpredictable and someone has to check from time to time and relaunch the workflow

if necessary. The checking process is exhausting, time consuming and inefficient espe-

cially for a real-time operational system. To address and solve the mentioned issues,

and also to be more compliant with the specification discussed in Section 4.2.1, the

existing system is combined with Decimate, a scheduler extension described in the

next section.

4.3 An efficient implementation of DART-MITgcm workflow

based on Decimate, a fault-tolerant scheduler extension

A launching, monitoring and validating tool named dart mitgcm has been specifically

designed for developing a fault-tolerant DART-MITgcm ensemble assimilation frame-

work for the Red Sea. Written in Python 2.7, it inspires from the original shell scripts

that can be found in DART or MITgcm documentations and relies on our execution

framework Decimate.

The purpose of this section is not to present Decimate itself but to detail how

DART-MITgcm was implemented in this environment. More information about the

implementation and use of Decimate is available at [97]. Distributed as an open

source software on Github [95, 96], Decimate is freely available and can also be easily

installed as a python module distributed from the pypi.python.org repository [98].

4.3.1 Decimate: a robust scheduler extension

In a supercomputing environment, simultaneously accommodating needs of users scal-

ability and capacity is challenging. This often leads to the implementation of a

scheduling policy limiting the number of jobs per user in the queue in order to reduce

waiting times in queue and optimize turn-around duration. In order to enable efficient

use of the computing resources by users producing large number of jobs, Decimate

was developed by KAUST Supercomputing laboratory to ease the submission, mon-

pypi.python.org
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itoring and dynamic steering of workflow of dependent jobs. Written in Python 2.7,

it extends the SLURM scheduler, transparently adding prologue and epilogue to any

user script and submit the right job dependency that automatically add new chunks

of work or relaunch a job in case of a hardware, software or numerical failure.

Decimate easily allows a user to:

• Submit any number of jobs regardless of any limitation set in the scheduling

policy on the maximum number of jobs authorized per user.

• Manage his set of jobs: all the submitted jobs are seen as a single workflow eas-

ing their submission, monitoring, deletion or reconfiguration and a centralized

log file is created capturing all relevant information about the behavior of the

workflow. From Python or shell, at any time and from any jobs, the logging

levels info, debug, console and mail are available.

• Via a user-written function, check for correctness of the outputs resulting at

the end of a given job and if not make the decision either to stop the whole

workflow, to resubmit partially the failing components as is, or to modify it

dynamically.

4.3.2 Checking function

Decimate transparently handles the submission, monitoring and resubmission of failed

jobs. It is taught what decision has to be made if a part of the workflow failed via a

user function written in Python or via a script shell that is passed as a parameter at

the initial submission of each MITgcm or DART tasks.

In our case, in a Python function of less than 100 lines, we are checking:

• If output files are produced and contain completeness messages, the task is

tagged as COMPLETED and CORRECT. It will not be resubmitted, allowing
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Decimate to go on with the next steps of the workflow.

• If no output file is found, the task is tagged as INCOMPLETE and will be

resubmitted by Decimate if a maximum number of retries has not been reached.

This typically happens in the case of hardware failure or if the job required

duration has been under-estimated.

• If an error message related to numerical instabilities in the MITgcm forecast

step is detected in output or error files, the task is tagged as COMPLETE

but INCORRECT. In this case, the “faulty” members are replaced. Many

replacement strategies can be implemented. We opted for a dictionary based

replacement strategy in which the faulty members are replaced by their closest

equivalent among the dictionary members, based on different metrics (l1 norm or

l2 norm). These tasks will be resubmitted by Decimate if a maximum number

of retries has not been reached. In the experiments presented hereafter, the

dictionary was constructed from the outputs of a long MITgcm run.

4.4 Experimental setup, application and results

The experimental setup is similar to the one described in [171] and Section 3.2.1,

except that only the ECMWF forcing is applied. The assimilation experiments are

conducted over a 2 months period starting on January-1-2006 and includes 20 as-

similation cycles, one update step every three days. The updates were performed

based on a deterministic EnKF, the EAKF [8]. Four experiments are performed (as

summarized in Table 4.1): two experiments with 1000 members to assess Decimate

efficiency, and two experiments with 100 members as references to evaluate the overall

behavior of the assimilation system. This is the first reported 1000-members EnKF

run with a high resolution general circulation ocean model. Two of these experiments

(with 100 members and 1000 members) use a localization cutoff radius of 0.05 rad
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(about 300 km), while the remaining two do not apply localization. Moreover, an

inflation factor of 1.1 is used in all the experiments.

Table 4.1: Experiments.

100 members 1000 members
localization radius = about 300 km experiment 1 experiment 2

no localization experiment 3 experiment 4

4.4.1 Decimate assessment

Using Decimate, we experienced that handling a workflow involving 1000 members

and 20 assimilation cycles was a relatively smooth process. All the experimentation

took place on Shaheen from August 21 to September 07 2017 where the average load

of the machine was around 90%.

22000 independent successful runs of MITgcm were executed. During the process:

• 617 failed MITgcm runs did not complete due to model failures and were fol-

lowed by a replacement of members (≤ 3%).

• Roughly 10% of jobs failed because of hardware failures, especially before a

maintenance period scheduled on Sept 3, when Shaheen lustre filesystem was

highly solicited by other users and instabilities occurred. Our fault-tolerant

assimilation system was able to resubmit those jobs.

Table 4.2: Number of members replaced in each Experiment.

Experiment 100 members 1000 members
With localization None 9 at cycle 7, 2 at cycle 10, 583 at cycle 11

Without localization None 7 at cycle 5, 15 at cycle 10, 1 at cycle 20

Before this new implementation, some attempts to handle similar workflow had

been made successfully by our team. But while reaching a complete simulation with
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100 members, at least 20% of time was spent in the manual steering of the workflow

and the multiple manual correction and resubmission of jobs after sporadic hardware

failures or numerical issue. Reducing this overhead to a minimum thanks to the

automation of restart and decision making in case of glitch, Decimate greatly eased

the launching and monitoring process and made the system more trackable even for

a higher number of members.

4.4.2 Assimilation performance

One key assumption in the EnKF is the distribution of the forecast error to be

Gaussian, based on which the members are updated with the observations using the

Kalman linear correction step. The distribution of the forecast error, i.e. the prior

distribution, is estimated from the statistics of the forecast ensemble anomalies. We

first assess the relevance of this assumption in our setup by analyzing the histogram

of SST and SSH ensembles at three locations in the northern, central and southern

Red Sea at assimilation cycle 4 as shown in Figures 4.2 and 4.3, respectively. The

figures suggest that, for both SST and SSH, the prior distribution with 1000 members

is clearly more Gaussian than that with 100 members. A smaller ensemble drastically

reduces the computational cost associated with the MITgcm ensemble forecast runs,

but seems to provide a more scattered ensemble and less Gaussian MC-based approx-

imation of the prior distribution, which may limit the efficiency of the Kalman-based

update step of the EnKF.

It is important to monitor both the state estimation forecast and analysis errors

to make sure that the filter update is efficient at improving the forecast and that the

resulting analysis state is compatible with the MITgcm dynamics. The time-evolution

of the RMSEs between SST/SSH observations and filter forecast/analysis states as

they result from the different experiments are plotted in Figure 4.5. The analysis

RMSEs of both SST and SSH are smaller than their forecast counterparts, suggesting
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Figure 4.2: The histograms of forecast (Prior) and analysis (Posterior) in experiments
3 (N = 100, blue panels) and 4 (N = 1000, red panels) based on SST ensembles at
three selected locations in the northern, central and southern basins of the Red Sea,
as the 1st, 2nd and 3rd rows, respectively.

Figure 4.3: The histograms of forecast (Prior) and analysis (Posterior) in experiments
3 (N = 100, blue panels) and 4 (N = 1000, red panels) based on SSH ensembles at
three selected locations in the northern, central and southern basins of the Red Sea,
as the 1st, 2nd and 3rd rows, respectively.
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Figure 4.4: Sampled correlations for SSH as computed from the assimilation runs
with 1000 (upper panel) and 100 (lower panel) members at three selected locations in
the northern (1st column), central (2nd column), and southern (3rd column) basins
of the Red Sea, respectively.
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the filter’s efficiency at providing reliable estimates. Compared with SST RMSE,

the SSH RMSE is more fluctuating since the model-data difference was calculated

with different along-track SSH observations whose locations vary from one step to

another. A comparison between the blue and red curves plotting the filter RMSEs

with 100 and 1000 members, respectively, suggests that the RMSEs of both SST and

SSH generally decrease as the ensemble size increases from 100 to 1000. Figure 4.5

(e) and (f) suggest that the ensemble spread, an indicator of the filter estimates un-

certainties, is quickly reduced after the first few assimilation cycles before leveling off.

The ensemble spread is further better maintained with 1000 members, which should

impose more pronounced filter’s updates.

Figure 4.5: Time evolution of the forecast and analysis SST/SSH RMSE and ensemble
spread with ensemble size of 100 (blue), 1000 (red), 100 with localization (yellow) and
1000 with localization (purple).

The error covariance in the EnKF, along the modes of which the filter’s update
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is applied, is estimated via the forecast ensemble anomalies. These only provide

N −1 directions in phase space, which means that the update step will not be able to

exploit more that N − 1 “information” from the observations. To deal with this low

rank problem and to remove eventual spurious long-range correlations, a covariance

localization [74] cutoff radius of about 300 km is implemented. Localization is a simple

technique that enables efficient implementation of an EnKF with small ensembles. As

shown in Figure 4.5 (b) and (d), the experiment 1 (N = 1000 with localization, purple

curve) has the smallest analysis, but not forecast, RMSE of SSH. This means that

the data might have been over-fitted in this experiment, and suggests testing with

larger covariance localization scale. In addition, a close examination of the results

shows that localization also helps to maintain the spread of both SST and SSH with

proper tuning. Using more members allows to rely less on localization and improves

the filter’s performance, but at a significant increase in computational cost. Indeed,

Figure 4.4 shows that the correlation range with 100 members is wider than the one

with 1000 members, and that the impact at the selected points are more localized

with 1000 members.

As an illustration of the system performance, the spatial distribution of the fore-

cast and analysis states and their increment (the difference between the analysis and

forecast states) on Jan-12-2006 are compared with remote sensing observations of SST

(Figure 4.6) and SSH (Figure 4.7). Overall, the forecast and analysis fields agree well

with the remote sensing data. By exploiting the high-resolution model dynamics, the

results provide more details of the mesoscale variability in the basin, which is one of

the key features of the Red Sea circulation [195, 196]. The distributions of lower SST

in the northern Red Sea in experiment 4 (N = 1000, Figure 4.6-a) and experiment

1 (N = 100 with localization, Figure 4.6-c) are closer to observations (Figure 4.6-d)

compared with experiment 3 (N = 100, Figure 4.6-b). A better maintained ensemble

spread also helps to extract more information from along-track SSH data, as can be
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seen in the increments fields of SSH in experiment 4 (N = 1000, Figure 4.7-h) and

experiment 1 (N = 100 with localization, Figure 4.7-j) compared with experiment 3

(N = 100, Figure 4.7-i). The increment fields of both SST and SSH show that an

EnKF with larger ensemble generally leads to smoother analysis states.

Figure 4.6: SST forecast/analysis/increment from assimilation experiment with en-
semble size of 1000, 100 and 100 with localization compared with gridded AVHRR
product on Jan 12, 2006.

4.5 Conclusions and discussion

Numerical prediction of oceanic conditions is of foremost importance for navigation,

offshore operations, fisheries, and many other marine activities. However, ocean

models are never perfect and can be subject to many sources of uncertainties. Data
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Figure 4.7: SSH forecast/analysis/increment assimilation experiment with ensemble
size of 1000, 100 and 100 with localization compared with gridded AVISO product
on Jan 12, 2006, superimposed with the alongtrack altimeter data.
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assimilation combines a prior knowledge of the ocean state from numerical simulations

with the observations to provide best possible ocean state estimates along with their

uncertainties. The EnKF, a popular MC data assimilation scheme, is now widely

used by the community.

In realistic oceanic applications, the ensemble size is restricted by the compu-

tational cost of integrating the numerical ocean model. Using a small ensemble

(10 − 100) would limit the filter performance, to fit the data at the update step

and to provide reliable spread after the forecast step. Although inflation and local-

ization techniques have been proven efficient at mitigating these problems, physical

balances in the model could suffer from arbitrary inflation and localization. With the

recent tremendous advances in the developments of HPC resources, an EnKF system

with large ensembles (1000 − 10000) becomes feasible and less dependent on these

auxiliary techniques.

Nevertheless, increasing the ensemble size introduces new issues and difficulties.

Obviously the computational load is the first challenge to deal with. For this study, we

were able to mitigate this issue with the KAUST world-class supercomputer, Shaheen.

Another challenge when dealing with a large ensemble is the increasing risk of system

failure. The assimilation may indeed impose some increments that are not compatible

with the model dynamics, and the system will also be exposed to a higher chance

of system failure with large number of heavy jobs running. The interruption of any

single member will cause a collapse of the whole ensemble assimilation system.

We developed a fault-tolerant ensemble data assimilation system based on the

state-of-the-art MITgcm for forecasting and DART for assimilation, and a newly

designed scheduler extension, Decimate. One key and simple parametrization of Dec-

imate consists in describing what to do in case of hardware or numerical failure: here

we detailed our choices in this matter. With this parametrization, Decimate made

it possible for the system to recover from failures, without human intervention. This
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enabled the implementation of a high resolution ensemble assimilation system for the

Red Sea with thousands of ensemble members. This study described the development

of the system and its components. From our preliminary experiments with an en-

semble with 1000 members, we demonstrated significant improvements in the system

performances, and as expected, less dependence on inflation and localization.
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Chapter 5

An adaptive Ensemble Optimal Interpolation for

cost-effective assimilation in the Red Sea

This Chapter corresponds to the paper “An adaptive Ensemble Optimal Interpolation

for cost-effective assimilation in the Red Sea” submitted to the Journal of Computa-

tional Science.

5.1 Introduction

Ensemble assimilation methods have been proven very efficient in many ocean appli-

cations and regions (e.g. [32, 76, 132, 171, 186]). The performance of these methods

greatly depends on the representativeness of their ensembles, which should be large

enough to describe the directions of errors growth of the system and mitigate the

effects of sampling errors [82, 109, 165]. Using large ensembles in an EnKF, such as

EAKF, means more numerical model integrations and therefore increased computa-

tional cost [171]. EnOI integrates only the filter estimate (i.e. analysis) to compute

the forecast and updates the latter with the incoming observations based on the sam-

ple covariance of a pre-selected ensemble, as a way to reduce the number of model

runs. A stationary ensemble may however not properly capture the striking seasonal

variability of the Red Sea dynamics [189, 190]. A Seasonal EnOI, which uses season-

ally varying ensembles [186], was successfully implemented in the Red Sea [80, 171].

It was however not very efficient at describing the prevailing eddy and mesoscale

activities in the basin [195].
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The use of pre-selected time-varying ensembles that represent the different seasons

of the studied basin has already been proposed in EnOI [179, 186]. Here we propose

to push this idea further by adaptively and automatically selecting, at every filter

analysis step, a new ensemble from an available “dictionary” of representative ocean

states (e.g. long reanalysis). As in an EnKF, this will enable updating the ensemble

of the EnOI scheme, in order to describe the state uncertainties at the time of the

analysis step, while avoiding the costly numerical integration of its members. The

selection of the ensemble members will be based on the best estimate of the state at the

time of the analysis, i.e. the forecast state. This new Adaptive EnOI (AEnOI) scheme

will therefore only integrate the model once to forecast the state, and then select an

ensemble from the dictionary that represents its current uncertainties according to a

certain criteria, based on which the Kalman analysis step will be applied.

Similar ideas have been recently proposed, relying on some kind of dictionary to

describe the uncertainties or statistics of the estimate of interest. [168], for instance,

suggested a fully data-driven ensemble data assimilation framework that selects the

“best” ensemble members from a given “catalog” of possible successive states of the

system based on a “analog” or “nearest-neighbor” approach. The nearest-neighbor

approach is adopted from the machine learning community and is basically designed

to find the closest, according to some metric, possible successor state given the current

state of the system. This however amounts to replace the dynamical ocean model by

a purely data-driven model. A closely related approach was proposed by [93] based on

the so-called Takens approach, replacing the dynamical model with a delay coordinate

embedding model. Another technique, known as Dynamic Ensemble Update (DEU)

was introduced in the context of an EnKF [156], but uses a particular dictionary

of sparse realizations to sparsify the filter estimate. Other approaches also resorted

to some dictionaries to account for some missing physics [22], or to simplify the

complexity of the dynamical model [44].
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The approach we propose here is somehow different; it uses the full dynamical

model for forecasting and the dictionary to provide a possible set of realizations

(ensemble members) that represents the current uncertainties based on the forecast.

We present and discuss different metrics to select the new ensemble members from the

dictionary, and test their relevance with a realistic ensemble data assimilation exercise

using a high resolution MITgcm model in the Red Sea. The Chapter is organized as

follows. Section 5.2 recalls the EnKF and EnOI algorithms. Section 5.3 presents the

adaptive EnOI algorithm and discusses approaches to select the ensemble members

from the available dictionary. Section 5.4 presents the results of the implementation of

the adaptive EnOI algorithm with the Lorenz 63 and 96 models. Section 5.5 describes

the general circulation ocean model and its configuration, as well as the assimilated

observations. It also outlines the design of the conducted assimilation experiments,

and discusses the filters performances and results. Finally, Section 5.6 concludes the

work with a summary of the main findings and a discussion on the future directions.

5.2 Ensemble Data Assimilation

The data assimilation problem with the Ensemble Kalman filter is described following

the state-space model formulation

xtk+1 =Mk(x
t
k) + ηk, (5.1)

yok = hk(x
t
k) + εk, (5.2)

where Mk denotes the model representing the ocean dynamics, xtk is the true state

vector at time k, and ηk is the model error. yok is the observation vector, which is

related to the state via the measurement operator hk and εk represents the observa-

tional error. Both ηk and εk are assumed independent and normally distributed of

mean zero and covariance matrices Qt and Rt, respectively.
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As a variant of the well-known Kalman filter (KF) [91], the EnKF represents the

statistics (first two moments) of the system state by a collection of random realiza-

tions, or ensemble members [50, 77]. The estimate at any given time is then given

by the sample mean and the error covariance is approximated by the sample covari-

ance of the ensemble [50]. Here we adopt a deterministic formulation of the EnKF

[77, 81]. Given a forecast ensemble of N members at time step k forming the matrix

Xf
k = [xf,1k ,xf,2k , · · · ,xf,Nk ], with xf,ik denoting the i-th ensemble member at time k.

The forecast ensemble anomaly is

X f ′

k = Xf
k −

1

N

(
N∑
i=1

xf,ik

)
e1×N , (5.3)

with e1×N denoting the matrix with ones as elements and size 1×N . At the analysis

step, once an observation yok becomes available, the forecast state xfk , which is the

mean of Xf
k , is updated using the standard Kalman filter correction step to obtain

the analysis state

xak = xfk + Kk

(
yok − hk(x

f
k)
)
, (5.4)

where Kk = Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1

is the Kalman gain. The forecast error co-

variance Pf
k is estimated as 1

N−1
X f ′

k X f ′

k

T
, and the associated analysis error covariance

as

Pa
k = [(Pf

k)
−1 + HT

kR−1
k HT

k ]−1.

In the EAKF formulation, a matrix Ak is introduced such that Pa
k = AkP

f
kA

T
k .

Based on a judicious choice of Ak, an analysis ensemble is then resampled as Xa
k =

Ak

(
Xf
k − 1

N

(∑N
i=1 xf,ik

)
e1×N

)
+ 1

N

(∑N
i=1 xa,ik

)
e1×N in such a way to match the

analysis xak and covariance Pa
k before it is integrated by the model (5.1) to compute

the next forecast [77], allowing for a dynamical update of the estimation error. A

new assimilation cycle starts once the new observation becomes available.

EnOI is the optimal Interpolation (OI) variant of the EnKF [52] in which a pre-
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selected ensemble remains static during all assimilation cycles, with no feedback from

the assimilation system to modify the forecast (background) covariance [155]. In the

EnOI forecast step, only the analysis state is integrated by the dynamical model

for forecasting, before it gets updated again with the incoming observation based on

the pre-selected ensemble [52]. EnOI therefore leads to a drastic computational cost

reduction (by almost a factor N) compared to an EnKF, and no resampling step is

needed after the analysis. It further does not suffer from the typical ensemble collapse

of the EnKFs, which often requires artificial inflation of its ensemble [8]. This makes

EnOI a computationally very efficient approach for ensemble assimilation and was

shown to be particularly robust in numerous ocean applications [32, 132, 171, 186].

5.3 Adaptive EnOI

The use of representative background covariances is critical for the performance of

any data assimilation scheme, as these should describe the spatial and multivariate

structure of the subspace in which the update with the observation is performed

[72, 112]. In particular, the behavior of ensemble assimilation methods largely de-

pends on the representativeness of their (forecast) ensembles, based on which the

background covariance is estimated [165]. The ensemble should (i) describe the di-

rections of estimation errors growth, and therefore be time-variant to follow their

dynamical evolution [77, 80], and (ii) be large enough to infer reliable statistics be-

tween the observations and the forecast state and to provide enough rank (degrees

of freedom) to fit the data [72, 78]. In realistic large scale applications with general

circulation ocean models, however, EnKFs can be only implemented with relatively

limited ensembles O(10 members) to maintain a manageable computational load [77].

This usually results in rank-deficient background covariances that require various aux-

iliary techniques, such as covariance localization [85] inflation [72], to infer reasonable

forecast increments from the incoming observations. Localization restricts the action
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of the increments only to grid points close to the observation, which helps increasing

the background covariance rank and filters spurious correlations [84]. Another typical

concern with ensemble data assimilation systems is the loss of spread in the forecast

ensemble, which is associated with the dissipative nature of ocean models [82, 109]

and the often misrepresented sources of model errors [83]. This is often mitigated

through simple ensemble inflation and/or stochastic perturbations (of the parameters

and inputs) techniques [52].

EnOI schemes efficiently resolve the issue of computation load, which enables

the use of large ensembles without cost increase. A static ensemble may however

not always be representative of the modeled dynamics, especially when dealing with

rapidly varying dynamics and those that experience sudden regime changes [80]. To

deal with the pronounced seasonality of the South China Sea, [186] suggested pre-

selecting seasonal representative ensembles and then use these in an EnOI according

to the season during which the observations are assimilated.

We propose here to push further the idea of using a time-varying ensemble in EnOI,

not only by utilizing static ensembles by selecting a new ensemble on a seasonal basis,

but at every assimilation cycle to account for the mesoscale and eventually intra-

seasonal variability. We propose here to select the new ensemble after every forecast

step from an available historical set, or “dictionary”, of ocean states describing the

variability of the studied basin. The selection of the ensemble will be based on the

best available information at the time of the update step, which in the context of

an EnOI is the forecast state. The proposed assimilation workflow is schematized in

Figure 5.1 and we will refer to it as the Adaptive EnOI, or AEnOI. The selection

of the ensemble members from the dictionary is the corner stone of the proposed

approach and is discussed in the next section.
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Figure 5.1: Workflow of the dictionary-based AEnOI schemes as implemented with
DART. The forecast state xf is used to select an ensemble Xf = [xf,1, . . . ,xf,N ] from
an available dictionary. This ensemble is then centered around xf before it is updated
by the upcoming observation to obtain the analysis state xa, which is then integrated
by the model to compute the next forecast.

5.3.1 Ensembles selection

We present two different strategies to select the ensemble members from an available

dictionary: (i) select the elements that are the “closest” to the forecast according

to a certain distance, (ii) select the elements that describe at best the filtering error

subspace [130], based on the so-called Orthogonal Matching Pursuit (OMP) algo-

rithm. After selecting the new members, the mean of the ensemble is replaced by the

forecast state in both approaches, so that only the ensemble anomaly is used in the

EnOI algorithm. The incoming observations are not used in the selection, so that the

data are not involved in the choice of the prior.

5.3.1.1 Distance-based similarity selection

We look for the dictionary elements that bear spatial similarities, or are the closest in

some sense, to the forecast state according to a distance measure. The idea is that if

an ocean state displays similar spatial features as the forecast state, it is also expected

to carry information about the uncertainties around the forecast. One straightforward
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way to evaluate the distance between the forecast and the dictionary elements is to

use the L2-norm, or L1-norm as illustrated in Figure 5.2. In our experiments, the

assimilation results were quite close whether using L1-norm or L2-norm, and thus we

only report here the results of the latter in the numerical experiments presented in

Section 5.5.

Quantifying the similarity between two fields according to some norm may under-

represent some localized ocean features in the overall basin-distance. We have also

tried to involve correlations in our elements selection, but the strong environmental

gradient in the Red Sea [196] dominated the correlations and made it difficult to

distinguish the dictionary elements in this basin at the mesoscales.

Figure 5.2: Illustration of an ensemble construction based on L2. Compute the L2-
distances (dist1, dist2, · · · , distL) between the forecast xf and the dictionary members
(d1, d2, · · · , dL) then select the first N members (dj1 , dj2 , · · · , djN ) with the smallest
distances to the forecast member to generate the ensemble X.

5.3.1.2 Error-subspace selection

The basic idea is to identify a subset of the dictionary elements that represents at best

the forecast error subspace in which the Kalman filter update is applied [80, 109, 128].

Here we propose to use a Matching Pursuit (MP) method, an interactive greedy al-
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gorithm that finds the best matching projections of a high-dimensional signal onto

the span of a (complete) dictionary [119]. By selecting the elements that are most

correlated with the current residuals (see Figure 5.3 for schematic illustration and

algorithm’s description), MP attempts to approximately represent a signal using a

sparse linear combination of the dictionary elements, called atoms, while minimizing

the signal representational error in the dictionary. This is different than selecting

the elements that are most correlated with the forecast state, and should lead to an

ensemble with more spread describing the forecast state variability, assumingly rep-

resentative of the filter error-subspace. In the Orthogonal Matching Pursuit (OMP)

algorithm, the residual is always orthogonal to the span of the dictionary elements al-

ready selected. This can conceptually be implemented using a Gram-Schmidt scheme

and results in convergence for a n-dimensional vector after at most p-iterations (p ≤ n,

being the sparsity level) [174]. Enforcing orthogonal elements helps to avoid selecting

redundant elements and provides more ensemble spread [174].

5.3.2 Implementation of the ensemble selection strategies

All the selection methods share the same workflow and the difference appears only at

the selection stage (3.1. of Algorithm 1). The generic form of the ensemble selection

is detailed in Algorithm 2, while Table 5.1 outlines two implementations of Algorithm

2, one with the L2 selection method and the other one with the OMP.

5.4 Preliminary experimentation with Lorenz models

The adaptive EnOI schemes are first tested and compared with the standard EnOI and

EnKF algorithms using Lorenz-63 [114] (hereafter L-63), and Lorenz-96 [115] (here-

after L-96) models, two popular prototypes for assessing new assimilation schemes.

For each model, all EnOI-based schemes use the same dictionary, constructed from a

collection of samples that came with the EnKF-Matlab software [154], and was gen-
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Figure 5.3: Illustration of an ensemble construction based on OMP. Compute the
inner products (ip1, ip2, · · · , ipL) between the forecast xf and the dictionary members
(d1, d2, · · · , dL) and keep the member having the highest ip value. Solve the least-
square problem between the forecast and that member, and then compute the residual
r1. Compute the inner products between the residual r1 and the remaining dictionary
members and keep the member having the highest ip value. Solve the least-square
problem between the forecast and the set containing that member and all the previous
selected members. Compute the residual r2. Repeat the process with the successive
residuals until N members are selected.
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Algorithm 1 Dictionary based schemes Data Assimilation Algorithm

0. Initialization: initial ensemble Xf

1. Analysis step:

Input: Xf

Output: xa

2. Forecast step:
Input: xa

Output: xf

3. Ensemble selection:

3.1. Anomalies generation

• Select an ensemble X

• Compute the anomalies X
′

= X− x where x is the mean of X

3.2. Xf generation

Inputs: X
′

and xf

Output: Xf = X
′
+ xf

4. Goto 1

Algorithm 2 Generic ensemble design Algorithm

1. Inputs: a dictionary D = [d1,d2, · · · ,dL] of model outputs, the desired ensem-
ble size N (with L � N and at least L ≥ N), and the forecast xf is iterated
through the dictionary to apply the selection.

2. Sort the elements based on the metric ordering criteria:
dj1 ,dj2 , · · · ,djN , · · · ,djL

3. Form the ensemble of the first N members X = [dj1 ,dj2 , · · · ,djN ] and use it
to update the forecast with the incoming observations.
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Table 5.1: Specific algorithms of the selection methods.

Selection method Algorithm

L2-norm 2. For i from 1 to L compute γi =
∥∥xf − di

∥∥
2

3. Sort the γi in ascending order: γi1 , γi2 , · · · , γiL with γi1 ≤ γi2 ≤ · · · ≤ γiL
and assign j1 = γi1 , j2 = γi2 , · · · , jL = γiL

OMP 2.1 Initialization: set y0 = 0, index set ∆0 = ∅ and residual r0 = xf

2.2 For t from 1 to N ,

• Find the index of the dictionary element having the highest inner
product with the residual:
set δt to one of the indexes j for which the maximum is reached,
i.e. |〈rt−1,dδt〉| = max

j=1, ··· ,L
|〈rt−1,dj〉|

• Augment the index set: ∆t = ∆t−1 ∪ {δt}

• Solve the least-square problem min
y

∥∥xf −D∆ty
∥∥

2
and then choose

yt ∈ arg min
y

∥∥xf −D∆ty
∥∥

2

• Calculate new residual rt = xf −D∆tyt

End for

3. Assign j1 = δ1, j2 = δ2, · · · , jN = δN
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erated by a long model run. We conduct twin-experiments where the trajectory of a

reference run is taken as the “true” trajectory from which synthetic observations are

generated by adding zero-mean Gaussian white noise with variance σ2
y. The filters’

performances are evaluated using the RMSE between the reference states and the

filters’ estimates averaged over all variables and over the whole assimilation period.

We implement all filters using the covariance inflation [13]. We further apply a local

analysis [84] in the L-96 experiments.

5.4.1 Numerical experiments with L-63

The L-63 model is a nonlinear dissipative dynamical system that mimics an atmo-

spheric chaotic behavior [137]. It is governed by the following systems of differential

equations 

dx

dt
= σ(y − x),

dy

dt
= (ρ− z)x− y,

dz

dt
= xy − βz,

where σ = 10, ρ = 28, and β = 8/3. The state variables x, y and z measure,

respectively, the intensity of convective motion, the temperature difference between

the ascending and descending currents, and the distortion of vertical temperature

profile from linearity. The model is integrated using a fourth-order Runge-Kutta

integration scheme, with a time step of 0.01 time units. After a spin-up period of

roughly 20 days to remove any detrimental impact, the simulations are run for a

period of five years in model time (i.e., 36500 model steps). We consider the case

where all three variables are observed with σ2
y = 2. All schemes are tested with

different values of inflation, ranging between 1 and 1.3, and compared, based on their

minimum RMSEs. Our numerical experiments suggested that EnOI-based schemes
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do not require inflation, which was therefore not applied.

Figure 5.4 plots time series of the analysis RMSEs (upper subplot) and the fore-

cast ensemble standard deviations (bottom subplot), as resulting from all schemes

between assimilation steps 3000 and 3500, for illustration. Data are assimilated every

4 model steps and the ensemble size is set to 100. The RMSEs time series suggest

a clear outperformance of the EnKF, followed by the AEnOI-L2 and the AEnOI-

OMP. The reported RMSE values, averaged over the whole simulation period (0.172

for EnKF, 1.032 for AEnOI-L2, 1.119 for AEnOI-OMP, and 1.205 for EnOI), fur-

ther confirm this and support our expectations about the capabilities of the AEnOI

schemes in improving the EnOI performances, although they all fall behind EnKF.

This is expected as the EnKF evolves the underlying state distribution by updating

the ensemble members with the model dynamics. This however might be computa-

tionally demanding, since large ensembles are usually needed to properly describe the

state statistics. For example, a one-year filtering run with 200 members, assimilating

every 50 model steps (2.5 days), completed in 6.5538 s with the EnKF, 0.5103 s with

the AEnOI-L2 and 2.9924 s with the AEnOI-OMP. Regarding the ensemble spread,

the results suggest that EnKF, and to a lesser extent AEnOI-L2, exhibit the smallest

spreads. EnOI and AEnOI-OMP however have larger spreads, but with different pat-

terns. Indeed, EnOI has of course a constant spread, whereas AEnOI-OMP suggests

a strongly variable spread over time. We further study the schemes’ sensitivities to

different ensemble sizes (Ne) and frequencies of assimilation in Figures 5.5 and 5.6,

respectively. Overall, increasing the ensemble size reduces the RMSE values for all

schemes, except for AEnOI-L2 which seems to perform better with relatively small

ensembles (10, 20 and 40), in contrast with AEnOI-OMP. EnKF performances seem

to level-off with increased ensembles size. As the ensemble size increases, the benefit

from AEnOI-OMP becomes clearer and its performances approach those of AEnOI-L2

while both schemes remain better than EnOI. Similarly, assimilating the data more
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frequently further improves the results although the EnOI-based schemes seem less

sensitive to the assimilation period than the EnKF.
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Figure 5.4: Mean analysis RMSE (top) and forecast ensemble standard deviation
(bottom) for EnKF, EnOI, AEnOI-L2 and AEnOI-OMP schemes using the L-63
model. The assimilation experiments were performed using 100 members and as-
similating all data every 4 model steps.
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Figure 5.5: Sensitivity of the ensemble schemes to the ensemble size for a given
assimilation window using L-63 model.
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Figure 5.6: Sensitivity of the ensemble schemes to the assimilation period for a given
ensemble size using L-63 model.
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5.4.2 Numerical experiments with L-96

The L-96 model simulates the time evolution of an atmospheric quantity based on a

set of differential equations:

dxk
dt

= (xk+1 − xk−2)xk−1 − xk + F, k = 1, · · · , K. (5.5)

where xk denotes the kth element of the state x. The nonlinear (quadratic) terms

represent advection and the linear term simulates dissipation. In its most common

form, the system dimension is K = 40 and the forcing term F is set to 8, a value

for which the model exhibits a chaotic behavior. Boundary conditions are periodic

(i.e; x−1 = x39, x0 = x40 and x41 = x1). The model is integrated using a fourth-

order Runge-Kutta integration scheme, with a time step of 0.05 time units. After a

spin-up period of roughly 20 days to remove any transient impact, the simulations

are run for a period of five years in model time (i.e., 7300 model steps). We consider

the case where all variables are observed with σ2
y = 1. We test the schemes using

different values of inflation ranging between 1 and 1.3. We apply the standard local

analysis approach by restricting the update of each grid point to only observations

falling within some influence radius [153]. The localization support radii vary from

2 (strong localization) to 40 (weak localization) grid points. The schemes are then

compared based on their minimum RMSEs over all possible combinations of inflation

and localization values. Figure 5.7 gives an idea about the schemes’ needs for inflation

and localization by plotting the RMSEs as a function of the localization radius and

inflation factor.
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Figure 5.7: Time-averaged RMSE as a function of the localization radius (x axis)
and inflation factor (y axis) using L-96 model. All filters were implemented with 40
members, and observations were assimilated every 4 model time steps. The minimum
RMSEs are indicated by asterisks, and their associated values are given in the title.
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Figure 5.8: Sensitivity of the ensemble schemes to the ensemble size for a given
assimilation window using L-96 model.
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Figure 5.9: Sensitivity of the ensemble schemes to the length of the assimilation
period for a given ensemble size using L-96 model.
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5.5 Experimentation with an ocean general circulation model

in the Red Sea

5.5.1 The ocean model

We employ the MITgcm as in Section 2.2. Additionally, the model uses a direct space

time 3rd order scheme for tracer advection, harmonic viscosity with coefficients of 30

m2/s in the horizontal and 7× 10−4 m2/s in the vertical, implicit horizontal diffusion

for both temperature and salinity, and the KPP scheme [101] for vertical mixing

with a vertical diffusion coefficient of 10−5 m2/s for both temperature and salinity.

The open boundary conditions for temperature, salinity, and horizontal velocity are

prescribed daily from the Global Ocean Reanalysis and Simulation data (GLORYS;

[139]) available on a 1/12° horizontal grid. A sponge layer of 5 grid boxes with a

relaxation period of 1-day is implemented for smooth incorporation of open ocean

conditions through the eastern boundary. The normal velocities at the boundary are

adjusted to match the volume flux of GLORYS, which is estimated from GLORYS

SSH variations inside the model domain. The resulting inflow at the eastern boundary

ensures consistency between the model and GLORYS basin-scale SSH. The model

was spun-up for 31 years starting from 1979 to 2010 using the ECMWF reanalysis

of atmospheric surface fluxes of radiation, momentum, freshwater sampled every 6-

hour and available on a 75 km × 75 km grid [36]. The model has been extensively

validated for the Red Sea by earlier studies (e.g. [67, 171, 189, 190, 193]). For

comparison with the assimilation runs (as further discussed in the next section), the

same model configuration was integrated forward for the year 2011 using 6-hourly

ECMWF atmospheric fields available at 50 km × 50 km resolution. We refer to this

model free-run experiment without assimilation as Fexp.
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5.5.2 Experimental setup

Available observations are assimilated using the EAKF available in the DART-MITgcm

package [76, 81] implemented for the Red Sea by [171]. All the experiments, in the

present study, assimilate the data every 3 days, using a ∼300 km horizontal localiza-

tion radius and a multiplicative inflation factor of 1.1, as suggested by [171]. We assim-

ilated observations of SST data generated from a level-4 daily 0.25°×0.25° resolution

product of [149] (which was prepared by blending SST measurements from in situ and

advanced very high resolution radiometer infrared satellites), and along-track satel-

lite level-3 merged altimeter filtered SLA corrected for dynamic atmospheric, ocean

tide, and long wavelength errors, from Copernicus Marine Environment Monitoring

Service (CMEMS) [126]. To compute the innovations between the SLA observations

and the model SSH during assimilation, we add the model mean SSH to SLA ob-

servations prior to assimilation. Observations errors are assumed uncorrelated, and

are prescribed with error variance of (0.04 m)2 for SLA, and vary between (0.1 °C)2

and (0.6 °C)2 for SST in accordance with the interpolation errors specified in the

level-4 gridded SST product of [149]. Four different assimilation experiments were

conducted under the same conditions: EAKF with 50 members, and EnOI, AEnOI-

L2, and AEnOI-OMP with 300 ensemble members. They differ only in terms of the

underlying method to sample/select the ensemble from a long dictionary of MITgcm

outputs simulated during the period 2002-2016. EAKF dynamically evolves the ocean

ensemble. Its initial ensemble is generated by first selecting Fexp fields corresponding

to ±15 days from January 1st and then by adjusting the ensemble mean to the same

initial state as Fexp. The EnOI uses a static ensemble of 300 members across all

assimilation cycles (60 cycles in total) by selecting ocean states of 2002-2016 model

hindcasts. AEnOI-L2 and AEnOI-OMP, dynamically select 300 members, based on

the SST distance between the current ocean state and the dictionary elements. This

choice is motivated by two factors: the SST exhibits a seasonal signal, and the en-
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semble members selection would have been computationally demanding (especially

for OMP) if based on the full ocean state vector (107) and a dictionary with large

number of elements. Note that we have also tried to select the members based on

SSH, but OMP was selecting members from different seasons which affected the dy-

namical balances of the system. All the EnOI assimilation experiments are conducted

over a 6-month period in 2011, starting from January 1st, 2011 using the same initial

condition as Fexp.

Unless stated, we analyze daily averaged ensemble mean forecasts as they result

from the different assimilation experiments. Bias, correlations and RMSEs of the

daily averaged forecasts of SST and SSH are computed with respect to the merged

satellite level-3 observations of the GHRSST [49] and merged along track level-3

altimeter observations of SSH from CMEMS [126], respectively. The SST bias for

a product (OSTIA, Fexp, ENOI or another scheme) is given by product-bias(SST)

=
∑

t=January−June(< product(SST) >t − < Obs(SST) >t), where Obs is the level-3

GHRSST data and <> refers to daily average of the ensemble mean over the spatial

domain. Standard deviations (STDs) are computed using the following formula: STD

=
√

1
time length

∑
t=January−June(< field >t − < field >)2, where < field > refers to

time average, and field can be ensemble mean SSH, temperature (T), SST, salinity

(S) or sea surface salinity (SSS). In order to demonstrate the relative performance

of the assimilation system with respect to interpolated products, we employed level-

4 SST and SSH products. The interpolated SST product is a high-resolution daily

averaged level-4 SST product from OSTIA (Operational Sea Surface Temperature

and Sea Ice Analysis) [40, 166], generated on a 0.054°(∼6 km) grid by combining SST

data from various satellites and in situ observations using an Optimal Interpolation

(OI) system. The interpolated SSH product is the multi-mission altimeter merged

satellite level-4 gridded ADT provided by CMEMS (here after CMEMS-L4; [126]),

which is also available daily at a resolution of 0.25°× 0.25°. The maximum reported
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ADT mapping error (provided along with the CMEMS-L4 ADT product) during the

analysis period 1st January-30st June, 2011 is estimated between 1.8 cm - 4 cm in

the southern Red Sea and reaches up to 7 cm in the northern Red Sea. In order to

use it in the present study, we adjust the CMEMS-L4 ADT by replacing its 15-year

average by the model equivalent SSH climatology, similarly to the treatment of the

level-3 SLA observations for assimilation.

5.5.3 Experimental results

Figure 5.10 displays spatial maps of SST forecast statistics (computed over the study

period, i.e. 1st January to 30th June, 2011), compared to satellite level-3 SST ob-

servations, from different assimilation schemes, the free model experiment and the

interpolated data product. The results indicate that the STD is large over the Gulf

of Aden (reaching 2 °C) and small over the central parts of the Red Sea (below 1.2

°C). Outputs from the free model run captures this contrasting feature. However, it

underestimates the SST STD over the whole domain, particularly in the northern and

central parts of the Red Sea. Those underestimations of SST STD, as well as SST

biases, are improved by assimilation. The improvements are more pronounced in the

adaptive and ensemble optimal interpolation experiments relatively to the EAKF.

However, the EnOI and AEnOI-OMP suggest increased SST biases in the Gulf of

Aden. RMSEs and correlations also deteriorated, particularly in EnOI, with RMSEs

increasing from 0.5 °C to 1 °C and correlations dropping from 0.95 to 0.8. Assimila-

tion with the AEnOI-L2 strategy, on the other hand, yields SST improvements, with

biases and RMSEs mostly within 0.5 °C and correlations above 0.8, all over the model

domain, including Gulf of Aden and the Red Sea. AEnOI-L2 results are even better

than the interpolated SST product, particularly in the northern and central Red Sea.

We further analyzed the time evolution of RMSEs for the daily averaged SST

forecasts (Figure 5.11a) and for 3-day spaced SST analysis snapshots (Figure 5.11b)
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Figure 5.10: Spatial maps of SST STD in °C (b-g), Bias (h-m), RMSE (n-s) and
correlations (t-y) for OSTIA (b), Fexp (c), EAKF (d), EnOI (e), AEnOI-L2 (f),
and AEnOI-OMP (g). All the statistics are with respect to satellite level-3 SST
observations. Panel “a” shows STD in the satellite level-3 SST. Negative values of
bias indicate model cold biases and vice versa.
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corresponding to the studied domain. As shown in Figure 5.11a, RMSEs of SST

forecasts from all the model experiments and interpolation products do exhibit time

dependence, with SST RMSEs dipping in February and peaking during June, except

for EnOI and AEnOI-OMP which showed an additional peak (reaching 2 °C and 1.6 °C

in EnOI and AEnOI-OMP, respectively) during the month of March. Interestingly,

SST RMSEs resulting from EnOI and AEnOI-OMP are larger than those of Fexp

until the last week of April. SST RMSEs are almost always less than those of Fexp

when assimilating observations with EAKF, but they are further improved, even

over the interpolated product, with the AEnOI-L2 strategy. Assimilation fits the

observations better in AEnOI-L2 than in EAKF (Figure 5.11b), which seem to be

due to improved SST spread (as discussed in the subsequent paragraphs using Figure

5.13), explaining the better SST forecasts in AEnOI-L2. The SST analyses of all

three EnOIs experiments are indeed almost identical (Figure 5.11b). The failure

to yield uniformly low SST forecast RMSEs and the occasional SST degradations

in EnOI and AEnOI-OMP compared to the consistent improvements witnessed in

AEnOI-L2 and EAKF may be attributed to the repercussion from comparatively

larger dynamical imbalances in EnOI and AEnOI-OMP analyses (as discussed in the

subsequent paragraphs) [110, 160].

Figures 5.11c and 5.11d, respectively, display the time evolution of SSH RMSEs

for daily averaged forecasts and 3-day spaced analysis snapshots from different exper-

iments and interpolated product. SSH RMSEs of Fexp exhibit noticeable fluctuations

with largest values (reaching 14 cm) during January and smallest values (∼5 cm) dur-

ing the end of May. Unlike the free model, SSH RMSEs in the interpolated product

are stable with values around 5 cm. Assimilating observations with EAKF, EnOI or

AEnOI-OMP also yields SSH RMSEs close to 5 cm, but they exhibit fluctuations in

SSH RMSEs although not as large as Fexp. The fluctuations are reduced in AEnOI-

L2, and the SSH RMSEs are generally lower than those of the interpolated product.
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In order to spatially investigate the assimilation results for SSH we analyzed the re-

gion wise statistics. Since the altimeter coverage is too sparse over the model domain

to yield spatial maps of statistics, we tabulated (Table 5.2) statistics for four different

regions: Gulf of Aden (GoA; 30°E-50°E and 10°N-14°N), Southern Red Sea (SRS;

30°E-50°E and 14°N-19°N), Central Red Sea (CRS; 30°E-50°E and 19°N-23°N) and

Northern Red Sea (NRS; 30°E-50°E and 23°N-28°N). Fexp underestimates the STD

(up to 3 cm) and the mean (up to 8 cm) of SSH. The underestimations of the mean

are largest in the NRS (by 160%) and the largest underestimations of the STD are

in the SRS (by 27%). SSH RMSEs (9-11 cm) and correlations (0.4-0.86) are also

poor in Fexp, particularly in the GoA and the NRS. The interpolated SSH product

also underestimates the mean, but provides robust estimates of the STD, with low

RMSEs (5-6cm) and high correlations (0.94-0.98) throughout the domain. Assimila-

tion improves the SSH mean and STDs considerably throughout the domain, even

better than (or on par with) the interpolated data product. SSH RMSEs (5-7 cm)

and correlations (0.54-0.92) are also improved compared to Fexp, and still less than

the interpolated product. Interestingly, AEnOI-OMP (EAKF) improvements are less

pronounced than those resulting from the standard EnOI, which is probably related

to the SSH spread of the background ensemble, as further discussed in the subsequent

paragraphs. The differences between EnOI and AEnOI-L2 are not so large except for

the GoA, in which AEnOI-L2 yields better results than the rest of the assimilation

schemes.

We also examine the estimated ocean state in the subsurface to assess the impact

of the assimilation strategies in these sparsely observed layers. The ocean state in the

subsurface layers is noisy in EnOI (Figures 5.12e and 5.12f) compared to Fexp (Figures

5.12a and 5.12b) and to EAKF (Figures 5.12c and 5.12d), consistent with the results

of [171], in which the noise in the subsurface was attributed to pronounced dynamical

imbalances in the analysis. While the ocean state becomes noisier in AEnOI-OMP



140

Figure 5.11: Time series of root-mean-square-error (RMSE) for daily averaged fore-
casts of (a) SST (b) SSH from Fexp (red), EAKF (maroon), EnOI (green), AEnOI-
L2 (blue), AEnOI-OMP (pink), and level-4 gridded products (OSTIA for SST and
CMEMS-L4 for SSH; black). RMSE is computed by collocating the daily averaged
model forecasts onto satellite along-track level-3 SST and SSH observations. 10-day
smoothing is applied to better emphasize the differences between the assimilation
results. Units are in “°C” and “cm” for SST and SSH, respectively. Panels (c) and
(d) are similar to (a) and (b) except that the RMSEs are computed for 3-day spaced
analyses (snapshots after assimilation) without smoothing.
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Table 5.2: Region wise SSH statistics for CMEMS-L4 interpolated product, Fexp,
EAKF, EnOI, AEnOI-L2, and AEnOI-OMP. Statistics are shown for four different
regions, Gulf of Aden (GoA; 30°E-50°E and 10°N-14°N), Southern Red Sea (SRS;
30°E-50°E and 14°N-19°N), Central Red Sea (CRS; 30°E-50°E and 19°N-23°N) and
Northern Red Sea (NRS; 30°E-50°E and 23°N-28°N). Units for mean, STD and RMSE
are in cm. The assimilation experiment yielding best results for a region is highlighted
with bold fonts.
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Observation
CMEMS-L4
Fexp
EAKF
EnOI
AEnOI-L2
AEnOI-OMP

12
7
5
13
13
11
10

5
5
5
6
8
7
8

5
10
5
7
6
7

0.94
0.40
0.57
0.56
0.61
0.54

12
7
6
14
12
12
12

11
11
8
11
11
11
11

5
9
6
5
5
5

0.98
0.84
0.88
0.91
0.92
0.88

5
1
-1
8
6
7
7

13
12
10
12
13
13
13

5
9
7
6
6
7

0.98
0.86
0.86
0.90
0.89
0.88

-5
-10
-13
-4
-6
-4
-4

13
13
10
11
12
12
11

6
11
7
6
6
7

0.98
0.82
0.85
0.89
0.88
0.85

(Figures 5.12i and 5.12j), AEnOI-L2 (Figures 5.12g and 5.12h) reduces this noise and

yields more organized subsurface structures. For instance, EnOI simulates abrupt

jumps in the 22 °C isotherm in the months of March, April, and also in May (Figure

5.12k) at (38°E, 22°N), and these are more frequent and larger in AEnOI-OMP.

Such abrupt jumps do not appear in the results of AEnOI-L2, indicating a more

stable solution. Dynamical imbalances (noise) may result from inappropriate analysis

update due to spurious spread, and correlations in the background ensemble. These

aspects are further discussed in the next paragraphs.

Figure 5.13 plots the spatial distribution of the ensemble spread on 1-May-2011

from the different filtering schemes. The ensemble spreads of SSH, SST and subsur-

face temperature are considerably larger in all the EnOIs assimilation experiments

compared to those of EAKF. This is because the spread introduced in the ensemble

of initial conditions in EAKF fades out after few analysis cycles, and because the
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Figure 5.12: Depth-Time evolution of temperature (°C; a, c ,e, g, and i) and salinity
(psu; b, d ,f, h, and j) and depth of 22 °C isotherm (meters; k) at (38°E, 22°N) as
resulted from Fexp, EAKF, EnOI, AEnOI-L2 , and AEnOI-OMP.



143

EnOIs strategies do not lose spread as they select members, for the Adaptive en-

semble Optimal Interpolations (AEnOIs) schemes, from model hindcasts after each

analysis cycle. The spreads of SSH, SST and upper layer temperatures resulting from

EnOI, AEnOI-L2 and AEnOI-OMP are significantly different. AEnOI-L2 selects the

ensemble members from a broader range of months based on their closeness to the

forecast SST, which seem to result here in a small ensemble spread (Figure 5.13g

and 5.13k). AEnOI-OMP selects the ensemble members based on the correlations of

the dictionary elements with residuals of the forecast state in the ensemble subspace

(weaker the correlation better are the chances for selection). As a result, the selected

members are not necessarily correlated/close to the forecasted SST, and may thus ex-

hibit larger ensemble spread (Figures 5.13d, 5.13h and 5.13l). Large ensemble spreads

may cause a data overfit, and amplify the noise in the filter updates, particularly in

the data sparse regions [133, 159]. This may explain the more (less) abrupt jumps in

the 22 °C isotherm in AEnOI-OMP (AEnOI-L2) compared to EnOI.

One of the key assumptions of an EnKF framework lies on Gaussian forecast

errors, based on which the members are updated with the observations using the

Kalman linear analysis step [82]. In the ensemble optimal interpolation schemes, the

forecast error is estimated based on the anomalies of the selected ensemble. We assess

the relevance of the Gaussian assumption in our setup by analyzing the histogram of

SST ensembles at three locations in the northern, central and southern Red Sea on

1-May-2011, as shown in Figure 5.14. At all these locations, the prior distributions

in EnOI and AEnOI-L2 are clearly more Gaussian than that of the AEnOI-OMP.

The OMP scheme provides a more scattered ensemble that is far from a Gaussian

distribution, and this may limit the relevance of the Kalman-based update step.

We also analyzed the SST correlation range at three different locations in the

northern, central and southern Red Sea for the different EnOI schemes (Figure 5.15).

At all locations, the SST correlation range for AEnOI-L2 is narrower and less noisy
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Figure 5.13: Horizontal and vertical distributions of ensemble spread (a - d) of SSH,
(e - h) SST, and (i - l) temperature on 1-May-2011 as they result from EAKF, EnOI,
AEnOI-L2, and AEnOI-OMP.
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Figure 5.14: The histograms (prior) in experiments using EnOI (1st column), AEnOI-
L2 (2nd column) and AEnOI-OMP (3rd column) assimilation experiments at three
selected locations (indicated in Figure 5.15) in the northern, central and southern
basins of the Red Sea, as the 1st, 2nd and 3rd rows, respectively.
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than those of EnOI, and AEnOI-OMP, suggesting less spurious long-range corre-

lations. This means that AEnOI-L2 could be configured with a larger localization

radius, which may subsequently result in more dynamically consistent ocean state

estimates [54]. Given that AEnOI-L2 only forecasts the analysis state, this would en-

able using larger ensembles to rely even less on localization [170], without significantly

increasing the computational cost. In our specific system, one MITgcm model run

requires 4.8 core hours for a 3-day simulation and a DART-filter update requires 111

(25.3) core hours for 300 (50) members. Therefore, one EAKF assimilation step with

300 (50) members consumes 1551 (265.3) core hours. The adaptive schemes involve

a single model run for forecasting, and the selection step of its 300-member ensemble

requires 21.37 and 20.77 core hours for the AEnOI-L2 and AEnOI-OMP, respectively,

followed by a filter update. This amounts to an approximate computational cost of

137 core hours for each of the adaptive schemes and translates to more than a factor

10 (2) cost saving compared to the EAKF.

5.6 Conclusions

The Red Sea is characterized by a marked seasonal variability and strong mesoscales

activity. In order to account for these variations at different time scales with rea-

sonable computational burden, we proposed new cost-effective AEnOI schemes for

assimilating multivariate data sets of the Red Sea based on DART and the MITgcm.

The AEnOI schemes select the ensemble members from a dictionary that is as

complete as possible and describes the underlying system variability. The members

selection is based on their similarity to, according to a certain criteria, or to their

representativeness of the current forecast state, which represents the best available

information at the time of the incoming observations. Two approaches for selecting

the ensemble members were proposed: the first is based on the L2-distance between

the forecast and the dictionary elements, and the second uses an Orthogonal Matching
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Figure 5.15: Sampled correlations for SST as computed from the assimilation ex-
periments using EnOI (1st column), AEnOI-L2 (2nd column), and AEnOI-OMP (3rd

column) schemes at three selected locations in the northern (1st row), central (2nd

row), and southern (3rd row) basins of the Red Sea, respectively, before applying
localization. The black dot in each panel indicates the selected location.
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Pursuit (OMP) algorithm to identify the error-subspace of the forecast state. In term

of computational efficiency, EnOI has of course an advantage since the selection pro-

cess is applied offline and only once, before the start of the assimilation experiments.

The AEnOI schemes enable however for adaptive selection of the ensemble members,

which could account for instance for inter-seasonal and mesoscale variability.

The AEnOI schemes were first implemented and validated with the Lorenz-63 and

the Lorenz-96 models, compared against the EnKF and the standard EnOI. While

the EnKF yields the best results, eventually at the expense of applying auxiliary

techniques such as inflation and localization, and higher computational cost, AEnOIs

generally yield more accurate estimates than the standard EnOI, in terms of RMSE.

They are further, particularly AEnOI-L2, computationally very efficient and may

provide an alternative to the EnKF in the challenging scenario of small ensembles

and large state space.

Within the DART-MITgcm Red Sea assimilation system, the AEnOI schemes

operate on a dictionary of ocean realizations describing the multiscale temporal and

spatial variability of the basin. Different aspects of the assimilation system have been

assessed; including SST and SSH biases, standard deviations, correlations, and root-

mean-square errors. AEnOI-L2 yields substantial improvements in certain regions of

the Red Sea, whereas the AEnOI-OMP and the EnOI lead, in general, to more or

less comparable assimilation results in our particular domain.

The AEnOI schemes, AEnOI-L2 more precisely, provided competitive perfor-

mances to the computationally much demanding ensemble (adjustment) Kalman fil-

ter, especially in situations when the model forward integration is computationally

demanding. I will discuss in the next Chapter Hybrid schemes in which a new en-

semble member will be selected from a dictionary, eventually regionally, based on

the statistics of an (small) evolving ensemble. The resulting ensemble will combine

the spread benefit of the EnOI scheme and will constrain it by that of the evolving
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ensemble that accounts for the error-of-the-day. We are also planning to implement

these schemes within a stochastic EnKF framework based on the scheme proposed by

[81].
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Chapter 6

A Hybrid Ensemble Adjustment Kalman Filter for

High-resolution Data Assimilation System in the Red Sea:

Implementation and Evaluation

This Chapter corresponds to the paper “A Hybrid Ensemble Adjustment Kalman

Filter based High-resolution Data Assimilation System in the Red Sea: Implementa-

tion and Evaluation” published in the Quarterly Journal of the Royal Meteorological

Society.

6.1 Introduction

Ocean forecast models are not perfect owing to uncertainties in their internal physics

and inputs, such as initial and boundary conditions, and atmospheric forcing [46, 77].

In data assimilation, these uncertainties are generally accounted for through the so-

called background error covariance matrix (BECM), which spreads the observations

information to all ocean model variables [77]. While the BECM varies in time (flow

dependent) in the ensemble-based Kalman filters (e.g. Singular Evolutive Interpola-

tion Filter-SEIK, Local Ensemble Transform Kalman Filter-LETKF, EAKF), other

popular assimilation methods such as the variational and EnOI use static BECMs

generated via empirical relations and/or climatological ensembles [46, 77]. In these

methods, however, the BECM may not account for the “error-of-the-day”, important

to obtain reliable ocean state estimates (e.g. [77, 161, 165]).

Because of their high computational requirements in realistic applications, EnKFs
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are often implemented with limited ensemble size. The EnKFs may also suffer from

not accounting for the sources of uncertainties while evolving the ensemble with ocean

model due to technical difficulties. The EnKF’s BECMs could be therefore severely

rank-deficient with noisy ensemble-correlations and a systematic small variance or

loss of ensemble spread, see the reviews of [19, 77]. This may greatly limit the

EnKF’s ability to fit the assimilated observations and produce meaningful ocean state

estimates (e.g. [46, 77]). Various auxiliary techniques have been proposed to mitigate

the impact of these limitations. Localization, in which long-range correlations are

tapered, is a straightforward and efficient way to eliminate spurious corelations and

increase the BECMs rank [60, 74, 84]. Covariance inflation, in which covariance of

an EnKF forecast or analysis is inflated by some positive factor at each assimilation

cycles, is another approach to compensate for the systematic loss of ensemble spread

[12, 80, 86]. However, the ad hoc nature of these fixes were shown to degrade the

dynamical balance of the filter analysis and to increase the forecast errors in sparsely

observed regions (e.g. [160, 161]). The Hybrid ensemble scheme, in which BECMs are

estimated as linear combinations of the time-varying ensembles generated by an EnKF

and climatological (static) ensembles covariances [72, 113, 165, 183], was proposed as

a potential approach to mitigate the aforementioned issues [33, 65, 140, 176, 182].

This increases the EnKF BECMs rank and spread and enforces smoothness, which

was found to be particularly beneficial when the filter is implemented with small

ensembles [165]. This therefore enables implementing the filter with small ensembles,

which would drastically reduce the computational load.

Various Hybrid implementations were successfully implemented for data assimi-

lation into ocean general circulation models [21, 33, 102, 140]. Here, we followed a

similar approach as [183] and derived a practical implementation of a Hybrid-EAKF

system for the Red Sea with a mesoscale resolving (4km-resolution) MITgcm [122],

using DART [8]. The goal is to enhance the EAKF performances, while implementing
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the system with small flow dependent ensembles to reduce the computational load.

The ocean forecasts resulting from the Red Sea EnOI-based data assimilation sys-

tem implemented by [170] showed large dynamical imbalances in the subsurface, even

after employing monthly-varying climatological ensembles to estimate the BECMs.

In a follow up work, [161] demonstrated that by accounting for uncertainties in initial

conditions and atmospheric forcing and internal physics the flow dependent EAKF

provide dynamically consistent and improved forecasts throughout the ocean column.

The proposed Hybrid-EAKF combines the EAKF system of [161] and EnOI sys-

tem of [171], and aims at further improving the state estimates of the Red Sea. The

remainder of the Chapter is organized as follows. Section 6.2 describes the Hybrid-

EAKF. Section 6.3 presents an overview of the numerical experiments setup, including

the description of the Ocean model and assimilated observations, and the indepen-

dent observations used for evaluating the assimilation system solution. Section 6.4

discusses the assimilation results in terms of their forecast statistics, and of reproduc-

ing the basin mesoscale eddy features. It further analyzes in details the dynamical

balances of the Hybrid-EAKF solutions. A discussion on the computational load of

the Hybrid-EAKF system is provided in Section 6.4.3. Summary and conclusions are

provided in Section 6.5.

6.2 The Hybrid-EAKF

Data assimilation is the process by which observations are used to update models

forecasts to compute the best possible estimate of the state of the ocean [46]. The

EAKF is a sequential assimilation scheme that operates as a series of assimilation

cycles, each involving a model forecast followed by a filter update.

Let Xf be an ensemble of N model forecasts and Xa the analysis ensemble ob-

tained by applying the EAKF. The Hybrid-EAKF has the same algorithm as EAKF,

except for the use of a Hybrid forecast error covariance Pf,H , expressed as a linear
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combination of a flow-dependent forecast covariance and a static background covari-

ance [72],

Pf,H = (1− α)Pf + αB, with 0 ≤ α ≤ 1. (6.1)

Pf is the flow-dependent covariance, computed from the dynamic propagation of

the forecast ensemble Xf with the EAKF, and B, the static background covariance

matrix, estimated from a climatological ensemble, for example. The resampling of

the analysis members is then performed as in (2.15) (with x for the state space or z

for the joint state-observation space), but using xa,H instead of xa.

6.2.1 Practical implementation within DART

We implemented the Hybrid-EAKF in DART by calling separately two EAKF update

steps in DART, one to update the forecast anomalies based on the flow-dependent

forecast covariance and another to update the forecast mean using the Hybrid covari-

ance. Combining the results of the two filters yields a Hybrid analysis ensemble with

the desired mean and covariance as follows:

i. The flow-dependent forecast ensemble Xf is first updated using the EAKF

analysis step. This gives an analysis ensemble satisfying equation (2.15), with an

analysis mean and covariance respectively given by equations (2.13) and (2.14)

(with x and P for the state space or z and Σ for the joint state-observation

space). Rewriting (2.15) as

(
xa,i − xa

)
= A(xf,i − xf ), i = 1, . . . , N, (6.2)

suggests that the updated anomalies are simply the updated members from

which the analysis mean is removed.

ii. In order to update the forecast state, a prior ensemble XH is constructed and
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supplied as input to DART. XH is constructed such that by calling a standard

EAKF update in DART, the resulting analysis state satisfies equation (2.14).

We can show that such an ensemble is expressed as XH =
[
KdX

′
, KsX

′s]
+xf ,

with

Kd =

√
(1− α)(N +Ns − 1)

N − 1
and Ks =

√
α(N +Ns − 1)

Ns − 1
.

X
′s

is a static ensemble perturbation matrix defined as X
′s

= [xs,1−xs, xs,2−

xs, · · · ,xs,N −xs] with {xs,i}
i=1,...,Ns

an ensemble of Ns static members of mean

xs and static covariance B =
1

Ns − 1

(
X

′s
X

′s T
)

. One can verify that the

(N + Ns) ensemble XH has a mean xf and a covariance Pf,H . The sample

covariance of XH is indeed given by
1

N +Ns − 1

(
X

′H
X

′H T
)

, where X
′H

is

the corresponding perturbation matrix (i.e., X
′H

=
[
KdX

′
, KsX

′s]
). Using

the expressions of Kd and Ks, the covariance expression becomes (1−α)
N−1

X
′
X

′T
+

α
Ns−1

X
′s
X

′s T
which is equal to (1−α)Pf +αB and thus to Pf,H . Finally, since

XH has a mean xf and a covariance Pf,H , its EAKF update yields an analysis

state that matches xa,H given by equation (2.14) with zak and the covariances

replaced by xa,H and the Hybrid covariances, respectively.

iii. The Hybrid analysis ensemble is then obtained by adding the anomalies result-

ing from step (i) to the Hybrid analysis mean state from step (ii) as

xa,H,i = xa,H + A(xa,i − xa), i = 1, . . . , N, (6.3)

The Hybrid formulation reduces to the EAKF when α = 0.

The above algorithm is similar to the Hybrid-ETKF of [183], but we further proposed

a practical implementation that makes use of the existing update code within DART.
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6.3 Assimilation experiments and results

6.3.1 Model setup

MITgcm is configured as in Section 5.5.1. Figure 6.1 shows the model domain, the

bathymetry and the observational coverage. Fexp atmospheric ensemble mean is ex-

tracted from ECMWF atmospheric ensemble as made available through The Observ-

ing System Research and Predictability Experiment (THORPEX) Interactive Grand

Global Ensemble project (TIGGE, [24]). For more details on the ocean model con-

figuration and its skill, one may refer to [189, 190]. The model has been extensively

validated by several earlier studies (e.g. [43, 67, 171, 189, 190, 193, 194]).

6.3.2 Assimilation experiments

The assimilation experiments were conducted based on the routines provided in

DART. Except for the differences discussed in the next two paragraphs, the ex-

periments were all performed with the same configuration in terms of assimilated

observations, assimilation cycle of 3 days, localization (only in the horizontal direc-

tion) using a radius of 300 km, and no-inflation during assimilation following [161].

The system assimilates the [149] level-4 daily SST data available on a 0.25° × 0.25°

grid (which was prepared by blending in situ observations with data from the AVHRR

infrared satellite; Figure 6.1b), along-track satellite level-3 merged altimeter filtered

SLA (corrected for dynamic atmospheric, ocean tide, and long wavelength errors;

Figure 6.1c) from the CMEMS [126], and in situ temperature and salinity (Figure

1d) profiles from the EN4.2.1 dataset [68]. For direct comparison with the model

SSH during assimilation, SLA is added to a mean sea surface height (MSSH) esti-

mated from a long model run between 2002 and 2016 forced with the best available

(5 km) resolution atmospheric forcing that has been dynamically downscaled from

the 75 km ECMWF atmospheric reanalysis using an assimilative Weather Research
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Figure 6.1: (a) Model domain and bathymetry (m). Thick black line represents
the Red Sea axis. Panels (b-d) respectively indicate the geographical coverage of
assimilated observations of satellite based level-4 SST observations on a typical day,
satellite level-3 SSH measurements over a typical altimeter period, and EN4.2.1 in
situ temperature (red) and salinity (blue) profiles available over the entire year 2011.
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and Forecast (WRF) model [181]. One may also consider estimating the MSSH by

assimilating in situ temperature and salinity profiles over a long period [18, 197].

Since our assimilation experiments are only conducted over the year 2011, the MSSH

simulated by the high resolution atmospheric forcing is the best available for testing

the different assimilation schemes.

The observational error covariance matrix is diagonal with temporally-static and

spatially-homogeneous observational error variance values of (0.04 m)2, (0.5 °C)2 and

(0.3 psu)2 for the satellite along-track SSH, the in situ T and S, respectively, and

spatio-temporal error variances for the satellite blended level-4 SST, varying between

(0.1 °C)2 and (0.6 °C)2. These relatively large error variances for T and S, which

are chosen in accordance with the suggested ranges of in situ observational errors

in earlier assimilation studies (e.g. [56, 92, 133, 150], are intended to account for

the representational errors due to unresolved scales and processes in the model [159].

The SLA observational error of (0.04 m)2, which is slightly larger than the suggested

altimeter accuracy [16], is selected based on a sensitivity experiment with various

values of error variances, (0.04 m)2, (0.07 m)2, and (0.1 m)2 (results not shown here;

discussed in [161]). Since our 4km-MITgcm can resolve the scales of the 25 km × 25

km assimilated SST data, only measurements errors of SST data are considered. The

specified observational error variances for SST vary in accordance with the analysis

errors specified in the level-4 gridded SST product of [149].

Table 6.1 and 6.2 summarize the configurations of the conducted experiments.

Three different categories of assimilation experiments are analyzed; EnOIexp, EAK-

Fexp, and HyBDexp. EnOIexp employs the same model configuration as Fexp and

assimilates observations with EnOI, starting from the 1st January, 2011 ocean state

obtained from Fexp. EnOIexp is implemented with a monthly varying 250-member

ensembles, generated as in [171] using the last 15-year model hindcasts of the spin-up

run. EAKFexp assimilates the observations based on EAKF, with a flow dependent
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background ensemble of 50 members. The initial ensemble in EAKFexp is generated

by randomly selecting 50 different states corresponding to January’s hindcasts of Fexp

and then re-centering the ensemble mean to the 1st January, 2011 state of Fexp. The

MITgcm forecasts of the 50 members were forced with the ECMWF ensemble atmo-

spheric forcing. Different model physics were also used for integrating each member,

selected from a time-varying ensemble of model physics (hereafter model physics dic-

tionary (MPD)). The MPD encompasses different choices of vertical and horizontal

mixing schemes, and viscosity and diffusivity coefficients. These include five types of

horizontal diffusion, three schemes of horizontal viscosity, and four schemes of vertical

mixing as listed in Table 6.3. More details about the generation of the MPD and of

the physical perturbation impact on the assimilation results can be found in [161].

HyBDexp is implemented by combining 250-member quasi-static ensemble (used in

EnOIexp) and 50-member dynamic ensemble with a weighing factor (α) 0.05, se-

lected after examining the sensitivity of the Hybrid system to the value of α. This

section examines the sensitivity of the Hybrid system to three different values of the

flow-dependent and static covariance weighting factor α (0.15, 0.05, and 0.01). All

these sensitivity experiments use the same experimental setting as HyBDexp. Exam-

ining the results of these experiments, one can notice negligible differences in terms

of SST and SSH estimates (e.g. Figure 6.2). Considerable differences are however

obtained for subsurface temperature, salinity and SSS. For instance, the large salinity

biases in the subsurface salinity layers are significantly improved when the α value is

changed from 0.15 (Figure 6.3h) to 0.05 (Figure 6.3f). Similarly, the deepening of 23

°C isotherm is best represented when the Hybrid system is run with α = 0.05 (Figure

6.3e). Further decreasing the value of α to 0.01 flattens the 23 °C isotherm (Figure

6.3c) and increases salinity errors (Figure 6.3d) in the surface layers (for instance,

Table 6.4 shows that the SSS RMSE is increased from 0.14 to 0.23 when decreasing

the value of α from 0.05 to 0.01). Moreover, the SSS features are slightly degraded
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in the southern Red Sea (Figure 6.4). On an overall note, our Hybrid system with

α = 0.05 performs the best out of the three sensitivity experiments. HyBDexp uses

the same initial and atmospheric forcing ensembles, and perturbed internal physics

as those of EAKFexp. EnOIexp was also tested with 300 members and the results

were very similar to those of the 250-member case.

Table 6.1: Summary of the experiments conducted to demonstrate the skill of Hybrid
system in terms of improved ocean state. In the table “Random” model physics refers
to the use of a time-varying ensemble of physics during the model integration of each
ensemble member for forecasting.

Experiment
Initial
condition

Atm.
Forcing

Model
Physics

Assimilated observations
Assimilation
Category

Fexp

Single
member
on 1st

January,
2011

Ensemble
mean

Standard None NA

EnOInoSCLexp

Single
member
on 1st

January,
2011

Ensemble
mean

Standard
Reynolds-SST, Altimeter SSH,
and in situ temperature and
salinity

EnOI before scaling
quasi-static-seasonal
ensemble of size 300

EnOIexp

Single
member
on 1st

January,
2011

Ensemble
mean

Standard
Reynolds-SST, Altimeter SSH,
and in situ temperature and
salinity

EnOI with scaled
quasi-static-seasonal
ensemble of size 300

EAKFexp

50-
member
ensemble
on 1st

January,
2011

50-
member
ensemble

Random
Reynolds-SST, Altimeter SSH,
and in situ temperature and
salinity

50 member EAKF

HyBDexp

50-
member
ensemble
on 1st

January,
2011

50-
member
ensemble

Random
Reynolds-SST, Altimeter SSH,
and in situ temperature and
salinity

Hybrid with quasi-
static-seasonal
ensemble of size 250
and dynamic
ensemble of size 50

HyBDmPexp
Same as
HyBDexp

Same as
HyBDexp

Standard Same as HyBDexp Same as HyBDexp

HyBDmAPexp
Same as
HyBDexp

Ensemble
mean

Standard Same as HyBDexp Same as HyBDexp
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Table 6.2: Summary of EAKF and Hybrid assimilation experiments conducted to
examine the computational efficiency of the Hybrid system.

Experiment Initial condition Atm. Forcing Assimilation Category

EAKF100exp
100-member ensemble
on 1st January, 2011

100-member ensemble 100-member EAKF

EAKF250exp
250-member ensemble
on 1st January, 2011

250-member ensemble 250-member EAKF

EAKF500exp
500-member ensemble
on 1st January, 2011

500-member ensemble 500-member EAKF

HyBD30exp
30-member ensemble
on 1st January, 2011

30-member ensemble

Hybrid with quasi-static-
seasonal ensemble of size 270
and dynamic ensemble of size
30

HyBD20exp
20-member ensemble
on 1st January, 2011

20-member ensemble

Hybrid with quasi-static-
seasonal ensemble of size 280
and dynamic ensemble of size
20

HyBD10exp
10-member ensemble
on 1st January, 2011

10-member ensemble

Hybrid with quasi-static-
seasonal ensemble of size 290
and dynamic ensemble of size
10

Table 6.3: Dictionary of model physics and associated coefficients considered in the
experiments that use perturbed physics. Coefficients of vertical mixing schemes vary
according to the standard values in MITgcm, unless otherwise stated. In the table,
entries in first row indicate the standard scheme.

Horizontal vicosity Vertical mixing Horizontal diffusion
Simple-Harmonic with viscosity
coefficient 30 m2/s

KPP [101]
Implicit diffusion for temperature
and salinity

Simple-Bi-harmonic scheme of
[75] with viscosity
coefficient 107 m4/s

PP81 [136]
Explicit coefficients of 100 m2/s
for temperature and salinity

Harmonic flavor of combined [162] and
[106] schemes with viscocity coefficient
30 m2/s, Smag coefficient 2.5
and Leith coefficient 1.85

MY82 [125]

Gent-McWilliams/Redi [61, 62, 147]
using slope clipping of [34], with
background diffusion set to
100 m2/s

MY82 [59]

Gent-McWilliams/Redi [61, 62, 147]
using tapering scheme of [35], with
background diffusion set to
100 m2/s
Gent-McWilliams/Redi [61, 62, 147]
using tapering scheme of [100], with
background diffusion set to
100 m2/s
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Figure 6.2: Time series of RMSE for daily averaged (a) SST (°C) (b) SSH (cm)
from Hybrid experiments with weighting factors α 0.15 (green), 0.05 (pink) and 0.01
(blue). SST RMSE (SSH RMSE) is computed by collocating the daily averaged
model forecasts onto level-3 GHRSST (level-3 altimeter observations) product. 10-
day smoothing is applied to better highlight the differences among the assimilation
results.
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Figure 6.3: Subsurface temperature (°C) and salinity (psu) from in situ CTD obser-
vations (a-b) and from the collocated (in space and time, during the WHOI/KAUST
summer cruise conducted during 15th September - 8th October, 2011) daily averaged
temperature and salinity forecasts as resulted from hybrid experiments with weighting
factors α 0.01 (c-d), 0.05 (e-f), and 0.15 (g-h). Temperature and salinity are smoothed
by 1 °C and 10 m in latitudinal and vertical direction to better visualize subsurface
features. 23 °C isotherm is also indicated in the respective temperature plots by the
thick curve. Latitudes corresponding to observation locations are indicated as black
vertical dashes at the top of each panel.

Table 6.4: Statistics of the Hybrid (alpha) experiments.
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Observation
HyBD-0.01
HyBDexp
HyBD-0.15
HyBDmAPexp
HyBDmPexp

29.86
29.50
29.50
29.49
29.51
29.52

0.95
0.83
0.85
0.86
0.89
0.86

0.43
0.44
0.45
0.41
0.40

0.971
0.969
0.966
0.977
0.975

22.47
22.58
22.54
22.51
22.54
22.54

2.02
1.98
1.93
1.91
1.98
2.01

0.26
0.24
0.24
0.30
0.28

0.993
0.995
0.994
0.989
0.991

39.64
39.83
39.66
39.60
39.54
39.57

0.60
0.68
0.67
0.63
0.75
0.77

0.23
0.14
0.20
0.25
0.24

0.990
0.982
0.952
0.962
0.976

40.38
40.44
40.45
40.46
40.45
40.45

0.36
0.29
0.31
0.31
0.37
0.36

0.12
0.13
0.15
0.13
0.13

0.975
0.966
0.944
0.955
0.958
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Figure 6.4: Spatial maps of temporally averaged SSS (psu) during the period per-
tained to the WHOI/KAUST summer cruise (15th September - 8th October, 2011)
from Hybrid experiments with weighting factor α 0.15 (a), 0.05 (b), and 0.01 (c).
Near surface in situ salinity from the CTD data collected during the summer cruise
is also shown with filled circles on each plot.

Figure 6.5 displays the ensemble spread of (a) SST and (b) SSH from HyBD-

exp and EAKFexp. It also shows the spread of the quasi-static ensemble before and

after scaling its ensemble covariance by a factor of 0.05 (the weighing factor α of

HyBDexp). The ensemble SSH spread varies between 2-4 cm in HyBDexp and EAK-

Fexp. The spread of the EnOI-ensemble is significantly larger, but becomes closer to

those of HyBDexp and EAKFexp after the scaling of the quasi-static ensemble co-

variance. The assimilation results of the experiments using the quasi-static ensemble

(here after EnOInoSCLexp) and those using the scaling of the quasi-static ensemble

covariance (EnOIexp) in the EnOI system suggests that this scaling has no significant

impact on SST (Figures 6.6a). It however shows noticeable impact on SSH (Figure

6.6b), with the EnOIexp exhibiting lower RMSEs compared to EnOInoSCLexp. The

most pronounced differences between the results of EnOInoSCLexp and EnOIexp are

found in the data-sparse subsurface layers and for under-sampled ocean variables.

EnOInoSCLexp simulates spurious fresh water anomalies in the surface (Figures 6.7c

and 6.7d) and in the subsurface layers (Figure not shown). Such spurious features are

likely due to dynamical imbalances, which can be assessed through vertical velocities
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(e.g. [161]). The maximum vertical speed in the water column, |W (z)|max, a proxy

for 2D visualization of the abnormal vertical velocities in the ocean column, is suspi-

ciously large in EnOInoSCLexp compared to Fexp (Figure 6.8a and 6.8b), suggesting

important dynamical imbalances in the EnOI before scaling the quasi-static ensemble

covariance. EnOIexp results in better estimates of the ocean state (Figures 6.6a, 6.6b,

and 6.7d) with lesser dynamical imbalances (Figure 6.8c). We therefore evaluate the

results of HyBDexp against those of EnOIexp, the best possible EnOI configuration.

Figure 6.5: Domain averaged ensemble spread of (a) SST and (b) SSH from
EnOInoSCLexp (green-dash), EnOIexp (green-line), EAKFexp (blue-line) and HyB-
Dexp (pink-line). Units of SST and SSH spread are in °C and cm.
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Figure 6.6: Time series of RMSE for daily averaged (a) SST (°C) and (b) SSH (cm)
from level-4 gridded products (OSTIA for SST and CMEMS-L4 for SSH; black), Fexp
(red), EnOInoSCLexp (magneta), EnOIexp (green), EAKFexp (blue), and HyBDexp
(pink). SST RMSE (SSH RMSE) is computed by collocating the daily averaged
model forecasts in the whole model domain onto level-3 GHRSST (level-3 altimeter
observations) product. 10-day smoothing is applied to highlight better the differences
between the assimilation results.



166

Figure 6.7: SSS (psu) from (a) WHOI/KAUST summer cruise, (b) Fexp, (c)
EnOInoSCLexp, (d) EnOIexp, (e) EAKFexp, (f) HyBDexp, (g) HyBDmAPexp, and
(h) HyBDmPexp. The SSS from the model experiments is the time average between
15th September - 8th October, 2011, pertaining to the WHOI/KAUST summer cruise.
SSS of WHOI/KAUST is overlaid on the spatial maps also for model-data compari-
son.
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Figure 6.8: Temporal evolution of |W (z)|max(m/day) from the daily averaged vertical
velocity in the ocean column along the axis of the Red Sea from (a) Fexp, (b) EnOIexp,
(c) EAKFexp, (d) HyBDexp, (e) HyBDmAPexp, and (f) HyBDmPexp. Temporal
evolution of |W (z)|max(m/day) from the daily averaged vertical velocity in the ocean
column along the axis of the Red sea (indicated in Figure fig: paper 4 fig 1 accepteda)
from (a) Fexp, (b) EnOInoSCLexp, (c) EnOIexp, (d) EAKFexp, (e) HyBDexp, (f)
HyBDmAPexp, and (g) HyBDmPexp.
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6.3.3 Validation data

The daily averaged forecasts from the different experiments are analyzed to assess

the performances of the different assimilation configurations. Subsurface estimates

are evaluated against CTD observations of T and S profiles collected in the Red

Sea between 15th September and 8th October, 2011 (indicated in Figure 6.7a). This

dataset includes 206 profiles collected by a joint Woods Hole Oceanography Insti-

tute (WHOI) and King Abdullah University of Science and Technology (KAUST)

cruise along the eastern Red Sea, with a horizontal spacing of 10 km ([192]; hereafter

WHOI/KAUST summer cruise). The data is similar to the one described in the 2nd

paragraph of Section 5.5.2, except that the analysis period extends to 31st Decem-

ber, 2011. WHOI/KAUST observations are not assimilated and are therefore used as

an independent observations for validation. The assimilated SST and SSH observa-

tions were used in the generation of the interpolated level-4 products of OSTIA and

CMEMS, and as such these datasets cannot be considered to be fully independent

from our assimilated fields.

6.4 Evaluation of the Hybrid system

This section evaluates the outputs of HyBDexp compared to EnOIexp and EAKFexp.

We first establish the merits and demerits of EnOIexp and EAKFexp, and then show

how well these are addressed in HyBDexp. Figure 6.6 displays the temporal evolution

of (a) SST and (b) SSH RMSEs for the entire model domain. RMSEs of SST and SSH

are comparatively large and exhibit seasonal dependencies in Fexp, with relatively

large SST (SSH) RMSEs during summer (winter). The increased SST RMSEs during

summer are due to biases in the summer atmospheric fields in the southern Red Sea

associated with dust [181]. The increased SSH RMSEs during winter can be related to

biases in the surface net heat flux associated with increased atmospheric convective

activity [181], which affects strong eddies in the northern Red sea [189, 193, 195].
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Assimilation using EnOI or EAKF significantly improves the RMSEs for both SST

and SSH, with consistently smaller RMSEs throughout the year. The RMSEs of

SST and SSH in these assimilation experiments are even lower than the interpolated

products ones. The SST and SSH RMSEs differences between EnOIexp and EAKFexp

are relatively small, with EnOIexp yielding slightly better results. For instance, while

the SST RMSE (SSH RMSE) corresponding to the whole domain and full year 2011

is 0.68 °C (4.9 cm) in EnOIexp, it is 0.71 °C (5.1 cm) in EAKFexp. Examining

region-wide statistics of SST and SSH suggests that the differences between these two

experiments are noticeable only in the Gulf of Aden (Figures/Table not shown), with

the EnOI yielding better results compared to EAKF. One may expect the results of

EAKFexp to improve if uncertainties in the ocean boundary conditions were accounted

for (through appropriate perturbations), as this should enhance the ensemble spread

in the Gulf of Aden.

To provide more insight into the results for under-sampled regions and ocean vari-

ables, we examined the assimilation solution for SSS and subsurface temperature and

salinity using independent observations from the WHOI/KAUST. Figure 6.7 displays

spatial maps of SSS from the different experiments overlaid with independent obser-

vations from WHOI/KAUST summer cruise. Interestingly, the SSS results are very

different from the SST and SSH ones, with EAKFexp performing significantly better

than EnOIexp. For instance, the observations indicate a north-south gradient with

fresh water in the southern Red Sea and saline-water in the northern Red Sea (Fig-

ure 6.7a). Such a prominent north-south salinity gradient is not well reproduced in

EnOIexp (Figure 6.7d). EnOIexp simulates a spurious fresh water pool in the central

Red Sea influenced by the advection of anomalous fresh waters from the southern

Red Sea, where the SSS differences between observations and EnOIexp reach 2 psu.

These biases are even larger than that in Fexp (Figure 6.7b). The SSS from EAK-

Fexp, on the other hand, agrees much better with the observations (compare Figure
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6.7e with 6.7b and 6.7c), with the model-data differences being less than 1 psu, and

improved north-south spatial gradients of SSS. Figure 6.9 plots the estimated tem-

perature and salinity structures corresponding to the WHOI/KAUST summer cruise

observations locations. EnOIexp exhibits a salinity bias of 0.5 psu in the subsur-

face layers throughout the domain (Figure 6.9d), and simulates spurious pockets of

high salinity waters in the subsurface layers (180-300m) between 22°-24°N (absolute

fields from the assimilation experiments are not shown in the Figure). |W (z)|max

is suspiciously large (compared to Fexp; Figures 6.8c with 6.8a) in EnOIexp almost

throughout the Red Sea starting from the middle of the year. As argued in [161],

such a large |W (z)|max results from spurious vertical correlations in the quasi-static

ensemble of the EnOIexp. EAKFexp does not show such sporadic behavior. It further

improves the subsurface temperature and salinity biases particularly to the north of

20°N. However, as already reported in [161], EAKFexp misses high-resolution spatial

features such as the deepening of the 23 °C isotherm around 26°N (compare Figure

6.9e with 6.9a), the intrusion of a fresh and cold Gulf-of-Aden water mass around

60 m (which manifest itself as large overestimation of subsurface temperature and

salinity south of 20°N; Figure 6.9e-f). EnOIexp reproduces these features, but with

significant discrepancies in the location of the deeper 23 °C isotherm and in the mag-

nitudes of the temperature/salinity of the Gulf of Aden water mass appearing at the

intermediate layers. This is likely related to spurious propagations of surface obser-

vations information [159, 160] due to the misrepresentation of the “errors-of-the-day”

by the quasi-static ensemble of the EnOI. Such spurious corrections were shown to

disrupt the model dynamical balances [12, 25, 80, 105, 141, 161], particularly in the

data-sparse subsurface layers (e.g. temperature and salinity) and for under-sampled

ocean variables (e.g. SSS).

HyBDexp significantly improves the Red Sea state estimates and also preserves

better the dynamical consistency (as can be inferred from reasonable |W (z)|max in
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Figure 6.9: Subsurface temperature (°C) and salinity (psu) from in situ CTD obser-
vations (a-b) collected during the WHOI/KAUST summer cruise conducted during
15th September - 8th October, 2011. Panels b(c), d(e), f(g), h(i), and j(k) show col-
located (in space and time) temperature (salinity) differences between EnOIexp and
WHOI/KAUST observations, EAKFexp and WHOI/KAUST observations, HyBDexp
and WHOI/KAUST observations, HyBDmAPexp and WHOI/KAUST observations,
and HyBmPDexp and WHOI/KAUST observations respectively. Temperature and
salinity observations are smoothed by 1 °C and 10 m in latitudinal and vertical direc-
tions to better highlight subsurface features. 23 °C isotherm is also indicated in the
respective temperature plots. Latitudes corresponding to observations locations are
indicated as black vertical dashes at the top of each panel.
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Figure 6.8e). Note that the larger SST and SSH improvements achieved in EnOIexp

and EAKFexp are not compromised in HyBDexp. HyBDexp indeed does even better

than EnOIexp, in terms of SSH RMSEs (Figure 6.6b). The SST and SSH RMSEs

are improved by 20% in HyBDexp compared to EAKFexp, reaching 0.2 °C and 1

cm, in terms of differences in SST and SSH RMSEs, respectively. SSS (an under-

sampled variable) in HyBDexp, which was not well simulated by EnOIexp and better

represented in EAKFexp, is closer to the observations in the southern Red Sea with

HyBDexp. The SSS is even better estimated by HyBDexp compared to EAKFexp

in this region (compare Figure 6.7f with 6.7d and 6.7e). The differences between

HyBDexp and EAKFexp SSS are not very significant over the rest of the domain.

Subsurface temperature and salinity are better reproduced by HyBDexp (Figure 6.9g-

h) compared to EnOIexp (Figure 6.9c-d). In addition, HyBDexp does better than

EAKFexp (Figure 6.9e) in capturing the subsurface temperature structure (Table 6.5),

particularly the deepening of the 23 °C isotherm in the northern latitudes, which was

completely missed in EAKFexp. The large subsurface salinity biases introduced by

the quasi-static ensemble are however not fully mitigated in HyBDexp (Figure 6.9h).

Table 6.5: Statistics of the main experiments.
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Free
EnOIexp
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29.86
29.15
29.52
29.51
29.50

0.95
1.19
0.90
0.85
0.85

0.82
0.40
0.41
0.44

0.953
0.976
0.980
0.969

22.47
22.55
22.49
22.58
22.54

2.02
1.88
1.94
1.95
1.93

0.271
0.274
0.271
0.237

0.994
0.991
0.993
0.995

39.64
39.65
39.42
39.71
39.66

0.60
0.57
0.74
0.59
0.67

0.21
0.33
0.11
0.14

0.94
0.96
0.99
0.98

40.38
40.40
40.45
40.42
40.45

0.36
0.32
0.38
0.30
0.31

0.10
0.15
0.10
0.13

0.967
0.944
0.979
0.966

6.4.1 Meso-scale eddy features

To demonstrate the merits of the HyBDexp system in reproducing the Red Sea

mesoscale eddy features, spatial maps of SSH snapshots are shown in Figure 6.10,

where clear differences can be seen between HyBDexp and EAKFexp in the north-
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ern Red Sea, central Red Sea, and Gulf of Aden. Figure 6.10 displays along-track

SSH observations on 6th November, 2011 (top), 15th July, 2011 (middle), and 30th

September, 2011 (bottom) overlaid on the corresponding daily averaged spatial maps

from CMEMS-L4 (left), EAKFexp (middle) and HyBDexp (right). The 6th Novem-

ber, 2011 corresponds to a period of an anomalous cyclonic eddy in the northern Red

Sea (Figure 6.10a) [138]. It is largely modulated by the local net heat flux and remote

sea level perturbations from the southern Red Sea [193]. Around 15th July, 2011, the

central Red Sea hosted an anti-cyclonic eddy around 21°N (Figure 6.10b). Such an

eddy, whose presence may have been tied to coastline and topographic variations (e.g.

[143], appears every June and lasts until July (e.g. [146]). Around 30th September,

2011 the Gulf of Aden experienced a series of eddies (Figure 6.10c), which results

from instabilities in the adjacent Somali current and in the nearby large eddies, such

as the Great Whirl and Socorta eddy [5, 188].

Comparing the assimilation estimates with SSH observations (for both along-

track SSH and interpolated product CMEMS-L4) suggests that the intensity and the

size of the eddies are underestimated in EAKFexp (Figure 6.10d-f). EAKFexp, for

instance, completely misses the anti-cyclonic eddy in the central Red Sea. HyBDexp

significantly improves the eddy features in terms of their intensity and also size,

irrespective of the region (Figure 6.10g-i). For instance, the missed anti-cyclonic

eddy in EAKFexp (Figure 6.10e) is reproduced reasonably well by HyBDexp (Figure

6.10h), albeit slightly shifted. The intensities of the series of alternating eddies in

the Gulf of Aden, and the anomalous cyclonic eddy in the northern Red Sea, are also

better represented in HyBDexp (Figure 6.10i) than EAKFexp (Figure 6.10f). In fact,

HyBDexp is a closer match to the observations than CMEMS-L4 (Figure 6.10a-c) in

terms of eddies intensities.
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Figure 6.10: Spatial maps of daily averaged SSH (in cm) corresponding to 6th Novem-
ber, 2011 (top), 15th July, 2011 (middle), and 30th September, 2011 (bottom) from
(a-c) merged altimeter CMEMS-L4. Panels (d-f), (g-i), and (j-l) show similar plots
as resulted from EAKFexp and HyBDexp forecasts, and along-track observations, re-
spectively. Along track SSH observations of the corresponding day is also overlaid on
each map.
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6.4.2 Importance of accounting for uncertainties in internal

model physics and atmospheric forcing

[161] demonstrated the importance of accounting for background errors due to uncer-

tainties in the internal ocean model physics and atmospheric forcing in the EAKF.

To examine the significance of these in the Hybrid system, we have conducted two

more HyBDexp experiments, HyBDmAPexp and HyBDmPexp. HyBDmAPexp and

HyBDmPexp are the same as HyBDexp except that HyBDmAPexp uses the default

internal model physics and is forced by the ensemble mean ECMWF atmospheric

fields, and HyBDmPexp uses the default internal model physics and is forced by the

ensemble ECMWF fields. Figures 6.8f and 6.8g display |W (z)|max along the Red Sea

axis from HyBDmAPexp and HyBDmPexp, respectively. Compared to HyBDexp, the

spread of the large |W (z)|max becomes wider in HyBDmPexp, and even wider in HyB-

DmAPexp, suggesting degraded dynamical balances. This is even manifested in SSS,

and subsurface temperature and salinity. For instance, as can be seen from Figures

6.7g and 6.7h, the north-south SSS gradient is not well represented in HyBDmAPexp

and HyBDmPexp compared to HyBDexp. They also show anomalous fresh waters

in the southern parts of the Red Sea. The subsurface temperature (Figure 6.9i and

6.9k) and salinity (Figure 6.9j and 6.9l) also become noisy, and show spurious features

and increased biases. These results clearly emphasize the importance of accounting

for uncertainties in the atmospheric forcing and internal model physics in the Hybrid

system.

6.4.3 Computational gain

This section focuses on assessing HyBDexp in terms of computational efficiency, an

important aspect of this study. This is achieved by first assessing the sensitivity of

EAKF ocean state estimates to gradually increased ensemble size.

We first present results from four different EAKF experiments: the standard 50-
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member EAKFexp, EAKF100exp, EAKF250exp, and EAKF500exp. The last three

experiments are similar to EAKFexp but use 100, 250, and 500 ensemble members,

respectively. Table 6.2 outlines the configurations of these experiments. The initial

ensembles of these experiments are generated as in EAKFexp, and the atmospheric

forcing is sampled, assuming a normal distribution, using the ensemble mean and

spread of the original 50-member ensemble atmospheric forcing of EAKFexp. Exam-

ining the assimilation results of these experiments suggests little differences in terms

of SST and SSH (Figures not shown), which is expected owing to the homogeneous ob-

servations coverage of these data sets. No clear differences in the results are found for

the sparsely observed temperature variable either. More pronounced differences are

obtained however with salinity, the most under-sampled variable, both at surface and

subsurface. Increasing the size of the ensemble from 50 to 100 reduces salinity biases

in the intermediate layers (Figure 6.11b). Noticeable improvements in the salinity are

also achieved in the whole water column when increasing the ensemble size from 100

to 250. Comparing the spatial maps and RMSEs of SSS of these EAKF experiments

(Figures 6.12a-d; Table 6.6) with the in situ observations suggest that errors in SSS

seem to reach a plateau after using 250 ensemble members. Further increasing the

size of the ensemble from 250 to 500 resulted in negligible improvements, suggesting

that 250 members are enough to describe the statistics of the filtering errors given

the considered uncertainties (from ECMWF ensemble forcing and perturbed physical

parameterizations) in the system. The SSS and subsurface salinity in EAKF250exp

(Figures 6.11c and 6.12c) are clearly comparable or slightly better than those of HyB-

Dexp (Figure 6.9h and 6.12e). However, overall, EAKF250exp results are still not as

good as HyBDexp, with substantial differences between the two in terms of SST and

SSH, and subsurface temperatures (Figures not shown, as SST and SSH RMSEs and

subsurface temperatures in EAKF250exp are very similar to those of EAKFexp, and

Figures 6.6 and 6.9 have already outlined the better performances of HyBDexp).
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Figure 6.11: Collocated salinity differences (psu) between (a) EAKFexp simulations
and WHOI/KAUST observations, (b) EAKF100exp simulations and WHOI/KAUST
observations. (c) EAKF250exp simulations and WHOI/KAUST observations, and
(d) EAKF500exp simulations and WHOI/KAUST observations.

Table 6.6: Statistics of the EAKF experiments.
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0.08
0.09

0.9679
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Figure 6.12: Same as Figure 6.7 except that the results are shown for various
EAKF (top) and Hybrid (bottom) sensitivity experiments pertained to the size of
the ensemble. Panels a-d corresponds to EAKFexp, EAKF100exp, EAKF250exp,
and EAKF500exp, respectively. Similarly, e-h corresponds to HyBDexp, HyBD30exp,
HyBD20exp, and HyBD10exp, respectively.
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To assess the sensitivity of the Hybrid ensemble system to the flow-dependent and

static ensembles sizes, we examined the outputs of HyBDexp by gradually decreasing

the number of flow-dependent members from 50 to 10 while maintaining the ensemble

size at 300 members. As summarized in Table 6.2, these experiments, HyBD10exp,

HyBD20exp, HyBD30exp, are the same as the HyBDexp (50 dynamical + 250 Static)

experiment, but use less flow-dependent members and more static members: 10+290,

20+280, 30+270, respectively. Comparing the results of these experiments (Figures

not shown) suggests insignificant changes in the subsurface temperature and salinity

and in SST and SSH. Though not substantial, the results differ mainly for SSS.

Decreasing the size of the dynamic-ensemble from 50 to 30 slightly degrades SSS

(compare Figures 6.12f and 6.12e), particularly in the southern parts of the Red Sea.

We also see slight degradations in SSS when the dynamic-ensemble size is decreased

from 30 to 20 (Figure 6.12g) and from 20 to 10 (Figure 6.12h). Overall, all HyBDexp

experiments, including HyBD10exp, are at least as good as EAKF250exp.

We finally discuss the computational savings achieved by the HyBDexp system,

comparing the CPU-hours of EAKF250exp, HyBD10exp, and HyBDexp on our high

performance supercomputer facility SHAHEEN-II (https://hpc.kaust.edu.sa). Table

6.7 outlines the break-up of computational load of these experiments for an assimila-

tion cycle. The 4km-MITgcm of the Red Sea (array size = 500 x 500 x 50) running

with the 200 s integration time step on 3 nodes (each node contains 32 cores with

128 GB flash memory) consumes 4.5 core-hours for a 3-day integration, the length of

the assimilation cycle. The update step with DART consumed 40 core-hours for 250-

member ensemble when implemented on 20 nodes. EAKF250exp consumed 1180 core-

hours to complete one assimilation cycle (update+forecast). HyBDexp (HyBD10exp)

calls the DART update step twice, consuming 7+40=47 (3+40=43) core-hours. The

total computational cost of HyBDexp (HyBD10exp), which integrates 50 (10) MIT-

gcms, is 275 (89) core-hours. This means that the Hybrid systems (here HyBDexp

https://hpc.kaust.edu.sa
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and HyBD10exp) led to 76-92% CPU-hours saving with respect to the EAKF-based

system (EAKF250exp).

Table 6.7: Statistics of computational expenditure, in terms of core-hours, associ-
ated with different assimilation experiments. In the table, we show computational
expenditure incurred for each component of the assimilation system: the ocean model
MITgcm, the first part of assimilation code DART, and the second part of assimi-
lation code, HDART. Note that the HyBDexp systems run two assimilation codes,
DART and HDART, parallelly.

Experiment MITgcm DART HDART Total improvement (%)
EAKF250exp 1140 40 NA 1180 NA
HyBDexp 228 7 40 275 76
HyBD10exp 46 3 40 89 92

6.5 Summary and conclusions

A new Hybrid data assimilation system was developed for the Red Sea using a 4km-

MITgcm and DART. It combines static, but seasonally varying, ensemble members

and EAKF-flow-dependent members. The dynamical EAKF members were fore-

casted with MITgcm forced with atmospheric forcing ensembles and perturbed in-

ternal physics. EnOI and EAKF have their own merits and the new Hybrid-EAKF

system was able to further improve their performance and helped mitigating their lim-

itations. EnOI was shown to enhance the SST and SSH estimates compared to the

EAKF, but degraded the ocean estimates in the under-sampled regions and variables,

such as subsurface temperature, salinity and SSS. It further disturbed the dynamical

balances of the ocean state. EAKF preserved the dynamical balances better and rep-

resented better the under-sampled variables. It was however less efficient at capturing

some of the high resolution features, which are important components of the Red Sea

circulation. By complementing the flow-dependent ensemble with static members,

the Hybrid-EAKF system was able to capture most of the high resolution mesoscale

eddy features, and yielded noticeable improvements in SSH, subsurface temperature,
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and SSS compared to both EnOI and EAKF. In the deeper layers, EAKF salinity es-

timates remained relatively better than the Hybrid estimates, when evaluated against

the few available subsurface observations. Hybrid-EAKF further outperformed EAKF

with 250 members. Reducing the number of dynamical members from 50 to 10 did

not significantly affect the Hybrid results, but led to drastic (more than 75% in our

setup) computational savings compared to the EAKF systems.

The significant improvements, in terms of both quality of ocean state estimates

and computational cost, offered by the Hybrid-EAKF system is a motivation for

both ocean data assimilation and operational communities developing ensemble data

assimilation systems in the Red sea and other regional seas. The fact that the Hybrid-

EAKF outperforms the best performing EAKF system (that saturated at 250 mem-

bers), even when accounting for uncertainties in the atmospheric forcing and internal

physics, suggests that the EAKF system is still missing some sources of uncertainties.

Uncertainties in the open boundary conditions or bathymetry may be part of these

imperfections, and will be considered in our future work.
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Chapter 7

Concluding Remarks

7.1 Summary

This dissertation documents our contribution to the implementation of a multipur-

pose ensemble data assimilation system configured for the Red Sea, a future key

asset for the region and the surrounding countries. The system is based on the Mas-

sachusetts Institute of Technology general circulation model (MITgcm) to carry out

the Red Sea circulation simulations and the Data Research Testbed (DART) package

to perform the ensemble data assimilation updates. The DART-MITgcm system was

implemented on Shaheen, KAUST world-class supercomputer. Different assimilation

schemes have been implemented. The ensemble adjustment Kalman filter (EAKF)

integrates the ensemble members in parallel, at the forecast step, and might require

large ensembles for its performance. However, using too large ensembles (O(100))

could result in a system crash and failure. While ensembles of 100 members were

sufficient for the EAKF to yield satisfactory results, auxiliary techniques such as

localization and inflation were employed to mitigate the underestimation of the un-

certainties due to the small sizes of the ensembles. Taking advantage of our compu-

tational resources, we successfully conducted the first 1000 members ocean ensemble

assimilation run and explored the until then uncharted big ensemble territories. This

expedition was very fruitful as it revealed the capability of the system to perform out-

standingly without the artificial auxiliary fixes. The journey was not without pitfalls

as the system instability grew with the ensemble size. This allowed us to develop an
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enhancement of the system by making it more reliable, fault-tolerant and less prone

to disruption.

In instances were gigantic computational resources are out of reach, which is most

of the time the case, alternative procedures are ineluctable. In this regard, we de-

signed and consolidated the DART-MITgcm ensemble assimilation system with new

assimilation schemes. The ensemble Optimal Interpolation (EnOI) lowers the compu-

tational coast by advancing only the mean of the ensemble and makes use of a static

covariance. The EnOI sustained the system spread unlike the EAKF, which suffered

from the ensemble inbreeding where all the ensemble members converge to the ensem-

ble mean. The static covariance was however not able to account for the prevailing

seasonal variability of the Red Sea circulation. The EnOI was therefore enhanced by

designing a scheme with seasonally-varying ensembles, the Seasonal EnOI (SEnOI),

to remedy the seasonal variability issue. The SEnOI restricts the selected members

to set of periods meant to represent the variability of the Red Sea across the year,

and one static covariance is built accordingly, for each given season. A further im-

provement was then suggested to the (S)EnOI schemes by adaptively selecting, with

respect to some metrics or criteria, the ensemble members throughout the assimilation

process, from a dictionary describing the variability of the Red Sea. The covariance

is then constructed from those members related to the current forecast state. Two

choices were considered to relate the selected members to the current forecast state:

the L2-distance between the forecast and the dictionary elements and the Orthogonal

Matching Pursuit (OMP) algorithm. Finally, the key features of the EAKF and the

EnOIs schemes have been merged in a Hybrid assimilation scheme that combines a

flow-dependent covariance from the EAKF and a static covariance. Another benefit

of the Hybrid scheme is to be adjustable to the available resources by increasing or

decreasing the size of the flow-dependent component. The Hybrid scheme can lead to

striking cost reduction when using small dynamical ensemble with appropriate static
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ensemble while still providing reliable estimates, without appreciable differences in

the results compared to a larger dynamical ensemble.

The system has been validated with numerical experiments forced with real time

atmospheric fields from the European Centre for Medium-Range Weather Forecasts

(ECMWF) and the National Center for Environmental Prediction (NCEP), while

assimilating real data, namely satellite sea surface height (SSH), sea surface tem-

perature (SST), in situ and cruise data. The results were compared to independent

data.

The EAKF provides the best estimates when the underlying assumptions are met.

In realistic applications, however, the involved functions are nonlinear, the error are

non Gaussian, and the ensemble size is very limited due to computational resources.

In these situations in which the EAKF performance is suboptimal, the other schemes

might be competitive. Indeed, with suitable static/selected ensembles, the EnOIs

schemes can yield results comparable to an optimal EAKF, and so does the Hybrid

scheme, except that the Hybrid, combined with perturbed internal physics, further

significantly improved the subsurface solution and its dynamical balances.

7.2 Future Research Work

After successfully implementing a fault-tolerant DART-MITgcm ensemble assimila-

tion system tailored for the Red Sea, equipped with cost efficient schemes targeting an

operational usage of the system, further steps are to be undertook to reach a full real-

time capability. To this end, given that some uncertainties still need to be accounted

for, for example the open boundary conditions, the bathymetry, to name a few, we

envisage new schemes. Among them is the Stochastic EnKF with second order ob-

servation error sampling, expected to improve the estimation of the error covariance

since it is designed to match the theoretical error covariance. We also plan to im-

plement Gaussian-mixture filters within DART two-steps assimilation framework to
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better account for the system nonlinearity and envision using the developed schemes

in this thesis (e.g. Hybrid EAKF formulation) for their efficient implementation. We

will also work on the synchronization of the system with observation collecting de-

vices and the processing of the observations on the fly to develop the first operational

system for the Red Sea.



186

REFERENCES

[1] Adcroft, A., Campin, J.M., Hill, C., Marshall, J.: Implementation of an

atmosphere-ocean general circulation model on the expanded spherical cube.

Monthly Weather Review 132(12), 2845–2863 (2004). DOI 10.1175/MWR2823.

1. URL https://doi.org/10.1175/MWR2823.1

[2] Adcroft, A., Hill, C., Marshall, J.: Representation of topography by shaved

cells in a height coordinate ocean model. Monthly Weather Review 125(9),

2293–2315 (1997). DOI 10.1175/1520-0493(1997)125〈2293:ROTBSC〉2.0.CO;2.

URL https://doi.org/10.1175/1520-0493(1997)125〈2293:ROTBSC〉2.0.CO;2

[3] Ait-El-Fquih, B., El Gharamti, M., Hoteit, I.: A bayesian consistent dual

ensemble kalman filter for state-parameter estimation in subsurface hydrol-

ogy. Hydrology and Earth System Sciences 20(8), 3289–3307 (2016). DOI

10.5194/hess-20-3289-2016. URL https://www.hydrol-earth-syst-sci.net/20/

3289/2016/

[4] Aksoy, A., Dowell, D.C., Snyder, C.: A Multicase Comparative Assessment

of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part

I: Storm-Scale Analyses. Monthly Weather Review 137(6), 1805–1824 (2009).

DOI 10.1175/2008MWR2691.1. URL https://doi.org/10.1175/2008MWR2691.

1

[5] Al Saafani, M.A., Shenoi, S.S.C., Shankar, D., Aparna, M., Kurian, J., Durand,

F., Vinayachandran, P.N.: Westward movement of eddies into the gulf of aden

from the arabian sea. Journal of Geophysical Research: Oceans 112(C11)

(2007). DOI 10.1029/2006JC004020. URL https://agupubs.onlinelibrary.wiley.

com/doi/abs/10.1029/2006JC004020

[6] Altaf, M.U., Butler, T., Mayo, T., Luo, X., Dawson, C., Heemink, A.W.,

Hoteit, I.: A comparison of ensemble kalman filters for storm surge assimi-

lation. Monthly Weather Review 142(8), 2899–2914 (2014). DOI 10.1175/

MWR-D-13-00266.1. URL https://doi.org/10.1175/MWR-D-13-00266.1

https://doi.org/10.1175/MWR2823.1
https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2
https://www.hydrol-earth-syst-sci.net/20/3289/2016/
https://www.hydrol-earth-syst-sci.net/20/3289/2016/
https://doi.org/10.1175/2008MWR2691.1
https://doi.org/10.1175/2008MWR2691.1
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JC004020
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JC004020
https://doi.org/10.1175/MWR-D-13-00266.1


187

[7] Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Avellano,

A.: The data assimilation research testbed: A community facility. Bulletin of

the American Meteorological Society 90(9), 1283–1296 (2009). DOI 10.1175/

2009BAMS2618.1. URL https://doi.org/10.1175/2009BAMS2618.1

[8] Anderson, J.L.: An ensemble adjustment kalman filter for data assimila-

tion. Monthly Weather Review 129(12), 2884–2903 (2001). DOI 10.1175/

1520-0493(2001)129〈2884:AEAKFF〉2.0.CO;2. URL https://doi.org/10.1175/

1520-0493(2001)129〈2884:AEAKFF〉2.0.CO;2

[9] Anderson, J.L.: A local least squares framework for ensemble filtering. Monthly

Weather Review 131(4), 634–642 (2003). DOI 10.1175/1520-0493(2003)

131〈0634:ALLSFF〉2.0.CO;2. URL https://doi.org/10.1175/1520-0493(2003)

131〈0634:ALLSFF〉2.0.CO;2

[10] Anderson, J.L.: An adaptive covariance inflation error correction algorithm for

ensemble filters. Tellus A: Dynamic Meteorology and Oceanography 59(2),

210–224 (2007). DOI 10.1111/j.1600-0870.2006.00216.x. URL http://dx.doi.

org/10.1111/j.1600-0870.2006.00216.x

[11] Anderson, J.L.: Exploring the need for localization in ensemble data

assimilation using a hierarchical ensemble filter. Physica D: Nonlinear

Phenomena 230(1), 99 – 111 (2007). DOI http://dx.doi.org/10.1016/j.

physd.2006.02.011. URL http://www.sciencedirect.com/science/article/pii/

S0167278906002168. Data Assimilation

[12] Anderson, J.L.: Spatially and temporally varying adaptive covariance inflation

for ensemble filters. Tellus A 61(1), 72–83 (2009). DOI 10.1111/j.1600-0870.

2008.00361.x. URL http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x

[13] Anderson, J.L., Anderson, S.L.: A monte carlo implementation of the nonlinear

filtering problem to produce ensemble assimilations and forecasts. Monthly

Weather Review 127(12), 2741–2758 (1999). DOI 10.1175/1520-0493(1999)

127〈2741:AMCIOT〉2.0.CO;2. URL https://doi.org/10.1175/1520-0493(1999)

127〈2741:AMCIOT〉2.0.CO;2

[14] Anderson, J.L., Collins, N.: Scalable implementations of ensemble filter al-

gorithms for data assimilation. Journal of Atmospheric and Oceanic Tech-

nology 24(8), 1452–1463 (2007). DOI 10.1175/JTECH2049.1. URL https:

//doi.org/10.1175/JTECH2049.1

https://doi.org/10.1175/2009BAMS2618.1
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.2006.00216.x
http://dx.doi.org/10.1111/j.1600-0870.2006.00216.x
http://www.sciencedirect.com/science/article/pii/S0167278906002168
http://www.sciencedirect.com/science/article/pii/S0167278906002168
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
https://doi.org/10.1175/JTECH2049.1
https://doi.org/10.1175/JTECH2049.1


188

[15] Asch, M., Bocquet, M., Nodet, M.: Data Assimilation. Society for

Industrial and Applied Mathematics, Philadelphia, PA (2016). DOI

10.1137/1.9781611974546. URL https://epubs.siam.org/doi/abs/10.1137/1.

9781611974546

[16] AVISO: SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real

Time and Delayed Time Products (2015). URL https://icdc.cen.uni-hamburg.

de/fileadmin/user upload/icdc Dokumente/AVISO/hdbk duacs.pdf

[17] Backeberg, B.C., Counillon, F., Johannessen, J.A., Pujol, M.I.: Assimilat-

ing along-track sla data using the enoi in an eddy resolving model of the

agulhas system. Ocean Dynamics 64(8), 1121–1136 (2014). DOI 10.1007/

s10236-014-0717-6. URL https://doi.org/10.1007/s10236-014-0717-6

[18] Balmaseda, M.A., Mogensen, K., Weaver, A.T.: Evaluation of the ecmwf

ocean reanalysis system oras4. Quarterly Journal of the Royal Meteorologi-

cal Society 139(674), 1132–1161 (2013). DOI 10.1002/qj.2063. URL https:

//rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2063

[19] Bannister, R.N.: A review of operational methods of variational and ensemble-

variational data assimilation. Quarterly Journal of the Royal Meteorological

Society 143(703), 607–633 (2017). DOI 10.1002/qj.2982. URL https://rmets.

onlinelibrary.wiley.com/doi/abs/10.1002/qj.2982

[20] Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres,
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APPENDICES

A Relationship between xt, x and yo

To discuss the relationship between xt, x, and yo, let S be the state space containing

xt. To handle and manipulate xt, we define a discrete representation of it, i.e. a

model, even though we shall also use the term (dynamical) model later for the map

that evolves the state in time. Therefore, for n ∈ N, let Sn be the state space of

dimension n representing S at n grid points, and let our estimate x of xt be an

element of Sn. If we define TS to be the map that assigns to xt ∈ S its restriction to

the space Sn,

TS : S −→ Sn

xt 7−→ TS(xt) := xt|Sn
,

(A.1)

then ξ := TS(xt) − x is the error in estimating xt by x in the space Sn. To make

the link between xt and yo, we define Op as the observation state of dimension p

containing yo and O as the observation space that will contain a representation of xt,

referred as yt, that can be compared to yo. We also define the map hS→O to relate

xt to yt:

hS→O : S −→ O

xt 7−→ yt = hS→O(xt),

(A.2)

and, similarly to TS , we define TO to be the map from the infinite dimensional space
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O to the p-dimensional space Op that associates to yt ∈ O its restriction to Op:

TO : O −→ Op

yt 7−→ TO(yt) := yt|Op
.

(A.3)

Therefore the relation between xt and yo is summarized by the error ε = yo−TO(yt) =

yo − TO(hS→O(xt)). To establish a connection between x and yo, we introduce an

observation operator hSn→Op that sends x ∈ Sn to the space Op:

hSn→Op : Sn −→ Op

x 7−→ yp = hSn→Op(x).

(A.4)

x is then connected to yo by the error δ = yo − hSn→Op(x) = yo − yp. δ is called

the innovation and accounts for the mismatch between what we observe and what we

predict, i.e. the difference between the observation yo and the prediction yp. The

following commutative diagram summarizes the discussed spaces:

S Sn

O Op

TS

hS→O hSn→Op

TO

(A.5)

All the previous interactions have been considered at a given time tk, for k ∈ N. To

deal with the evolving aspect of the system state, we assign a time component to our

system and define a dynamical model that will advance the system forward in time.

Let S(tk) and S(tk+1),∀k ∈ N, be our state space at time tk and tk+1, respectively.

The same way, we define O(tk) to be the observation space at time tk, Sntk
(tk) to be

the state space of dimension ntk at time tk, Optk (tk) to be the observation space of

dimension ptk at time tk. Assuming that S and O are not changing over time, we can
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make some simplifications: S := S(tk) and O := O(tk),∀k ∈ N. We also assume that

the dimension of the discrete state space Sntk
is constant such that Sn(tk):= Sntk

(tk).

Unlike Sntk
, the dimension ptk of Optk changes over time in our application. Let Gtk

be the true dynamical geophysical model that advances the true state in time:

Gtk : S −→ S

xt(tk) 7−→ xt(tk+1) = Gtk(xt(tk)).

(A.6)

Gtk is unknown and we therefore turn to a representation Mtk that we expect to

capture most of the physics involved in Gtk , in order to minimize the modelling errors:

Mtk : Sn(tk) −→ Sn(tk+1)

x(tk) 7−→ x(tk+1) =Mtk(x(tk)). (A.7)

Mtk operates on the discrete spaces Sn(tk) and Sn(tk+1). To apply Mtk in the place

of Gtk to the true state xt, we first send it in Sn(tk) through TS . Then we compute

Mtk(TS(xt(tk))) which is an approximation of TS(xt(tk+1)) = TS(Gtk(xt(tk))) in the

space Sn(tk+1), and we define the corresponding error as the model error

ηtk := TS(xt(tk+1))−Mtk(TS(xt(tk)))

:= TS(Gtk(xt(tk)))−Mtk(TS(xt(tk))). (A.8)

Notice that TS in TS(Gtk(xt(tk))) is TS : S −→ Sn(tk+1) and the one inMtk(TS(xt(tk)))

is TS : S −→ Sn(tk). Strictly speaking, we should use different notations for each of

them, but we make use of TS for both since the purpose is to evaluate the variables in

the discrete spaces, and also to avoid carrying many additional notations. We already

know (cf. page 213) that ξ = TS(xt) − x is the error in estimating xt by x in the

space Sn. Adding the time index, ξtk := TS(xt(tk)) − x(tk) is the estimation error

in Sn(tk) and ξtk+1
:= TS(xt(tk+1)) − x(tk+1) the one in Sn(tk+1). From Eq. (A.8),



216

TS(xt(tk+1)) =Mtk(TS(xt(tk))) +ηtk and x(tk+1) =Mtk(x(tk)) by definition ofMtk .

So ξtk+1
=Mtk(TS(xt(tk))) + ηtk −Mtk(x(tk)) and if moreover Mtk is linear then

ξtk+1
= Mtk(TS(xt(tk)))−Mtk(x(tk)) + ηtk

= Mtk(TS(xt(tk))− x(tk)︸ ︷︷ ︸
=ξtk

) + ηtk

= Mtk(ξk) + ηtk

In case Mtk is nonlinear, letting Mtk be the linearization of Mtk around x(tk), we

should add the higher-order terms (h.o.t.) of the Taylor expansion of Mtk in the

previous expression of the error:

ξtk+1
= Mtk(ξtk) + ηtk + h.o.t., (A.9)

and obtain the equation governing the errors propagation in time.

We shall also update the observation operators notations. For hS→O there is

nothing to do because we assumed S and O to be constant over time. As for hSn→Op ,

we get hSn(tk)→Optk
(tk) at time tk and hSn(tk+1)→Optk+1

(tk+1) at time tk+1. We simplify

hSn(tk)→Optk
(tk) as htk and hSn(tk+1)→Optk+1

(tk+1) as htk+1
. A summary of the spaces and

variables is given in Table A.1.

Now, let us assume tk = k, ∀k ∈ N and TS(xt) = xt by identifying xt with its

restriction to the space Sn, but keeping in mind that it is an element of Sn. We

also place the time variable as subscript in the variables’ notations. For example,
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Table A.1: Spaces and variables at time tk and tk+1.

S Sn(tk)

xt(tk) TS(xt(tk))

x(tk)

O Optk (tk)

yt(tk) htk(TS(xt(tk)))

htk(x(tk))

yo(tk)

S Sn(tk+1)

xt(tk+1) TS(xt(tk+1)) =Mtk(TS(xt(tk))) + ηtk

x(tk+1) =Mtk(x(tk))

O Optk+1
(tk+1)

yt(tk+1) htk+1
(TS(xt(tk+1)))

htk+1
(x(tk+1))

yo(tk+1)

Mtk

TS(xt(tk+1)) =Mtk(TS(xt(tk))) +ηtk now becomes xtk+1 =Mk(x
t
k) + ηk.

B Construction of an adjustment matrix Ak

Let us consider a sample of N members {zf,ik }i=1,...,N
from the prior distribution with

sample mean zfk and sample covariance Σ = Σf
k , and assume the quantities HT

kR−1
k yok

and HT
kR−1

k Hk are readily available at the assimilation time k, when observations

become available. For simplification, the time subscript k will be dropped from here.

Notice that Σ and HTR−1H are symmetric positive semi-definite matrices. There-

fore their eigenvalue decompositions and their singular value decomposition (SVD)

can be computed such that they match. The idea is to rewrite equation (2.13) in the

form Σa = AΣAT using successive changes of basis by applying SVDs. Indeed, the
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estimated updated covariance is given by

Σa,e =
1

N − 1

N∑
i=1

(za,i − za)(za,i − za)T (B.1)

Then by replacing za,i by its expression from (2.15),

Σa,e =
1

N − 1

N∑
i=1

(A(zf,i − zf ) + za − za)(A(zf,i − zf ) + za − za)T

=
1

N − 1

N∑
i=1

(
A(zf,i − zf )(zf,i − zf )TAT

)

= A

 1

N − 1

N∑
i=1

(zf,i − zf )(zf,i − zf )T︸ ︷︷ ︸
=Σf,e

AT

= AΣf,eAT (B.2)

Now, let us give the details of the construction.

A SVD of Σ gives:

Σ = FDfFT (B.3)

with F a unitary matrix (FTF = I, F−1 = FT, (FT)−1 = F), and Df a diagonal

matrix having the singular values of Σ (µf ) on its diagonal because, as previously

stated, Σ is symmetric and positive semi-definite. From (B.3),

Df = FTΣF (B.4)

By defining G as the diagonal matrix having the square root of the singular values
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of Σ (
√
µf ) on its diagonal, we get

(GT)−1FTΣFG−1 = I (B.5)

where I is the identity matrix.

Since we should work on Σ−1 and HTR−1H in (2.13) at the same time, we apply

a SVD on GTFTHTR−1HFG (and not on HTR−1H). So

GTFTHTR−1HFG = UDUT (B.6)

with U a unitary matrix and D a diagonal matrix holding the singular values µ.

Then,

D = UTGTFTHTR−1HFGU (B.7)

Next, we express Σ in the same basis than D by applying UT and U to (B.5)

(keeping in mind that U is unitary):

I = UT(GT)−1FTΣFG−1U (B.8)

In this new basis Σ−1 is the identity matrix and HTR−1H is a diagonal matrix,

making it easy to compute the updated covariance matrix. Then the transformations

must be undone to bring back the updated covariance matrix in the initial basis.

Now, we will apply the different transformations discussed above from the initial

basis to get the new expression of Σa. Let us consider the four following lines as in [8]:

Σa =
(
Σ−1 + HTR−1H

)−1
= (FT)−1GT(UT)−1

[
UT(GT)−1FT

(
Σ−1 + HTR−1H

)−1
FG−1U

]
U−1GF−1

= (FT)−1GT(UT)−1
{[

U−1GF−1
(
Σ−1 + HTR−1H

)
(FT)−1GT(UT)−1

]−1
}

U−1GF−1

= (FT)−1GT(UT)−1
{[

U−1GF−1Σ−1(FT)−1GT(UT)−1 + U−1GF−1HTR−1H(FT)−1GT(UT)−1
]−1
}

U−1GF−1

= (FT)−1GT(UT)−1

{[(
UT(GT)−1FTΣFG−1U

)−1
+ UTGTFTHTR−1HFGU

]−1
}

U−1GF−1.
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In the first line, we multiply the expression of Σa by the transformations matrices

F, G and U. In the second line, we introduce the transformations under the inversion

sign of the summation. In the third line, we expand the sum, and then, in the fourth

line, we rewrite the expressions as in (B.8) and (B.7). And Finally,

Σa = (FT)−1GT(UT)−1


(UT(GT)−1FTΣFG−1U

)−1︸ ︷︷ ︸
=I

+ UTGTFTHTR−1HFGU︸ ︷︷ ︸
=diag[µ1,µ2,... ]

−1U−1GF−1


(UT(GT)−1FTΣFG−1U

)−1︸ ︷︷ ︸
=I

+ UTGTFTHTR−1HFGU︸ ︷︷ ︸
=diag[µ1,µ2,... ]


−1 = diag[1/(1 + µ1), 1/(1 + µ2), . . . ]

= BTB with B = diag[(1 + µ1)−1/2, (1 + µ2)−1/2, . . . ]

= BT (GT)−1FTΣFG−1︸ ︷︷ ︸
=I

B

Then,

Σa = (FT)−1GT(UT)−1BT(GT)−1FTΣFG−1BU−1GF−1

Σa = (FT)−1GT(UT)−1BT(GT)−1FT︸ ︷︷ ︸
=A

Σ FG−1BU−1GF−1︸ ︷︷ ︸
=AT

Finally, Σa = AΣAT, where A = (FT)−1GT(UT)−1BT(GT)−1FT.
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